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Supplementary Note 

Statistical modeling:  𝑇𝐷𝑖𝑟𝑒𝑐𝑡 and 𝑇𝑀𝑅 𝐺𝑥𝐸  

Case 1: E and G are independent. 

1) When GWIS is conducted, we have the following 𝐺 × 𝐸 model to a quantitative trait 𝑌: 

𝑌𝑖 = 𝛽1𝐺𝑖 + 𝛽2𝐸𝑖 + 𝛽3(𝐺𝑖𝐸𝑖) + 𝜖𝑖,                                              (S1) 

where 𝛽1, 𝛽2 and 𝛽3 correspond to the main effect of 𝐺, the main effect of 𝐸 and the interaction 

effect of 𝐺 × 𝐸, respectively, and 𝜖𝑖 is a random noise. Without losing generality, we assume 

𝐸(𝐺𝑖) = 𝜇𝐺 ,  𝑔𝑖 =
𝐺𝑖−𝜇𝐺

𝜎𝐺
,  𝐸(𝐸𝑖) = 𝜇𝐸 ,  𝑒𝑖 =

𝐸𝑖−𝜇𝐸

𝜎𝐸
. 

When GWAS is conducted, we have the following model: 

𝑌𝑖 = 𝛼0 + 𝛼𝐺𝑖 + 𝜀𝑖. 

where 𝛼 is called the marginal effect. The relationship between marginal effect 𝛼, main effect 𝛽1, 

and interaction effect 𝛽3 is: 

𝛼 = 𝛽1 + 𝜇𝐸𝛽3,                                                                  (S2) 

indicating the marginal effect size 𝛼 is affected by 𝐺 × 𝐸 interactions.  

Similar to Aschard (1), a standardized version of (S1) is 

𝑌𝑖 = 𝛽1
′𝑔𝑖 + 𝛽2

′𝑒𝑖 + 𝛽3
′(𝑔𝑖𝑒𝑖) + 𝜖𝑖

′,                                                 (S3)                                       

where  

𝛽1 = 
𝛽1

′

𝜎𝐺
−

𝛽3
′𝜇𝐸

𝜎𝐸𝜎𝐺
,   𝛽2 = 

𝛽2
′

𝜎𝐸
−

𝛽3
′𝜇𝐺

𝜎𝐸𝜎𝐺
,  𝛽3 = 

𝛽3
′

𝜎𝐸𝜎𝐺
,                                 (S4) 

Thus 

                     𝛼 = 𝛽1 + 𝜇𝐸𝛽3 =
𝛽1

′

𝜎𝐺
 

When we perform a linear regression based on standardized regression model (S1), we have  

𝜷 = (𝑿𝑇𝑿)−1𝑿𝑇𝑌. 

where 𝑿 = [𝟏, 𝑮, 𝑬, 𝑮𝑬] is the design matrix, Σ𝜷 = (𝑿𝑇𝑿)−1𝜎2, and  𝜎2 is the variance of 𝜖.  

       Σ𝜷 =
𝜎2

𝑛

[
 
 
 
 

𝐸[1] 𝐸[𝐺] 𝐸[𝐸] 𝐸[𝐺𝐸]

𝐸[𝐺] 𝐸[𝐺2] 𝐸[𝐺𝐸] 𝐸[𝐺2𝐸]

𝐸[𝐸] 𝐸[𝐺𝐸] 𝐸[𝐺2] 𝐸[𝐺𝐸2]

𝐸[𝐺𝐸] 𝐸[𝐺2𝐸] 𝐸[𝐺𝐸2] 𝐸[𝐺2𝐸2]]
 
 
 
 
−1

,                             (S5) 

where 𝑛 is the sample size in performing GWIS analysis. 

When working on  𝑔𝑖 and 𝑒𝑖,  the standardized of 𝐺𝑖 and 𝐸𝑖, it leads 



 

 

  

 

 

Σ𝜷′ =
𝜎2

𝑛

[
 
 
 
 
𝐸[1] 0 0 0

0 𝐸[𝑔2] 0 0

0 0 𝐸[𝑒2] 0

0 0 0 𝐸[𝑔2𝑒2]]
 
 
 
 
−1

=
1

𝑛
𝐼4×4𝜎

2,                           (S6) 

where 𝐼4×4 is a 4 × 4 identity matrix. Since we are not interested in the intercept, we will ignore 

the intercept and let 𝜷 = [𝛽1, 𝛽2, 𝛽3]
𝑻. We can calculate the covariance Σ𝜷 through equations 

(S4), which leads to 

Σ𝜷 =
𝜎2

𝑛𝜎𝐺
2𝜎𝐸

2 [

𝜇𝐸
2 + 𝜎𝐸

2 𝜇𝐸𝜇𝐺 −𝜇𝐸

𝜇𝐸𝜇𝐺 𝜇𝐺
2 + 𝜎𝐺

2 −𝜇𝐺

−𝜇𝐸 −𝜇𝐺 1

].      

