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SUMMARY
Lung cancermortality is exacerbated by late-stage diagnosis. Emerging evidence indicates the potential clin-
ical significance of distinct microbial signatures as diagnostic and prognostic biomarkers across various
cancers. However, circulating microbiome DNA (cmDNA) profiles are underexplored in lung cancer (LC).
Here, whole-genome sequencing is performed on plasma of LC patients and healthy controls (HCs). Differ-
entially enriched microbial species are identified between LC and HC. A diagnostic model is developed,
which has a high sensitivity of 87.7% and achieves an AUC of 93.2% in the independent validation dataset.
Crucially, thismodel demonstrates the capability to detect early-stage LC, achieving a sensitivity of 86.5% for
stage I and 87.1% for tumors <1 cm. In addition, we construct a cmDNAmodel for recurrence, which precisely
predicts LC recurrence after surgery. Overall, this study highlights the significant alterations of cmDNA pro-
files in LC, indicating its potential as biomarkers for early diagnosis and recurrence.
INTRODUCTION

Lung cancer (LC) is the second most common cancer and the

leading cause of cancer mortality worldwide.1 The prognosis of

LC is significantly associated with the stages at which cancer pa-

tients are diagnosed.2 If diagnosed early, the 5-year survival rate

is >90%, but when diagnosed at the late metastatic stage, it

drops to <5%.2 Therefore, early detection is a critical strategy

in reducing LC mortality rates. Unfortunately, >80% of LC cases

are detected at an advanced stage, which contributes to the high

mortality rates.3 Chest low-dose computed tomography

screening has been demonstrated to reduce cancer-related

deaths by 20% in large randomized trials4,5. However, given its

unsatisfactory high rate of false positive imaging results, radia-

tion exposure, and cost,4,5 its use as an early-screening method

is limited. Surgery is the treatment of choice for early-stage LC

patients. Although the surgery cures most cancer patients with

stages I–IIIA, 10%–50% of them experience recurrence after

surgery, particularly within 3 years, which exacerbates LC mor-

tality.2 Therefore, postoperative recurrence prediction is essen-

tial for obtaining a favorable prognosis and deciding on the

appropriate adjuvant therapy. Hence, it is crucial to develop ap-

proaches with a high degree of accuracy to improve early LC
Cell Reports Medicine 5, 101499,
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detection and identify patients with high postoperative recur-

rence risk.

The lungs are a complex and unique organ system, which har-

bor one of the largest surface areas in the human body.6,7 The

mucosal surfaces of the lungs are exposed to the external envi-

ronment, facilitating the colonization of a vast number of micro-

biota communities.8 These microbial communities play an

important role in the development, diagnosis, and prognosis of

lung cancer.7 Previous studies have shown that commensal bac-

teria from LC promote cancer cell proliferation through cross-

talk with myeloid cells and gd T cells.9 In addition, a study re-

vealed that the bacterial burden in tumor cells is significantly

higher than that in immune cells and stroma in LC.10 Our previous

report indicated that LC manifesting as solid nodules and sub-

solid nodules have distinct microbiome compositions, and alpha

diversity is greater in the subsolid nodules subtype, which has

more indolent clinical behavior.11 Importantly, reducing the pul-

monary bacterial load in LC is associated with fewer regulatory

T cells and enhanced T cell activation and leads to a significant

reduction in cancer metastases.12 These findings demonstrate

that the microbiome community is not only closely associated

with LC development but also modulates cancer metastasis

and recurrence.13
April 16, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
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Figure 1. Study workflow

A total of 416 participants were included in this study. WGS of plasma cfDNA was performed, and the cmDNA features of each subject were profiled. LC, lung

cancer; R, recurrence; NR, non-recurrence.
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In recent years, various cancer tissues, including lung, breast,

colorectal, and prostate cancers, have been found to harbor the

tumor microbiome.7 With advancements in molecular biology

and sequencing techniques, studies have highlighted the causal

implications of commensal microbiota for tumorigenesis and its

potential as diagnostic biomarkers of cancer.7,14,15 Recently,

Poore et al.16 revealed that circulating microbiome DNA

(cmDNA), nonhuman, microorganism-derived cell-free DNA iso-

lated from peripheral blood, could discriminate betweenmultiple

cancers and healthy controls (HCs), opening up a new paradigm

for cancer liquid biopsy and suggesting cmDNA as a valuable

tool in cancer detection.17–19 In addition, several studies have re-

ported that cmDNA has high discriminatory performance as a

promising biomarker for noninvasive cancer detection, including

colorectal cancer,17 esophageal adenocarcinoma,18 and hepa-

tocellular carcinoma.20 Xiao et al.17 found reduced bacterial di-

versity in the cmDNA profiles of colorectal cancer and built a

classifier that could differentiate it from HCs. However, circu-

lating microbial profiles in LC, particularly their role as diagnostic

markers of early-stage cancer detection and postoperative

recurrence, have not been systematically characterized.

Therefore, this study used whole-genome sequencing (WGS)

of plasma samples for a systematic investigation of cmDNA pro-

files in 416 participants with LC and HCs. We have identified the
2 Cell Reports Medicine 5, 101499, April 16, 2024
distinct profiles of cmDNA and evaluated their potential as nonin-

vasive diagnostic biomarkers for early-stage detection of lung

cancer and postoperative recurrence.

RESULTS

Distinct cmDNA profiles in LC
The overall design of this study is shown in Figure 1. The 315

participants from the LC detection model study made up the

training cohort (LC: 69; HC: 97), and two independent validation

cohorts, including the validation I (LC: 48; HC: 48) and the vali-

dation II (LC: 33; HC: 20) (Tables S1, S2, and S3). Circulating

free (cfDNA) was extracted from plasma samples of the training

cohort and underwent WGS, with an average sequence depth

of 53 (Figure 1). Human reads were removed, and the remain-

ing reads were classified using Kraken2 and estimated using

Braken to acquire cmDNA profiles. The sequencing results

showed that the mean percentages of human reads were

98.04% in HC and 97.25% in LC. The mean percentages of mi-

crobial reads were 0.012% in HC and 0.009% in LC (Table S4).

These results were consistent with a circulating bacterial DNA

study of colorectal cancer.17 Next, the biodiversity and compo-

sition of cmDNA in LC patients were compared to HCs. Within

the healthy group, the total number of species was significantly
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higher than that in the LC group (Figure S1A). In addition, alpha

diversity analysis indicated that both the Shannon diversity and

Simpson diversity of the healthy group were significantly higher

compared to that of LC patients (Figures S1B and S1C). Intrigu-

ingly, the reduced bacterial diversity in cmDNA was consistent

with the lower diversity of gut microbiome in LC, as previously

reported by Liu et al.21

To investigate the association between cmDNA and lung

cancer, the relative abundances were compared between the

LC and HC groups at different phylogenetic levels. At the

phylum level, Proteobacteria, Actinobacteria, and Firmicutes

dominated the circulating microbial communities in both

groups, followed by Bacteroidetes and Ascomycota (Fig-

ure S2A). The abundance of Proteobacteria was higher in the

LC group than that in the HC group, although there was no sta-

tistical significance (Figure S2A). It was noteworthy that an in-

crease of the Proteobacteria phylum has previously been

observed in the lung tissue of LC patients.22 We observed a

similar pattern of composition at the order level (Figure 2A).

