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1.1 Procedurally generated drug landscapes421

The 4 curated amino acid substitutions used to generate fitness landscapes in this study likely represent the most important422

mutations in the evolution of drug resistance to β -lactam antibiotics in this model system. However, there may be other423

"off-landscape" mutations in genes such as drug efflux pumps that also significantly impact resistance. Furthermore, other424

organisms or drug combinations may demand much larger landscapes to effectively predict evolution53, 54. To evaluate the425

feasibility of reinforcement learning based drug cycle optimization in larger state spaces, we generated correlated landscapes426

with arbitrary N (where N is the number of alleles), following a procedure adapted from previous work27. We first generated an427

index landscape L by sampling a vector of length 2N (where N is the number of alleles) from a uniform distribution with range428

(−1,1). We then introduced epistasis by applying a gaussian noise vector (with µ = 0 and σ = 0.5) to each element of the429

vector. This process is traditionally referred to as a "rough Mt Fuji." Next, we generated a set of n correlated landscapes Lc430

with correlations to the original landscape ranging from −1 (perfectly anti-correlated) to 1 (perfectly correlated). Briefly, we431

generate a Gaussian random vector (with zero mean and variance) of length 2N . We subtract from this vector its projection onto432

the original landscape vector L, making our new vector orthogonal to L. It then follows that any vector Lc is a linear combination433

of L and our new orthogonal vector. In practice, anti-correlated drug landscapes display striking collateral sensitivity, while434

correlated drug landscapes display collateral resistance. From the set of correlated landscapes Lc, we selected a subset of435

landscapes demonstrating the full range of correlations to ensure that collateral sensitivity and collateral resistance were both436

present.437

1.2 Measurement Delay438

In this sensitivity analysis, we aimed to assess the viability of RL-based drug cycling policies in a setting where actions are439

taken based on "out-of-date" information. For example, if DNA sequencing takes multiple days to process, drugs applied based440

on that data would be reacting to a version of the population that no longer exists. We therefore defined a delay parameter d441

which controlled the number of time steps removed the action was from the measurement of environmental state. Put another442

way, st−d informed at . If d = 0 (as in our base case), st informed at .443

We limited this analysis to the RL-genotype condition. Our rationale was that fitness or growth rate measurements are much444

easier to obtain and such delays wouldn’t be as common, even in complex in vitro settings. We hypothesized that out-of-date445

state vectors would lack sufficient information content to effectively inform the reinforcement learning agents.446

1.3 Hyperparameter tuning447

We varied key hyperparameters one at a time in order to identify optimal values to promote learning in this setting. Parameter448

ranges and the selected value are shown in Table S1. Due to the long run-times of the training process, we were unable to make449

use of more formal hyper-parameter optimization approaches. Future work will increase the efficiency of training reinforcement450

learners in this setting, opening up a number of interesting follow-on studies.451

Table S1. Key Hyperparameters for reinforcement learner

Parameter Value Range

gamma 0.99 0-1

learning rate 0.0001 0.000001-0.1

minibatch size 60 20-500

update target model frequency 310 100-1000
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1.4 Additional performance data for RL agents452

As mentioned in the main text, we tested both the RL-fit and RL-genotype conditions 100 times each. In Fig S1, we show453

the perfomance of all 100 RL-fit and RL-genotype replicates. In 98/100 replicates, RL-fit outperformed the random drug454

cycling case (Fig S1A). The very best RL-fit replicates still fell short of the MDP-derived optimal policy (Fig S1B). In all 100455

replicates, RL-genotype outperformed the random drug cycling case (Fig S1C). RL-genotype performance approached the456

performance of the optimal policy (Fig S1D).457

Figure S1. Performance of RL-fit and RL-genotype for each replicate. A: Fitness observed under RL-fit policy compared to random drug cycling
condition. B: Fitness observed under RL-fit policy compared to fitness observed under optimal policy. C: Fitness observed under RL-genotype policy
compared to random drug cycling condition. D: Fitness observed under RL-genotype policy compared to fitness observed under optimal policy.
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1.5 Additional evolutionary trajectory data458

We compared the state transition frequencies observed under different policy regimes, where a state transition is defined as the459

population evolving from genotype sa to genotype sb. We also show the frequency with which each state was visited under460

different conditions. Policy performance is closely tied to the frequency with which state 5 (a high fitness genotpye in nearly all461

drugs) is visited. (Fig S2).462

Figure S2. Comparison of evolutionary trajectories seen under different regimes A-C: Selected Pairwise comparisons of state transition frequency
under different experimental conditions. State transition frequency is nearly identical for the RL-genotype and MDP conditions (R=0.96). In contrast,
state-transition-frequency for the RL-fit and MDP conditions are related but less strongly correlated (R=0.82). As expected, state transition frequency were
least similar between the RL-fit and random conditions (R=0.78). D: Bar chart comparing the frequency that states are observed under different experimental
conditions. The value of each state (to the learner) is highlighted for each state by the bottom heatmap. High value states are observed more frequently in
RL-fit, RL-genotype, and MDP conditions compared to the random condition.
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1.6 Opportunity Landscapes463