Thus, we have 

𝑣𝑎𝑟(𝛼) = 𝑣𝑎𝑟(𝛽1 + 𝜇𝐸𝛽3) =
𝜎2

𝑛𝜎𝐺
2,       𝑣𝑎𝑟(𝛽1) =

𝜎2(𝜇𝐸
2+𝜎𝐸

2)

𝑛𝜎𝐺
2𝜎𝐸

2 ,                                             

𝑣𝑎𝑟(𝛽2) =
𝜎2(𝜇𝐺

2+𝜎𝐺
2)

𝑛𝜎𝐺
2𝜎𝐸

2 ,       𝑣𝑎𝑟(𝛽3) =
𝜎2

𝑛𝜎𝐺
2𝜎𝐸

2 ,       𝑣𝑎𝑟(𝛼 − 𝛽1) =
𝜇𝐸

2𝜎2

𝑛𝜎𝐺
2𝜎𝐸

2, 

𝑐𝑜𝑣(𝛼, 𝛽1) = 𝑐𝑜𝑣(𝛽1 + 𝜇𝐸𝛽3, 𝛽1) =
𝜎2

𝑛𝜎𝐺
2,       𝑐𝑜𝑣(𝛼, 𝛽2) = 𝑐𝑜𝑣(𝛽1 + 𝜇𝐸𝛽3, 𝛽2) = 0, 

𝑐𝑜𝑣(𝛼, 𝛽3) = 𝑐𝑜𝑣(𝛽1 + 𝜇𝐸𝛽3, 𝛽3) = 0,       𝑐𝑜𝑣(𝛼 − 𝛽1, 𝛽3) = 𝑐𝑜𝑣(𝜇𝐸𝛽3, 𝛽3)=
𝜇𝐸

2𝜎2

𝑛𝜎𝐺
2𝜎𝐸

2, 

𝑐𝑜𝑟𝑟(𝛼 − 𝛽1, 𝛽3) = 1. 

To test interaction 𝛽3 = 0, we apply the direct test 𝑇𝐷𝑖𝑟𝑒𝑐𝑡 =
𝛽3

2

𝑣𝑎𝑟(𝛽3)
. Alternatively, we can test 

𝛼 − 𝛽1 = 0 by 𝑇𝑑𝑖𝑓𝑓 =
(𝛼−𝛽1)2

𝑣𝑎𝑟(𝛼−𝛽1)
. Clearly, 𝑇𝐷𝑖𝑟𝑒𝑐𝑡 and 𝑇𝑑𝑖𝑓𝑓 are the same when G and E are 

independent and GWAS and GWIS are performed in the same data. 𝑇𝐷𝑖𝑟𝑒𝑐𝑡 and 𝑇𝑑𝑖𝑓𝑓 have the 

same non-centrality parameter:  

𝑁𝐶𝑇𝑑𝑖𝑓𝑓 = 𝑁𝐶𝑇𝐷𝑖𝑟𝑒𝑐𝑡 =
𝑛𝜎𝐺

2𝜎𝐸
2𝛽3

2

𝜎2
. 



 

 

  

 

 

Supplementary Figure 1. The theoretical power of  𝑇𝐷𝑖𝑟𝑒𝑐𝑡 and 𝑇𝑑𝑖𝑓𝑓 under the scenario of Case 

1, which is identical. The four subplots correspond to 𝛽3 ranging from 0.01 to 0.04. For each 

subplot, the x-axis represents the mean 𝜇𝐺 of the variant, the y-axis represents the mean 𝜇𝐸 of the 

environmental factor, and the z-axis represents the theoretical power. Additionally, the sample 

size 𝑛 = 100𝐾, and 𝜎 was set to be 1.  

 

Case 2: E and G are dependent. 

When 𝐸 and 𝐺 are correlated, equation (S4) still holds. However, the covariance matrix Σ𝜷′ is 

Σ𝜷′ =
𝜎2

𝑛

[
 
 
 
1 0 0 𝜌

0 1 𝜌 𝐸[𝑔2𝑒]

0 𝜌 1 𝐸[𝑔𝑒2]

𝜌 𝐸[𝑔2𝑒] 𝐸[𝑔𝑒2] 𝐸[𝑔2𝑒2]]
 
 
 
−1

,                                  (S7) 



 

 

  

 

where 𝜌 is the correlation between 𝑒𝑖 and 𝑔𝑖. To simplify our discussion, we further assume that 

the environmental factor is mediated by g, which is 

𝑒𝑖 = 𝜌𝑔𝑖 + 𝜖𝑖,   𝑣𝑎𝑟(𝜖) = 1 − 𝜌2.                     (S8) 

Thus,  

𝐸[𝑔2𝑒] = 𝜌𝐸[𝑔3] = 𝜌
1−𝜇𝐺

𝜎𝐺
,      (S9) 

𝐸[𝑔𝑒2] = 𝜌2𝐸[𝑔3] = 𝜌2 1−𝜇𝐺

𝜎𝐺
,    (S10) 

𝐸[𝑔2𝑒2] = 𝜌2𝐸[𝑔4] + 1 − 𝜌2 =
𝜌2

𝜎𝐺
2 + 1 − 𝜌2,              (S11) 

and  

Σ𝜷′ =
𝜎2

𝑛

[
 
 
 