Specifically, the relative abundance of Pseudomonadales

from the Proteobacteria phylum was significantly higher in the

LC group (p = 0.006), whereas the relative abundance of Cory-

nebacteriales from the Actinobacteria phylum tended to be

higher in the HC group (p = 0.012; Figure 2B). Intriguingly, we

performed intratumor microbiome analysis of lung tissue from

a subgroup of 15 patients’ with cmDNA, including tumor tissue

and paired normal tissue, and found that the Pseudomonadales

order was also enriched in the tumor group, although there was

no significant difference (Table S5; Figures S2B and S2C). The

higher abundance of Pseudomonadales order in lung tissue

was reported to be associated with a worse disease-free sur-

vival among LC patients,23 whereas a higher abundance of

Corynebacteriales was associated with a reduced risk of

several cancers.24 Furthermore, the top 20 enriched species

belonged mainly to the Proteobacteria phylum, of which Pseu-

domonas azotoformans, Pseudomonas sp. SXM-1, and Pseu-

domonas fluorescens were enriched in the LC group (p =

0.004, p = 0.014, p = 0.005, respectively) (Figures 2C and

S2D). Among the statistically different genera or species,

most bacterial taxa enriched in the LC group belonged to the

Proteobacteria phyla. In particular, Acinetobacter, a well-known

microbe enriched in bronchoalveolar lavage fluid of LC,25

showed significantly higher abundance in the LC group

(p < 0.001; Figure 2C). In addition, the microbiome analysis

among different subgroups of LC separated according to tumor

size and tumor stage revealed that the cmDNA composition re-

mained relative stable at the order level (Figure 2D). Taken

together, these findings suggested that baseline signatures of

cmDNA microbiome diversity and composition were correlated

with LC patients, indicating that cmDNA may serve as a

possible biomarker for distinguishing LC patients from HCs.
Figure 2. cmDNA microbiome composition of all participants in the tra

(A) cmDNA microbiome composition at the order level (ordered by the most abu

(B) Relative abundance comparisons of Pseudomonadales, Moraxellales, Hyphom

(Wilcoxon test).

(C) Relative abundance comparison of significant taxa in the LC and HC groups

(D) Dynamic microbial composition of different tumor size subgroups (left) and diff
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cmDNAmicrobial panel as a novel diagnostic biomarker
for early-stage lung cancer
In addition to the significant disparity observed in alpha diversity,

the beta diversity, measured via the Bray-Curtis distance, ex-

hibited a clear separation between LC patients and HCs by

nonmetric multidimensional scaling (NMDS; Adonis R2 = 0.027,

p = 0.001; Figure 3A). Next, we performed linear discriminant

analysis effect size (LEfSe) analysis to further compare the

cmDNAmicrobial features of each group. Initially, we conducted

pairwise analyses at all taxonomic levels and created a clado-

gram to visualize the differences in relative abundance of each

taxa when comparing the LC and HC groups (linear discriminant

analysis [LDA] >2.0 and p < 0.05) (Figure 3B; Table S6). Subse-

quently, we identified 46 species enriched in LC patients and

130 species enriched in HCs that potentially correlated with

lung cancer (Figure 3C; Table S7). Notably, Pseudomonasa zoto-

formans, Acinetobacter guillouiae, Acinetobacter johnsonii,

Pseudomonas fluorescens, and Pseudomonas sp. SXM-1 were

the most enriched species in the LC group. In contrast, Fusarium

oxysporum andDelftia sp.WY8were significantly enriched in the

HC group (Figure 3C).

Next, we investigated the possibility of identifying LC patients

fromHCs based on the significant species.We built a random for-

est machine learning model based on differentially expressed

species data. The 119 important features were chosen for model

development that had mean decrease accuracy scores >1 with

random forest analysis. This model achieved an area under the

receiver operating characteristic curve (AUC) of 95.6%, along

with a sensitivity of 81.2%, a specificity of 90.7%, and anaccuracy

of 86.8% (Figure 3D; Table S8). Furthermore, we depicted cancer

scores for each participant in the training cohort in Figure S3. The

predicted scores of cancer patients in the early stage (stage I) and

late stages (stages II–IV) were significantly higher than those for

HCs. Moreover, we evaluated the predictive ability of the detec-

tion classifier on two subgroups based on tumor diameter: one

with smaller tumors (<1 cm) and the other with larger tumors

(R1 cm). Fivefold cross-validation was used to test the discrimi-

nate efficacy in the subgroups. We obtained AUCs of 91.5%

and 94.0% for the subgroup with smaller tumors (<1 cm) and

the subgroupwith larger tumors (R1 cm), respectively (Figure 3E).

Before we developed the model, a decontamination pipeline

was implemented to eliminate potential contaminants. Specif-

ically, a threshold analysis was conducted on three negative con-

trols (see STARMethods) and a list of potential contaminants was

created based on previous studies.16 We found that the selected

important species genomes included in our model had no overlap

with the possible microbial contamination (Table S9).

Independent validation of the early detection model
Next, we evaluated the performance of the detection model in

two independent validation datasets separately. The age and
ining cohort

ndant taxa, Pseudomonadales order).

icrobiales, and Corynebacteriales in the LC and HC groups at the order level

at the genus level (left) and the species level (right) (Wilcoxon test).

erent tumor stage subgroups (right) in the LC and HC groups at the order level.



A

B

C

D E

Figure 3. Differential taxa identified and lung cancer detection model development

(A) The NMDS plot showing beta diversity based on the Bray-Curtis distance between HC and LC groups. Significant differences were observed between LC

patients and HCs with Adonis test (R2 = 0.027, p = 0.001).

(B) Taxonomic cladogram from LEfSe showed significantly different taxa enriched in the HC and LC groups (the top 30 according to LDA).

(legend continued on next page)
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gender distribution of LC patients and HCs were similar in both

datasets (Tables S1, S2, and S3). The LC group was highlighted

by the majority of early-stage diseases in the independent vali-

dation I (stage I, 45/48, 93.8%), whereas LC patients in the inde-

pendent validation II were at the late stage (stages III–IV, 33/33,

100.0%). Intriguingly, the model showed high AUC values in

external validations, with 92.1% (95% confidence interval [CI]:

86.7%–97.5%) and 97.2% (95% CI: 93.7%–100.0%) in valida-

tion I and validation II, respectively (Figure 4A). The resultant sen-

sitivities are 87.5% (95% CI: 74.1%–94.8%) in validation I and

87.9% (95% CI: 70.9%–96.0%) in validation II (Figure 4B;

Table S10). Based on the 75.0% specificity in the validation I

cohort, we chose a cancer score cutoff of 0.511 as optimal.