We define an opportunity landscape to be the most optimistic combination of n landscapes, formed by taking the minimum464

possible fitness at each genotypic position. This construct can help us better understand how the learner uses different465

combinations of drugs to maintain the evolving population at extremely low fitness values.466

Figure S3. Opportunity Landscape for MDP-derived policy. Opportunity landscape is an optimistic combination of 5 empirically measured drug
landscapes. Just 1/16 genotypes is near a fitness peak on the opportunity landscape, helping to explain the extremely low fitness observed in the simulated E.
coli population when the MDP-derived policy is applied.

Fig. S3 describes the opportunity landscape discovered by the MDP condition. As noted in the main text, the MDP primarily467

uses 5 drugs (CTX, CPR, AMP, SAM, and TZP) in combination to trap the evolving population of E. coli at extremely low468

fitness genotypes. In the combined opportunity landscape, just one genotype (0100) had a high fitness in all 5 drugs. As469

expected, the opportunity landscape closely matches the value function estimated by the MDP (Fig 4).470
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Figure S4. Opportunity landscape for most common policy identified in the RL-genotype condition. As in the MDP-derived policy, just 1/16
genotypes is near a fitness peak in the opportunity landscape.
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Figure S5. Opportunity landscape for the most common policy identified in the RL-fit condition. The most common RL-fit policy relies on AMC
and CTX to control the E. coli population. Assuming the most optimistic combination of these two drug landscapes, 4/16 genotypes are near a fitness peak.

The opportunity landscape for the RL-genotype is almost identical to the opportunity landscape observed for the MDP471

policy (Fig S4). Interestingly, RL-genotype only uses 3 of the 5 drugs in the MDP policy; CPR, CTX, and SAM. RL-fit472

discovered policies that typically only used two drugs. The most effective RL-fit policies relied heavily on AMC and CTX. We473

present the resulting opportunity landscape in Fig S5. As expected, there are more genotypes with high fitness values under this474

two-drug paradigm compared to the 4 or 5 drug policies discovered by RL-genotype and the MDP, respectively.475
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1.7 MDP policy476

As mentioned in the main text, we computed the MDP policy by formulating a Markov decision process of the strong selection,477

weak mutation model of evolution under study. We then solved the MDP using backward induction, an algorithm designed to478

identify an optimal policy for a finite time discrete MDP. The identified policy is a function of current state and current time479

step, making it even more specific than the policies identified by the reinforcement learning conditions. We show the time and480

state-specific MDP policy in Fig S6. Near the end of an episode (steps 19 and 20), we see a switch to a greedy policy that481

simply selects the drug with the minimum fitness for a given genotype.482

Figure S6. MDP-derived optimal policy for the empirical drug landscapes condition. The X-axis corresponds to numerically encoded genotype
while the y-axis corresponds to time step within a given episode. Fill color corresponds to which drug the MDP-derived policy selects for each
genotype-time step combination.

We also varied the discount rate (γ), between 0 and 1 during the hyperparameter tuning process. In Fig S7, we show the483

effect of gamma on the avergage fitness achieved by the MDP policy. While gamma didn’t have a large effect, likely due to the484

relatively short length (20 time steps) of each episode, we show that increasing γ led to increased performance of the computed485

MDP policy. We also show that increasing gamma led to increased use of CTX (drug 4).486

21/23



Figure S7. Effect of variation in gamma on optimal policy performance and composition. We show that greedy policies (low γ) are slightly less
effective compared to non-greedy policies. In panel B, we show how the actual policy changes as γ ranges from 0-0.9999
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1.8 Additional Analyses487

As noted in Fig 2C in the main text, we evaluated the performance of all A-B-A-B two-drug cycles to use as a comparison488

group for RL-fit and RL-genotype. In Fig S8A, we examine these combinations in greater depth. We also show the landscape489

correlation between the two drugs in every combination. We show that anti-correlated landscapes tend to make more effective490

combinations, likely due to collateral sensitivity. Highly correlated landscapes tend to make ineffective drug combinations,491

likely due to collateral resistance.492

Finally, we evaluated the effect of starting population genotype on the performance of each two-drug combination. We493

found that the starting genotype of the population had no effect on the overall distribution of performance for these two-drug494

combinations (Fig S8).495

Figure S8. In the left panel, we show the fitness observed under every possible A-B-A-B two drug regime. The heatmap shows the correlation
between the two landscapes in a pair, a measure of the expected collateral sensitivity or resistance. In the right panel, we show the effect of starting
genotype on the performance of two-drug policies.
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