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Figure S1. Nanopore PCR-cDNA sequencing accurately and reproducibly measures poly(A) tail lengths, Related to Figure 1. 
(A) Schematic of Nanopore PCR-cDNA sequencing. (B) Measured tail lengths for 7 standards of different poly(A) tail lengths. (C-D) 
Same as (B) but separated by read type (C) or replicate (D). For (B-D), horizontal lines indicate expected poly(A) tail lengths for each 
standard. (E) Global distribution of gene-level mean poly(A) tail lengths in Hela. Only genes with ³10 polyadenylated reads were 
included. (F) PCA clustering of developmental stages and biological replicates by gene expression. (G) PCA clustering of 
developmental stages and biological replicates by poly(A) tail length. 
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Figure S2. Nanopore PCR-cDNA sequencing reproducibly captures poly(A) tail lengths and gene expression profiles across the 
OET, Related to Figure 1. (A) Correlation between known and measured abundances for ERCC standards. (B) Correlation in gene 
expression between biological replicates. (C) Correlation in gene-level poly(A) tail length between biological replicates. Only genes 
with ³20 polyadenylated reads in each replicate are plotted. R, Pearson correlation coefficient; n, number of genes or ERCC standards. 
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Figure S3. Nanopore PCR-cDNA sequencing accurately captures known changes in poly(A) tail length for individual genes, 
Related to Figure 1. (A-B) Measured poly(A) tail lengths in GV and MII oocytes for all identified genes previously shown to be 
polyadenylated (A) or deadenylated (B) during oocyte maturation using an orthogonal method [1-15]. One-sided Wilcoxon tests 
shown (****p £ 0.0001). Two genes (Btg4 and Mos) were excluded for conflicting published tail length changes [3,7,16]. 
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Figure S4. Polyadenylated mRNAs at each stage are enriched for factors with stage-specific developmental roles, Related to 
Figure 1. Gene ontologies enriched in genes with significantly lengthened (red) (A) and shortened (blue) (B) tail lengths at each stage 
transition. 
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Figure S5. mRNA poly(A) tails are dynamically regulated at the isoform-level, Related to Figure 2. (A) PCA clustering of 
developmental stages and biological replicates by isoform-level poly(A) tail length. (B) Hierarchical clustering of stages and 
biological replicates by isoform-level poly(A) tail length. (C) Proportion of genes with different numbers of isoforms by stage. (D) 
Density plots showing global distributions of isoform-level mean poly(A) tail lengths at each stage. (E) Scatterplots showing mean 
poly(A) tail lengths for isoforms with significantly increased (lengthened, red), decreased (shortened, blue) or unchanged (gray) tail 
length at each stage transition (adj. p < 0.05, one-sided Wilcoxon test). (F) Number of genes in each category in (E). 
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Figure S6. Poly(A) tail length positively correlates with translational efficiency during OET, Related to Figure 4. (A) 
Translational efficiency of genes binned by poly(A) tail length at each stage. (B) Poly(A) length of genes binned by translational 
efficiency at each stage. (C) Change in translational efficiency of genes binned by change in poly(A) tail length between consecutive 
stages. (D) Change in poly(A) tail length of genes binned by change in translational efficiency between consecutive stages. TE, 
translational efficiency. 
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Figure S7. Deadenylated maternal mRNAs coupled and uncoupled from mRNA decay, Related to Figure 5. (A) Number of 
deadenylated-decayed (purple) or -stable (teal) genes at each stage transition using RNA abundances measured in Zhang et al. [17] 
integrated with poly(A) tail lengths measured in this dataset. (B) Venn diagrams demonstrating overlap of these genes with those 
identified using RNA abundances and poly(A) tail lengths measured in this study. (C) Poly(A) tail lengths at the MII stage of genes 
deadenylated-decayed (purple) or -stable (teal) during oocyte maturation. Solid horizontal lines indicate geometric means. Dashed 
horizontal line at indicates predicted PABP footprint of 27 nucleotides. Two-sided Wilcoxon test shown (****p £ 0.0001). (D-E) Gene 
ontologies enriched in genes deadenylated-decayed (D) or -stable (E) during oocyte maturation. 
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Figure S8. Genes translationally activated by resistance to global deadenylation play developmentally important roles, Related 
to Figure 6. (A) Change in poly(A) tail length for polyadenylated genes with increased translational efficiency at each stage 
transition. Horizontal lines indicate arithmetic means. Pairwise two-sided Wilcoxon tests shown for all stage transitions compared to 
MII>ZY (****p £ 0.0001). (B) Gene ontologies enriched in genes deadenylated-activated during oocyte maturation (GV>MII, top) or 
fertilization (MII>ZY, bottom). (C) Gene ontologies enriched in genes deadenylated-repressed during oocyte maturation (GV>MII, 
top) or fertilization (MII>ZY, bottom). 
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Figure S9. Dynamic regulation of poly(A) tail length of maternal effect genes (MEGs), Related to Figure 7. (A) Density plots 
showing global distributions of gene-level mean poly(A) tail lengths at each stage for MEGs. (B) Scatterplots showing mean poly(A) 
tail lengths for MEGs with significantly increased (lengthened, red), decreased (shortened, blue) or unchanged (gray) tail lengths at 
each stage transition (adj. p < 0.05, one-sided Wilcoxon test). (C) Number of genes in each category in (B). (D-E) Log2 fold change in 
absolute (D) or relative (E) tail length for deadenylated-activated (orange) or -repressed (gray) MEGs across each stage transition. 
Horizontal lines indicate arithmetic means. To include genes translationally activated or repressed despite no significant change in tail 
length, the adjusted p value cutoff for classifying genes as deadenylated was removed. Two-sided Wilcoxon tests are shown (ns, p > 
0.05; *p £ 0.05). 
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Figure S10. Additional examples of poly(A) tail and TE regulation of maternal effect genes, Related to Figure 7. (A-C) Poly(A) 
tail lengths (upper) and translational efficiencies (lower) of select maternal effect genes across the OET. Each box plot represents ³ 20 
polyadenylated reads. Pairwise two-sided Wilcoxon tests are shown (ns, p > 0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001). 
(D) Copy of Fig. 7C with the number of genes represented by each violin indicated at the bottom. Pairwise two-sided Wilcoxon tests 
are shown (ns, p > 0.05; *p ≤ 0.05; ***p ≤ 0.001; ****p ≤ 0.0001). (E-F) Copy of Fig. 7D with the number of genes represented by each 
proportion indicated at the bottom. Pairwise one-sided Fisher’s exact tests are shown (ns, p > 0.05; *p ≤ 0.05; ***p ≤ 0.001; ****p 
≤ 0.0001). TE, translational efficiency. 
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