This model also exhibited a specificity of 90.0% in the validation

II cohort. When combining the two validation cohorts, the model

achieved a sensitivity of 87.7% (95% CI: 78.0%–93.6%) and a

specificity of 79.4% (95% CI: 67.5%–87.9%), with an AUC of

93.2% (95% CI: 89.2%–97.2%) (Figures 4A and 4B). Further-

more, in both validation datasets, patients with LC had signifi-

cantly higher predicted cancer scores than HCs (Figure 4C;

Table S11). Importantly, our model exhibited sensitivities of

86.5% and 87.1% for tumors at very early-stage (stage I) and

small-size (<1cm), respectively, pointing to its powerful detec-

tion capabilities for identifying early-stage traits. To further eval-

uate the stability and robustness of this model, we applied WGS

data with a reduced coverage depth in an independent, small-

sized validation dataset (Table S12). Upon reducing WGS cover-

ages to 13, we found that the predicted cancer scores of these

cancer patients were higher than the cutoff value of 0.511

(Figures 4D and S4; Table S12). In conclusion, our findings sug-

gested the superior and reliable performance of this LC detec-

tion model based on cmDNA.

Distinct circulating microbial profiles in postoperative
recurrence patients
In view of the potential clinical application of cmDNA in LC detec-

tion, we next investigated the association between the cmDNA

microbial features and recurrence in resected LC patients with

clinical stage T1. It has been observed that LC patients generally

experience postoperative recurrence within 3 years.26 We first

established an early-stage LC recurrence cohort, including 36

patients who suffered recurrence within 3 years after surgery

(R group) and 65 long-term survivors who survived >3 years

without recurrence (NR group) (Figure 1). The patients in the R

and NR groups were matched with respect to age, gender, ciga-

rette smoking history, tumor diameter, and pathology

(Table S13). Subsequently, we randomly split the recurrence

cohort into training and test sets at a ratio of 6:4. In the training

set, cmDNA was derived from plasma samples of 61 LC patients

(22 R and 39 NR) (Table S13). All of the samples of this recur-

rence cohort were preoperative samples, acquired on the morn-

ing of patients’ surgeries.
(C) LEfSe identified significantly differentially abundant species in the HC and LC

(D) The receiver operating characteristic curve showed an AUC value of 95.6% i

(E) The receiver operating characteristic curve of 5-fold cross-validation in predic

(<1 cm, red line), and the subgroup with larger tumors (R1 cm, green line).

6 Cell Reports Medicine 5, 101499, April 16, 2024
Next, we investigated the changes of cmDNAmicrobial taxa at

the genus and species levels that corresponded to distinct

groups. At the genus level, Acinetobacter, Comamonas, Cuti-

bacterium, and Escherichia were the top enriched genera in

the training set (Figure 5A). Specifically, Comamonas and Cuti-

bacterium were lower in the R group, whereas Acinetobacter

and Escherichia were significantly more abundant (Figure S5A).

Furthermore, at the species level, we identified the five most

abundant species, namely Acinetobacter bereziniae, Acineto-

bacter johnsonii, Acinetobacter lwoffii, Comamonas testos-

terone, andCutibacterium acnes, among themicrobial composi-

tions between the R and NR groups (Figure 5B). We noted that

Acinetobacter johnsonii and Acinetobacter lwoffii were more

prominent in the R group’s plasma specimens as compared to

the NR group. In contrast, Acinetobacter bereziniae, Comamo-

nas testosterone, and Cutibacterium acnes were significantly

more abundant in the NR group (Figure S5B).

cmDNA signatures as a novel biomarker for recurrence
of LC
We identified 23 taxa enriched in theR group and 39 taxa enriched

in the NR group, which may relate to postoperative recurrence

through LEfSe analysis (LDA >2, p < 0.05) (Figure 5C;

Table S14). Of note, the Candidatus Nanosynbacteraceae family,

the Staphylococcus genus, and the Candidatus Nanopelagicales

order were the most enriched taxa in the R group, whereas the

Propionibacteriales order, the Pseudomonasa zotoformans spe-

cies, and the Ralstonia mannitolilytica species were the most en-

riched taxa in theNRgroup (LDA>2, p < 0.05) (Figure 5C).We then

assessedwhether thesemicrobial features could discriminate be-

tween the R and NR groups. Based on taxa DNA relative abun-

dance of each sample, the principal-component analysis (PCA)

revealed that the R group could be distinguished from the NR

group in the training set (Figure S5C). In addition, we performed

PCA on the test set and found that the R group was still separated

from theNRgroup (FigureS5D). No statistically different taxawere

found in the possible contaminants list (Table S9).

Subsequently, we explored the feasibility of differentiating pa-

tients belonging to the R group from those in the NR group by us-

ing the significant microbial characteristics. A machine learning

model was implemented and 5-fold cross-validation was per-

formed in the training set. The 5-fold cross-validation yields a

high accuracy of 85.3%, with a mean AUC value of 87.3% (Fig-

ure S5E). This model, based on cmDNA markers, exhibited a

sensitivity of 72.7% and a specificity of 84.6% in the training

set, with an AUC of 88.1% (95% CI, 79.7%–96.6%) (Figure 6A).

In addition, in the test set, the model achieved a sensitivity of

71.3% and specificity of 84.6%, with an AUC of 80.9% (Fig-

ure 6B). We observed that the predicted recurrence scores of

the R group were significantly higher than those of the NR group

in the training set (p < 0.001) and the test set (p = 0.002) (Fig-

ure 6C). Furthermore, patients were categorized into high- and
groups (the top 30 according to LDA).

n the training cohort.

ting LC with different tumor size subgroups, the subgroup with smaller tumors
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Figure 4. Independent validation of the lung cancer detection model

(A) The receiver operating characteristic curve evaluating the performance of the LC detection model in the combined validation cohort and its validation I and II

cohorts separately.

(B) Sensitivities of the LC detection model are 87.7% for the combined validation cohort, 87.5% for the validation I, and 87.9% for the validation II, respectively.

(C) The boxplots showing the distribution of cancer scores in the LC and HC groups of the independent validation cohorts. The cutoff score for the independent

validation I set is 0.511, and a Wilcoxon test was performed for the comparison between LC and HC subsets.

(D) The boxplots showing the distribution of cancer scores in additional shallow-coverage validation dataset with the coverage depth of 13, compared to WGS

data of 53. Error bars represent each group’s mean ± SD.
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low-risk groups according to themedian of predicted recurrence

scores. The Kaplan-Meier survival curve revealed that the recur-

rence-free survival (RFS) in the high-risk group was significantly

shorter (p < 0.001) than that of the low-risk group (Figure 6D). In

addition, we displayed the top 20 crucial taxa resulting from

random forest analysis, such as the Methylophilaceae family, in

Figure 6E. Importantly, we found that Methylophilaceae, the

top-most significant feature, was significantly correlated with

RFS (p < 0.001; Figure 6F).
As expected, RFS in the high-risk group proved to be signifi-

cantly shorter in the test set (Figure S5F). Furthermore, Kaplan-

Meier survival curve analysis demonstrated a significant associ-

ation betweenMethylophilaceae and RFS between the R and NR

groups (Figure S5G). Remarkably, the test set had a larger num-

ber of patients with TNM stage II or III (p = 0.002; Table S13).

