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Supplemental Fig. 1: A circular heatmap depicts the consensus weighted gene co-expression
network built using cWGCNA, which was used to explore sex-related changes (male vs female)
conserved across the WT-CC lines in the hippocampus, consisting of 17 gene co-expression
modules. GO-Elite pathway analysis was performed to identify biological processes represented
by each module (outer circle; red represents positive correlation and blue represents negative
correlation; significant correlation of 0.1 and -0.1; FDR < 0.05). Cell type enrichment analysis was
assessed on each module via overlap with cell type-specific gene lists of pyramidal neurons in the
somatosensory cortex (P_SS), pyramidal neurons in the CA1 (P_CA1), oligodendrocytes (OLG),
microglia (MG), interneurons (INT), endothelial cells (END), and astrocytes (AST) (inner circle;
dark maroon symbolizes high enrichment and pale-yellow shows no enrichment; enrichment
threshold > 0.6). Statistical significance is denoted by *p<0.05, **p<0.01, ***p<0.001,

wx8%p<0.0001.
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Supplemental Fig. 2: (A-B) Representative confocal images of the (A) somatosensory cortex and
(B) subiculum in 12-month-old 5xFAD transgene carrying F1 progeny of CC mice (5x-(B6J
CCO13)F1 and 5x-(B6J CCO017)F1) immunolabeled for immunolabeled for ThioS (green) and
6E10 (red). Scale bar = 100um. (C) Thyl expression quantified by number of transcripts per
million reads (TPM) in 4-month-old 5x-CC mice in the hippocampus (n=77 mice across five
strains). (D-0) Quantification of soluble (D-E, H-1, L-O) and insoluble (F-G, J-K) AB40 and A342
protein in the cortex (D-E, F-G, L-M) and hippocampus (H-I, J-K, N-O) in 4- (D-K) and 12-month-
old (L-O) 5x-B6J and (5x-B6J CC)F1 lines (5x-CC002, 5x-CC006, 5x-CCO013, 5x-CCO017, 5x-
CCO037). Data are represented as mean + SEM. Statistical analysis was performed using a one-way

ANOVA with Dunnett test. *p<0.05, **p<0.01, **%p<0.001, ****p<0.0001.
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Supplemental Fig. 3: (A-B) Representative confocal images of the somatosensory cortex and
subiculum in 4-month-old wildtype (WT) and 5xFAD transgene carrying F1 progeny of CC mice
(WT-B6J, 5x-B6J, WT- (B6J CCO002)F1, 5x-(B6J CC002)F1,WT-(B6J CCO006)F1, 5x-(B6J
CCO006)F1, WT-(B6J CCO13)F1, 5x-(B6J CCO13)F1, WT-(B6J CCO17)F1, and 5x-(B6J
CCO17)F1, WT-(B6J CC037)F1, and 5x-(B6J CC037)F1) immunolabeled for Thioflavin-S (Thio-
S, green) and microglia (IBA1, red). Scale bar = 100pm. (C-D) Quantification of microglia per
mm? in the cortex (C) and subiculum (D) at 4 months. (E) Representative confocal images of the
subiculum in 12-month-old 5x-B6J and 5x-CC lines immunolabeled for plaques (AmyloGlo,
blue), microglia (IBA1, red), and a marker for microglial activation (AXL, green). (F-I)
Expression of microglial and AD-related genes quantified by number of transcripts per million
reads (TPM) in 12-month-old WT-CC and 5x-CC mice in the hippocampus (n=125 mice across
ten lines). Data are represented as mean = SEM. Statistical analysis was performed using a two-

way ANOVA with Dunnett test. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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Supplemental Fig. 4: (A-B) Representative confocal images of the somatosensory cortex and
subiculum in 4-month-old wildtype (WT) and 5xFAD transgene carrying F1 progeny of CC mice
(WT-B6J, 5x-B6J, WT- (B6J CCO002)F1, 5x-(B6J CC002)F1,WT-(B6J CCO006)F1, 5x-(B6J
CCO006)F1, WT-(B6J CCO13)F1, 5x-(B6J CCO13)F1, WT-(B6J CCO17)F1, and 5x-(B6J
CCO17)F1, WT-(B6J CC037)F1, and 5x-(B6J CC037)F1) immunolabeled for Thioflavin-S (Thio-
S, green), reactive astrocytes (GFAP, red) and all astrocytes (S100p, blue). Scale bar = 100pum.
(C-F) Quantification of S1008* (C, E) and GFAP" (D, F) astrocytes per mm? in the cortex (C-D)
and subiculum (E-F) at 4 months of age. Data are represented as mean = SEM. Statistical analysis
was performed using a two-way ANOVA with Dunnett test. *p<0.05, **p<0.01, ***p<0.001,

wx8%p<0.0001.
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Supplemental Fig. 5: Venn diagram showing the overlap in conserved DEGs (5xFAD vs WT and

5x-CCs vs WT-CCs) across the different strains.
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Supplemental Fig. 6: Module preservation analysis was conducted to evaluate the preservation
of our gene co-expression network (constructed with CC line gene expression data; M2 modules)
with human AD using brain MAYO RNAseq data. Modules that had a Zsummary score greater than
or equal to 2.0 were considered preserved (blue dotted line; q<0.05). This analysis was conducted
on all animals, including wildtype and 5XFAD transgene carrying mice across the different genetic
backgrounds (n=442). Preservation statistical analysis was performed using a Bonferroni test.

%q<0.05, **q<0.01, ***q<0.001, ****q<0.0001.