Therefore, we conducted univariable and multivariable analyses

(Table S15), which demonstrated that themodel predicting score

remained an independent predictor of RFS in the multivariate
Cell Reports Medicine 5, 101499, April 16, 2024 7



0

3

6

9

R
el

at
ive

 A
bu

nd
an

ce
 

s_Acinetobacter bereziniae
s_Acinetobacter johnsonii
s_Acinetobacter lwoffii
s_Comamonas testosteroni
s_Cutibacterium acnes
s_Escherichia coli
s_Helicobacter pylori
s_Klebsiella pneumoniae
s_Moraxella osloensis
s_Pseudomonas azotoformans

Group
R
NR

o_Propionibacteriales
s_Pseudomonasa_zotoformans

f_Candidatus_Nanopelagicaceae
g_Staphylococcus

o_Candidatus_Nanopelagicales

s_Ralstonia_mannitolilytica
p_Firmicutes

g_Limnohabitans
g_Candidatus_Planktophila

s_Candidatus_Planktophilavernalis
s_Limnohabitans_sp__103DPR2

o_Nitrosomonadales
f_Methylophilaceae

g_Candidatus_Methylopumilus
s_Candidatus_Methylopumilus_universalis

g_Malassezia
c_Malasseziomycetes
o_Malasseziales

g_Candidatus_Nanopelagicus

p_Basidiomycota
f_Malasseziaceae
s_Malassezia_restricta

s_Candidatus_Nanopelagicus_abundans
s_Limnohabitans_sp__63ED37_2

f_Weeksellaceae
o_Rhodobacterales
g_Paracoccus
f_Rhodobacteraceae
s_Herbaspirillum_huttiense
s_Chryseobacterium_sp__ZHDP1

NRR

-4 -3 -2 -1 0 1 2 3 4
LDA score (log10)

Group
R
NR

0

3

6

9

R
el

at
iv

e 
Ab

un
da

nc
e

g_Acinetobacter
g_Comamonas
g_Cutibacterium
g_Escherichia
g_Helicobacter
g_Klebsiella
g_Moraxella
g_Pseudomonas
g_Ralstonia
g_Staphylococcus

A

B

C

Figure 5. Differential taxa were enriched in the R group and NR group of the 61 patients with LC

(A and B) Descriptive visual representation of top 10 microbial taxa showing the distinctive profile of microbiota between patients in the R and NR groups, at the

genus level (A) and the species level (B), respectively.

(C) LEfSe identified significantly differentially abundant taxa in the R and NR groups (the top 30 according to LDA).

Article
ll

OPEN ACCESS
Cox regression model (hazard ratio = 27.8, 95%CI: 3.6–216.5,

p = 0.001) even after adjusting for TNM stage.

DISCUSSION

Previous researchers have highlighted the significance of the tu-

mor microbiome in both tumor development and diag-

nosis,7,9,16,27 providing opportunities for biomarker identification

inmany fields of cancer.Most studies ofmicrobial markers, how-

ever, tend to focus either on cancer detection27,28 or treatment.13

Specifically, early-stage cancer detection methods, as previ-

ously reported by Zheng et al.27 have limited diagnostic accu-

racy. In our study, we aimed to improve the diagnostic sensitivity

of early-stage LC and postoperative recurrence. Unlike conven-

tional microbial investigations derived from fecal samples,27 we

established a machine learning model based on cmDNA in the

LC detection study, which achieved high sensitivity in discrimi-

nating between early-stage LC and noncancer subjects (86.5%

sensitivity for stage I and 87.1% sensitivity for tumors <1 cm in

independent validation datasets). Furthermore, a random forest

classifier in the LC recurrence study exhibited high discrimina-

tory performance between patients with or without recurrence,

with AUC values of 88.1% in the training set and 80.9% in the

test set, respectively.

A recent study by Poore et al. has proposed a new cancer

diagnostic approach based on cmDNA through microbiome an-

alyses of blood, demonstrating high accuracy.16 Furthermore,
8 Cell Reports Medicine 5, 101499, April 16, 2024
cmDNA is a promising tool in the diagnosis and prognosis of

esophageal adenocarcinoma.18 In the present study, our results

demonstrated distinct cmDNA profiles between LC patients and

HCs. Consistent with previous studies,13,21,29,30 LC patients dis-

played lower microbiota diversity than did HCs. We additionally

identified that cmDNA levels of 315 taxa were significantly

altered in LC. Notably, some of these taxa, including Actino-

myces31,32 and Acinetobacter,33 have been previously identified

as being significantly correlated with LC development. In addi-

tion, the top significant feature,Gammaproteobacteria, enriched

in the LC group, is associated with poor response to checkpoint-

based immunotherapy in non-small cell lung cancer.29 Using 119

significant species, we developed a robust classifier model pre-

dicting early-stage LC. An important feature,Granulicatella adia-

cens,25 is observed to be significantly more abundant in LC,

further substantiating our diagnostic approach. Importantly,

our model outperformed the previous models27 of gut micro-

biome signature in distinguishing LC and noncancer subjects.

Fivefold cross-validation demonstrated high accuracy, with

mean AUC values of 91.5% for tumor sizes <1 cm and 94.0%

for tumor sizes R1 cm, respectively. Notably, our model sensi-

tively identified early pathological features in independent

datasets.

Several studies have suggested that lower airway microbiota

is associated with the recurrence of LC and could facilitate tumor

progression.34,35 In this study, we performed a comprehensive

analysis of cmDNA signatures between the R group and the
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NR group. Using a classifier based on cmDNA microbial fea-

tures, we achieved high performance levels in discriminating be-

tween the R and NR groups. Moreover, the predictive scores of

the recurrence model were significantly associated with RFS,

further demonstrating its potential as a noninvasive biomarker.

Notably, our cmDNA-based model provides a convenient and

noninvasive detection method for LC. Although some liquid bi-

opsy approaches, such as cell-free DNA methylation, could

improve LC detection performance, their application is limited

due to their high cost.36 To ensure adequate performance while

reducing expenses, we usedWGS data with a coverage depth of

53 for model construction. The use of the low-coverage WGS

method significantly reduces the cost of our model when

compared to other liquid biopsy techniques. Moreover, the per-

formance of the model remains robust even with shallow WGS

data of 13 coverage depth.

The origin of cmDNA is still amystery, however. In this study,we

found that the distribution of order-level phylotypes was similar

between cmDNA and paired intratumor bacterial. Although

some studies have confirmed that tumors contain intracellular

bacteria,37 the relative contribution of intratumormicrobes at non-

tumor sites is not clear, which needs to be further characterized. In

addition, the composition of the microbiome of a participant is

affected by factors including lifestyle and diet, as well as treat-

ments of antibiotics. In our study, we carefully matched patient

and control groups with respect to age, gender, and smoking sta-

tus, particularly using larger sample sizes frommulticenters of the

south and the north of China to enable us to mitigate interindi-

vidual variation. Given the complexity of the microbiome, there

are likely further unknown biological confounders, which should

be considered in further study.

This study has some limitations that need to be addressed.

First, although our model based on cmDNA showed high accu-

racy in LC detection, the specificity of the predictive model in

validation cohorts was not sufficient for the large population

screening. To mitigate this LC detection challenge, multi-omics

approaches that combine multiple cfDNA signatures, including

microbiome, methylation, and fragment markers, may boost

sensitivity and specificity for early cancer detection. The multi-

omic liquid biopsy approaches need larger sample sizes and

more robust integrated analyses, which may be investigated in

the future. Second, we were unable to conduct independent val-

idations of our LC recurrence model due to our limited number of

samples. Thus, further follow-up validations using larger sample

sizes are necessary. Third, although our model demonstrated

stability and robustness with shallow WGS data, the additional

shallow-coverage dataset had a small sample size of late-stage

patients. Therefore, it is necessary to validate our model further

with a larger dataset that includes early-stage patients pro-

cessed in the shallow-coverage test.
Figure 6. The postoperative recurrence predicting model

(A and B) Receiver operating characteristic curve delineating the association betw

(C) The boxplots showing the distribution of recurrence scores in the R and NR gr

test was performed for the comparison between the R group and the NR group.

(D) The Kaplan-Meier method with log rank test estimates the RFS for patients w

(E) Top 20 circulating microbial features prioritized by random forest analysis ran

(F) The Kaplan-Meier method with log rank test estimates the median RFS for pa
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In summary, our study provides valuable insights into the sig-

nificant alterations in cmDNA profiles in LC and HC patients, as

well as the microbial signatures of patients with recurrence. We

developed a highly sensitive cmDNA-based model that effec-

tively distinguished early-stage LC patients from noncancer con-

trols. Our findings also suggest the potential use of cmDNA as a

promising biomarker for postoperative recurrence, which could

significantly improve patient outcomes.

Limitations of the study
First, our study has revealed the consistent composition of

cmDNA and intratumor microbiome using a small sample size.

Further research necessitates a larger sample size of tumor tis-

sues. Second, the recurrence cohort predominantly comprised

lung adenocarcinoma patients. It warrants additional investiga-

tion as to whether the findings could expand to different popula-

tions. Future researchers should be aware of this factor when

incorporating our data into their analyses.
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Mantang

Qiu (qiumantang@163.com).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The raw sequence data reported in this paper have been deposited in the Genome Sequence Archive of the Beijing Institute of Ge-

nomics (BIG) Data Center, BIG, Chinese Academy of Sciences, under accession code HRA005896 and are publicly accessible at

http://bigd.big.ac.cn/gsa-human. The codes to process and analyze data are publicly available at https://zenodo.org/records/

10605234.

Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Patients and sample information
A total of 416 participants took part in the study (Figure 1). For the LC Detection Model study, we recruited 166 participants in the

training cohort, which comprised healthy control (HC, n = 97) from Aerospace 731 Hospital and previously untreated LC patients

(n = 69) from Peking University People’s Hospital, China. The LC patients included adenocarcinoma (n = 51), squamous cell carci-

noma (n = 12), small cell carcinoma (n = 5), and large-cell neuroendocrine carcinoma (n = 1), as detailed in Tables S1, S2, and S3. After

constructing the model, we conducted two prospective independent validation cohorts using plasma samples of 149 participants.

Validation cohort I had 48 HC and 48 LC participants, whereas Validation cohort II had 20 healthy participants and 33 LC participants.

The healthy participants in the validation cohorts were from Jiangsu ProvinceGeriatric Hospital, while LC patients in Validation cohort

I were from The Second People’s Hospital of Shenzhen, and LC patients in Validation cohort II were from Jiangsu Province Geriatric

Hospital. The LC and HC cohorts were gender and age-matched as shown in Table S3. For the LC Recurrence Model study, we

enrolled 101 participants. Patients and related samples were selected from specimen repository in Peking University People’s Hos-

pital between 2013 and 2018 according to follow criteria: 1. Clinical stage T1 lung cancer; 2. Received radical surgery; 3. Recurrence

or death in 3 years. Thirty-six patients were included as recurrence group (R group) and after matching for various clinicopathologic

variables, The sixty-five patients without known recurrence was chosen to the non-recurrence group (NR group). This study was

approved by the ethics committee at Peking University People’s Hospital (Approval No. 2022PHB454). All participants provided writ-

ten informed consent.
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METHOD DETAILS

DNA extraction and library preparation
Whole blood samples were collected in EDTA tubes after skin surfaces were sterilized twice and processed immediately. The sep-

aration of plasma and cellular components was achieved through centrifugation at 1600g for 10 min at 4�C. Subsequently, plasma

was centrifuged again at 16,000 g at 4�C to eliminate any residual cellular debris and stored at �80�C until the point of DNA extrac-

tion. Cell-free DNA was extracted from plasma using Life-MAGMAX Cell-free DNA Kit. The NGS cfDNA libraries were established for

whole genome sequencing using 10 to 250 ng of cfDNA. In brief, the concentration of cfDNA was measured using the Qubit dsDNA

HS Assay Kit in compliance with the manufacturer’s recommendations. Then, genomic libraries were produced using the Hieff NGS

Ultima ProDNA Library Prep Kit for Illumina.Whole genome libraries were sequenced using 100-bp paired-end runs on the DNBSEQ-

T7 (Geneplus-Beijing Institute, Beijing, China).

To avoid contamination, we conducted three negative controls, wherein the complete DNA extraction and sequencing procedure

were repeated with blank tubes instead of participants’ plasma samples.

Sequence data processing
FastQC was used for FASTQ file quality control. All reads from the samples were initially mapped to the hg19 reference sequence of

human genome using Bowtie2 software (v2.3.5.1) with default parameters.38 To get microbial data of all plasma samples and ensure

human-derived reads were removed, we applied three bioinformatic analysis steps to the aligned results. First of all, reads that

aligned to human genome were removed using Samtools software with SAM-flags of ‘‘-f 12’’ and ‘‘-F 256’’. The SAM flag of ‘‘-f

12’’ could extract only alignments with both paired reads unmapped to human genome and the SAM flag of ‘‘-F 256’’ required primary

alignment to be exracted.39 Secondly, the filtered reads were then aligned to the microbial reference genome databases available in

the NCBI using a k-mer-based algorithm through Kraken2.40 We used the complete genomes from NCBI, including the standard

Kraken2 database of archaea, bacteria, human, Univec_Core and viral, and supplement genome database of fungi, to avoid potential

contamination from draft genomes. Kraken2 hits accumulating less than 10% of K-mers matching the reference sequence were dis-

carded and a hit was considered true positive only if at least 50 reads were aligned to the reference database. Thirdly, the taxonomy

labels assigned by Kraken2 were analyzed by Bracken with a parameter of 32 k-mer distribution to estimate the species-level read

abundance.41 Bracken re-estimated species abundances from the Kraken2 output results by probabilistically re-distributing reads in

the taxonomic tree.

To assess the reproducibility of this workflow, we compared circulating microbial DNA profiles both the day before and the day of

surgery. We processed sequencing data analysis of two patients and found that genus-level taxa were similar in the adjacent two

days (Figure S6). Specifically, compared to the samples of the first day, there were 15 identical taxa in the sample of the second

day in the patient LC01 (15/20) and 14 identical taxa in the patient LC02 (14/20) (Tables S16), which confirmed the robustness of

our cmDNA analysis.

Differentially abundant taxa identification
For phylogenetic diversity between clinical groups, alpha diversity was computed using the R package vegan to evaluate the richness

and evenness of each sample, and then comparedwith theWilcoxon test. Beta diversity based on Bray-Curtis metrics was applied to

compare the dissimilarities between different groups with non-metric multidimensional scaling (NMDS). In order to identify signifi-

cantly differential taxa between clinical groups, we used the Wilcoxon test based on their relative abundance. Linear discriminant

analysis effect size (LEfSe) was further applied to identify significantly differentially enriched taxa between clinical groups,42 with

Linear Discriminant Analysis (LDA) threshold set at 2.0 and p < 0.05.

Quality filtering
To mitigate the potential contamination effect, we applied two filtering steps to the significant taxa obtained from LEfSe analysis.

Firstly, we utilized the negative control samples to identify contaminant species. Specifically, we identified microbial reads and

computed the relative abundance of three negative control (NC) samples. Then, we performed a threshold analysis, similar to a pre-

vious study,22 where any significant species detected in the NC samples, with a relative abundance higher than 5% in any NC sample,

was considered contamination and flagged. Secondly, we curated a list of genera and species that were reported as contaminants in

previous studies,16,43 especially in the circulating microbiome research on multiple cancers from Poore et al.16 We removed any sig-

nificant taxa detected in the curated list.

Machine learning model
The LEfSe results identified significant features, which were utilized as inputs for the random forest analysis. The caret package

(https://cran.r-project.org/web/packages/caret/) and the randomForest R package (https://cran.r-project.org/web/packages/

randomForest/index.html) were employed for this purpose. In the analysis, 1000 trees were constructed using the randomForest

R package (version 4.7–1.1) with 5-fold cross-validation, and the process was repeated 100 times. The pROC R package was

used to generate class predictions and the receiver operating characteristics (ROC) curve.
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DNA extraction and 16S rRNA gene sequencing
Microbial community genomic DNA was extracted from lung tissue samples using the FastDNA Spin Kit for Soil (MP Biomedicals,

Southern California, U.S.) according to manufacturer’s instructions. The DNA extraction was checked on 1% agarose gel, and

DNA concentration and purity were determined with NanoDrop 2000 UV-vis spectrophotometer (Thermo Scientific, Wilmington,

USA). The bacterial 16S rRNA genes were amplified using the universal bacterial primers 27F (50-AGRGTTYGATYMTGGCTCAG-

30) and 1492R (50-RGYTACCTTGTTACGACTT-30). PCR reactions were performed in triplicate condition. After electrophoresis,

PCR products were purified using AMPure PB beads (Pacifc Biosciences, CA, USA) and quantified with Quantus Fluorometer (Prom-

ega, WI, USA). All purified products were pooled in equimolar and the DNA library was constructed using the SMRTbell prep kit 3.0

(Pacifc Biosciences, CA, USA) according to PacBio’s instructions. The purified SMRTbell libraries were sequenced on the Pacbio

Sequel IIe System (Pacifc Biosciences, CA, USA) by Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China).

Analysis of 16S rRNA sequencing data
All PacBio raw reads were processed using the SMRTLink analysis software (version 11.0) to obtain high-quality Hifi reads with a

minimum of three full passes and 99% sequence accuracy. The Hifi reads were barcode-identified and length-filtered. The

sequencing reads with a length <1,000 or >1,800 bp were removed. The Hifi reads were denoised using DADA244 plugin in the

Qiime2,45 with recommended parameters. Taxonomic assignment of DADA2 denoised sequences, known as amplicon sequence

variants (ASVs) was performed using the Naive bayes consensus taxonomy classifier implemented in Qiime2 and the Nucleotide

Sequence Database.

QUANTIFICATION AND STATISTICAL ANALYSIS

The Wilcoxon test was employed to compare the relative abundance at different phylogenetic levels between different clinical

groups. The Kaplan-Meier method and log rank test within the R package, survminer, were used to perform univariate survival anal-

ysis of RFS between the groups. The two-sided P-values <0.05 were considered statistically significant. All statistical analyses were

executed in R (version 4.2.0) and SPSS software (version 22.0; IBM Corporation Armonk, NY, USA).
Cell Reports Medicine 5, 101499, April 16, 2024 e3
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Figure S1 Alpha diversity between cancer patients and healthy controls in the training cohort. 

Related to Figures 1. 
(A-C) (A) Total number of detected species, (B) Shannon diversity index and (C) Simpson diversity 

index was computed from all samples in the healthy and cancer groups.  
  



 
 

Figure S2 Tumor microbiome composition in the training dataset from cancer Detection cohort. 

Related to Figures 2. 
(A) Circulating microbiome composition at the phylum level in the training dataset of Detection model 

(ordered by the most abundant taxa, Proteobacteria phylum). (B) Intratumour microbiome composition 

at order taxonomic levels in tumor tissue and paired normal tissue. (C) Boxplots showed relative 

abundance of specific order-level taxa in the intratumour microbiome analysis. (D) circulating 

microbiome composition at the species level in the training dataset of Detection model (ordered by the 

most abundant taxa, Pseudomonas azotoformans species). 
  



 
 

Figure S3 The boxplots showing the distribution of cancer scores of healthy controls, and cancer 

patients with different TNM stages in the training cohort. Related to Figures 3. 
  



 
 

Figure S4 The boxplots showing the distribution of cancer scores of the additional shallow-coverage 

dataset in coverage depths of 1X and 5X, and a Wilcoxon test was performed for the comparison 

between the 1X and the 5X. Related to Figures 4. 
  



 
 

Figure S5 Differentially enriched circulating microbial taxa are associated with RFS of lung 

cancer. Related to Figures 5 and 6. 
(A-B) The Bar plots of the genera (A) and species (B) taxonomic levels in recurrence and non-

recurrence lung cancer patients in the training set. (C-D) Principle component analysis showed 

stratification of samples in the training set (C) and the test set by significant taxa relative abundance, 

respectively. PC1 and PC2 values represented the top two principal coordinates. Different sample types 

were denoted by color code and shape. (E) Receiver operating characteristic curve of 5-fold cross-

validation in the training set. (F) Kaplan-Meier plot of lung cancer patients defined by recurrence 

model predicting scores in the test set. (G) Kaplan-Meier estimates for RFS probability of patients with 

different abundance levels of Methylophilaceae family.  
  



 
 
Figure S6 The circulating microbial DNA profiles both the day before and the day of surgery. 

Related to the STAR Methods. 
Pie charts showed the most abundance genus in the patient LC01 (A) and the patient LC02 (B) both the 

day before and the day of surgery.  



Table S3. Clinical characteristics of study participants in the training and validation cohorts and their disposition,  
related to Figure 1. 

                    

 Cohort 

 Training (N = 166)  Validation I (N = 96)  Validation II (N = 53) 

 
Cancer 
(n = 69) 

Healthy 
(n = 97) 

p   
Cancer 
(n = 48) 

Healthy 
(n = 48) 

p  
Cancer 
(n = 33) 

Healthy 
(n = 20) 

p 

Age in 
years, 
Mean±S
D 

 
  

0.526  
  

0.148  
  

0.501 

Cigarette 
smoking, 
n (%) 

 
  

0.802  
  

0.779  
 

 0.258 

Female, n 
(%) 

 
  

0.118  
  

0.837   
 

0.136 

Histology, n (%) 

LUAD  
 

- -  
 

-   
 

- - 

  
 

- -   -   
 

- - 

   - -   -    - - 

   - -   -    - - 

Stage, n (%) 

I   - -   -    - - 

II+III+IV  
 

- -   -   
 

- - 

Tumor size, n (%) 

< 1 cm  
 

- -  
 

-   0 (0.0%) - - 

≥ 1cm  
 

- -   
 

-    
 

- - 

*Others: lung adenosquamous carcinoma, large-cell carcinoma of the lung 
  

28 (40.6%)

51  (73.9%) 24 (72.7%)

29 (60.4%)

41 (59.4%) 33  (100.0%)19  (39.6%)

45  (93.7%)

0 (0.0%)

33(100.0%)

12  (17.4%)

5 (7.2%)

1 (1.4%)

0 (0.0%)

1 (2.1%)

2 (4.2%)

LUSC

SCLC

Others*

4  (12.1%)

2  (6.1%)

3 (9.1%)

52 (75.4%)

17(24.6%)

41 (85.4%)

7 (14.6%)

58.16
±9.99

59.79
±8.207

66.15
±16.731

69.09
±12.428

60.08
±10.946

59.31
±13.23

25  (36.2%)

31  (44.9%)

37  (38.1%) 7  (14.6%) 8  (16.7%) 5  (15.2%) 1 (5.0%)

15  (75.0%)18 (54.5)28(58.3  %)27  (56.3%)32  (33.0%)



 
Table S5. Lung cancer samples enrolled in intratumor microbiome analysis, related to Figure S2. 

         
Sample         
L900         
L904         
L944         
L956         
L1089         
L1094         
L1104         
L1135         
L1143         
L1144         
L1156         
L1168         
L1316         
L1554         
L1579         

  



Table S8. The diagnostic performance of the predictive model in the training cohort, related to Figure 3. 
         

Training cohort   Actual 

 Cancer Control 

Predicted 
Cancer  56 9 

Control  13 88 

Sensitivity (95% CI)  81.2% (69.6%-89.2%) 
Specificity (95% CI)  90.7% (82.7%-95.4% 
Accuracy (95% CI)  86.8% (80.6%-91.5%) 

Definition of abbreviation: CI= confidence interval. 
  



Table S10. The diagnostic performance of the predictive model in the validation cohorts, related to Figure 4. 
           

Validation cohort I 
Actual    

Cancer Control    

Predicted 
Cancer 42 12    
Control 6 36    

Sensitivity (95% CI) 87.5% (74.1%-94.8%)    
Specificity (95% CI) 75.0% (60.1%-85.9%    
Accuracy (95% CI) 81.3% (72.2%-88.5%)    

Validation cohort II 
Actual    

Cancer Control    

Predicted 
Cancer 29 2    
Control 4 18    

Sensitivity (95% CI) 87.9% (70.9%-96.0%)    
Specificity (95% CI) 90.0% (66.9%-98.2%)    
Accuracy (95% CI) 88.7% (77.0%-95.7%)    

Combined validation cohorts 
Actual    

Cancer Control    

Predicted 
Cancer 71 14    
Control 10 54    

Sensitivity (95% CI) 87.7% (78.0%-93.6%)    
Specificity (95% CI) 79.4% (67.5%-87.9%)    
Accuracy (95% CI) 83.9% (77.0%-89.4%)    

Definition of abbreviation: CI= confidence interval.     
  



Table S12. The cancer scores of additional shallow-coverage dataset, related to Figure 4. 
            

Sample 
Low coverages       

5X 1X       
NJ_C0048 0.868 0.898       
NJ_C0067 0.536 0.596       
NJ_C0070 0.846 0.868       
NJ_C0074 0.78 0.832       
NJ_C0086 0.82 0.862       
NJ_C0092 0.818 0.898       
         

  



Table S13.Characteristics of the included participants of the recurrence cohort, related to Figure 5. 

            

Characteristics 
 Train set (N = 61)  Test set (N = 40) 

 R (n = 22) NR (n = 39) p  R (n = 14) NR (n = 26) p 

Recurrence free 
survival (years), 
Mean ± SD  

1.70±0.87 4.39±0.86 
<0.001 

 1.65±1.15 4.66±0.79 
<0.001 

Age (years), 
Mean±SD 

 61.36±7.14 61.59±8.06 0.913  58.57±8.36 61.81±8.99 0.273 

Female, n (%)  12 (54.5%) 19 (48.7%) 0.662  8 (57.1%) 10 (38.5%) 0.257 

Cigarette smoking, 
n (%) 

 10 (45.5%) 11 (28.2%) 0.173  6 (42.9%) 8 (30.8%) 0.445 

Stage, n (%)     0.002 
I     

 5 (35.7%) 22 (84.6%)  

II-III       9 (64.3%) 4 (15.4%)   

Histology, n (%) 0.37    0.232 
LUAD  20 (90.9%) 36 (92.3%)   12 (85.7%) 25 (96.2%)  
LUSC  1 (4.5%) 3 (7.7%)   2 (14.3%) 1 (3.8%)  
Others  1 (4.5%) 0 (0.0%)    0 (0.0%) 0 (0.0%)   

Tumor diameters 
(cm), Mean ± SD  2.29±0.60 2.05±0.64 0.16  1.99±0.72 1.90±0.73 0.725 

R, recurrence group; NR, non-recurrence group; LUAD, lung adenocarcinoma; LUSC, lung squamous cell 
carcinoma; Others, lung adenosquamous carcinoma 

  

0.603

13 (59.1%)  27 (69.2%)
9 (40.9%)  12 (30.8%)



Table S14: Significantly differential taxa between R and NR groups, related to Figure 5. 

         
feature score group LDA p     

s_Limnohabitanssp_103DPR2 3.490936 R 3.092666 0.001628     
s_Phreatobactercathodiphilus 1.996731 NR 2.35054 0.036657     
s_CandidatusMethylopumilusuniversalis 3.260202 R 2.989751 0.000272     
s_Paracoccussanguinis 3.049735 NR 2.579703 0.047382     
s_Pseudomonaskoreensis 2.60036 NR 2.339833 0.015943     
f_Phreatobacteraceae 1.996731 NR 2.420925 0.036657     
g_Paracoccus 3.309408 NR 2.696325 0.03781     
o_Nitrosomonadales 3.292351 R 3.022054 8.98E-05     
f_Weeksellaceae 3.137434 NR 2.71627 0.017542     
o_CandidatusNanopelagicales 3.783817 R 3.363307 0.015678     
o_Rhodobacterales 3.312299 NR 2.708654 0.03781     
s_CandidatusNanopelagicusabundans 2.946196 R 2.728211 0.009715     
g_Malassezia 3.196425 NR 2.869928 0.016941     
s_Tepidimonastaiwanensis 2.670287 NR 2.425536 0.024261     
g_Tepidimonas 2.670287 NR 2.405391 0.024261     
s_Acinetobacterpseudolwoffii 2.10633 R 2.363092 0.019045     
g_Psychrobacter 2.443738 NR 2.284315 0.015943     
f_Malasseziaceae 3.196425 NR 2.810634 0.016941     
s_Pseudomonassp_B10 2.622441 NR 2.319814 0.015943     
s_Variovoraxparadoxus 2.368597 NR 2.206128 0.015943     
p_Firmicutes 4.078506 NR 3.3144 0.042595     
s_Acinetobactersp_NEB149 2.556007 R 2.428587 0.019045     
s_Flavobacteriumsp_GENT5 2.592916 R 2.379265 0.019045     
g_Sphingomonas 2.565695 NR 2.317423 0.015943     
g_Staphylococcus 3.847322 R 3.369032 0.039949     
s_Pseudomonaslactis 2.054425 NR 2.463025 0.036657     
f_Methylophilaceae 3.292351 R 3.01553 8.98E-05     
s_Herbaspirillumhuttiense 2.862965 NR 2.590948 0.015943     
s_Sphingomonaspaucimobilis 2.48324 NR 2.347997 0.015943     
s_Pseudomonasmoraviensis 2.558204 NR 2.279922 0.036657     
g_Limnohabitans 3.603065 R 3.23221 0.001628     
s_Acinetobactercalcoaceticus 2.175639 R 2.342373 0.019045     
s_Corynebacteriumureicelerivorans 2.116535 NR 2.180723 0.036657     
g_Phreatobacter 1.996731 NR 2.285086 0.036657     
s_CandidatusPlanktophilavernalis 3.653169 R 3.171637 0.027129     
s_Acinetobacteroleivorans 2.394791 R 2.273913 0.006332     
s_Psychrobactersanguinis 2.419681 NR 2.250923 0.015943     
s_Acinetobacterradioresistens 2.523844 R 2.238038 0.037195     
g_CandidatusNanopelagicus 3.105997 R 2.845843 0.003096     
o_Propionibacteriales 4.485492 NR 3.775424 0.041089     
s_Brevundimonasmediterranea 2.631862 R 2.330522 0.037195     



g_CandidatusMethylopumilus 3.274036 R 3.013744 0.000272     
s_Pseudomonasazotoformans 4.001611 NR 3.686345 0.006707     
s_Pseudomonassp_SXM_1 2.81565 NR 2.53472 0.015943     
s_Limnohabitanssp_63ED37_2 2.935637 R 2.725227 0.003097     
o_Malasseziales 3.196425 NR 2.848594 0.016941     
f_CandidatusNanopelagicaceae 3.783817 R 3.376195 0.015678     
s_CandidatusNanopelagicuslimnes 2.572038 R 2.549058 0.002083     
g_Variovorax 2.616205 NR 2.360406 0.015943     
s_Pseudomonaspoae 2.123864 NR 2.262788 0.036657     
s_Paracoccusmarcusii 2.215384 NR 2.076205 0.036657     
s_Malasseziarestricta 3.196425 NR 2.799819 0.016941     
s_Ralstoniapickettii 2.312351 NR 2.303224 0.036657     
s_Pseudomonassp_NS1_2017_ 2.2469 NR 2.244133 0.024261     
s_Chryseobacteriumsp_ZHDP1 2.868544 NR 2.590359 0.015943     
f_Rhodobacteraceae 3.312299 NR 2.69072 0.03781     
s_Ralstoniamannitolilytica 3.634975 NR 3.336194 0.015943     
s_Acinetobacterpittii 2.395057 R 2.322208 0.019045     
g_CandidatusPlanktophila 3.677635 R 3.216565 0.024997     
p_Basidiomycota 3.196425 NR 2.845506 0.016941     
c_Malasseziomycetes 3.196425 NR 2.854624 0.016941     
g_Herbaspirillum 2.862965 NR 2.582135 0.015943     
     

    
 

 

  



Table S15. Model predicting score adjusted by TNM stage, related to Figure S5.  
           

 Univariable  Multivariable 

  HR (95%CI) p  HR (95%CI) p 
Predicting score 13.091 (2.236-76.652) 0.004  27.848 (3.581-216.534) 0.001 
TNM Stage (II-III vs. I)  5.751 (1.910-17.314) 0.002  7.619 (2.358-24.620) < 0.001 

      
  



Table S16. The top 20 of genus-level taxa of circulating microbial DNA profiles both 
the day before and the day of surgery, related to the STAR Methods. 
         
LC01_day1 LC01_day2 LC02_day1 LC02_day2  
g_Komagataella g_Komagataella g_Komagataella g_Komagataella 
g_Cutibacterium g_Cutibacterium g_Cutibacterium g_Cutibacterium 
g_Pseudomonas g_Saccharomyces g_Pseudomonas g_Streptomyces 
g_Acinetobacter g_Streptomyces g_Acinetobacter g_Pseudomonas 
g_Streptomyces g_Pseudomonas g_Streptomyces g_Salmonella 
g_Saccharomyces g_Pseudonocardia g_Stenotrophomonas g_Klebsiella 
g_Bradyrhizobium g_Bradyrhizobium g_Corynebacterium g_Staphylococcus 
g_Corynebacterium g_Acinetobacter g_Bradyrhizobium g_Xanthomonas 
g_Pseudonocardia g_Nocardiopsis g_Pseudonocardia g_Bradyrhizobium 
g_Klebsiella g_Klebsiella g_Saccharomyces g_Pseudonocardia 
g_Nocardiopsis g_Mesorhizobium g_Mesorhizobium g_Acinetobacter 
g_Malassezia g_Corynebacterium g_Nocardiopsis g_Corynebacterium 
g_Staphylococcus g_Nocardioides g_Sphingomonas g_Nocardiopsis 
g_Paracoccus g_Halomonas g_Brevundimonas g_Micrococcus 
g_Escherichia g_Paracoccus g_Nocardioides g_Burkholderia 
g_Actinomyces g_Microbacterium g_Microbacterium g_Nocardioides 
g_Brevundimonas g_Sphingomonas g_Paracoccus g_Mesorhizobium 
g_Methylobacterium g_Malassezia g_Methylobacterium g_Malassezia 
g_Nocardioides g_Methylobacterium g_Xanthomonas g_Sphingomonas 
g_Stenotrophomonas g_Roseomonas g_Staphylococcus g_Roseomonas  
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