 
 
 1 + 𝜌2 𝜌2(1−𝜇𝐺)

𝜎𝐺
0 −𝜌

𝜌2(1−𝜇𝐺)

𝜎𝐺
1 +

𝜌2

1−𝜌2 +
𝜌2(1−𝜇𝐺)2

𝜎𝐺
2

−𝜌

1−𝜌2

−𝜌(1−𝜇𝐺)

𝜎𝐺

0
−𝜌

1−𝜌2

1

1−𝜌2 0

−𝜌
−𝜌(1−𝜇𝐺)

𝜎𝐺
0 1 ]

 
 
 
 
 
 

.             (S12) 

By using the equations in (S4) and ignoring the intercept, and let 𝜷 = [𝛽1, 𝛽2, 𝛽3]
𝑻,  we have: 

Σ𝜷 =
𝜎2

𝑛

[
 
 
 
 
 
 
 1

𝜎𝐺
2 [

1

1 − 𝜌2
+ (

𝜌(1 − 𝜇𝐺)

𝜎𝐺

+
𝜇𝐸

𝜎𝐸

)

2

]
𝜌

𝜎𝐺𝜎𝐸

[
−1

1 − 𝜌2
+

𝜇𝐺(1 − 𝜇𝐺)

𝜎𝐺
2 ] +

𝜇𝐺𝜇𝐸

𝜎𝐺
2𝜎𝐸

2

−1

𝜎𝐺
2𝜎𝐸

[
𝜌(1 − 𝜇𝐺)

𝜎𝐺

+
𝜇𝐸

𝜎𝐸

]

𝜌

𝜎𝐺𝜎𝐸

[
−1

1 − 𝜌2
+

𝜇𝐺(1 − 𝜇𝐺)

𝜎𝐺
2 ] +

𝜇𝐺𝜇𝐸

𝜎𝐺
2𝜎𝐸

2

1

𝜎𝐸
2 [

1

1 − 𝜌2
+

𝜇𝐺
2

𝜎𝐺
2]

−𝜇𝐺

𝜎𝐺
2𝜎𝐸

2

−1

𝜎𝐺
2𝜎𝐸

[
𝜌(1 − 𝜇𝐺)

𝜎𝐺

+
𝜇𝐸

𝜎𝐸

]
−𝜇𝐺

𝜎𝐺
2𝜎𝐸

2

1

𝜎𝐺
2𝜎𝐸

2 ]
 
 
 
 
 
 
 

, 

(S13) 

When 𝐺 and 𝐸 are dependent, we have: 

𝛼 =
𝑐𝑜𝑣(𝑌, 𝐺)

𝜎𝐺
2 =

𝑐𝑜𝑣(𝛽1𝐺 + 𝛽2𝐸 + 𝛽3(𝐺𝐸), 𝐺)

𝜎𝐺
2  

= 𝛽1 +
𝜌𝜎𝐸

𝜎𝐺
𝛽2 + (𝜇𝐸 +

𝜌𝜎𝐸

𝜎𝐺
) 𝛽3,                                                         (S14) 

which further indicates the marginal effect size 𝛼  is affected by 𝐺 × 𝐸  interactions and the 

mediation through 𝐸.  

By using (S13), we have  

𝑣𝑎𝑟(𝛼) =
𝜎2

𝑛𝜎𝐺
2 ,                                                             (𝑆15) 



 

 

  

 

𝑐𝑜𝑣(𝛼, 𝛽3) = 𝑐𝑜𝑣 (𝛽1 +
𝜌𝜎𝐸

𝜎𝐺
𝛽2 + (𝜇𝐸 +

𝜌𝜎𝐸

𝜎𝐺
)𝛽3, 𝛽3) = 0,                      (S16) 

𝑐𝑜𝑣(𝛼, 𝛽1) =
𝜎2

𝑛𝜎𝐺
2 ,                                                         (S17) 

𝑐𝑜𝑟𝑟(𝛼, 𝛽1) =
1

√ 1
1 − 𝜌2 + (

𝜌(1 − 𝜇𝐺)
𝜎𝐺

+
𝜇𝐸

𝜎𝐸
)
2

,                                       (S18) 

   𝑣𝑎𝑟(𝛼 − 𝛽1) =
𝜎2

𝑛𝜎𝐺
2 [

𝜌2

1−𝜌2
+ (

𝜌(1−𝜇𝐺)

𝜎𝐺
+

𝜇𝐸

𝜎𝐸
)
2

],                                      (S19) 

            𝑐𝑜𝑣(𝛼 − 𝛽1, 𝛽3) =
𝜎2

𝑛𝜎𝐺
2𝜎𝐸

[
𝜌(1−𝜇𝐺)

𝜎𝐺
+

𝜇𝐸

𝜎𝐸
],                                            (S20) 

     𝑐𝑜𝑟𝑟(𝛼 − 𝛽1, 𝛽3) =

𝜌(1−𝜇𝐺)

𝜎𝐺
+

𝜇𝐸
𝜎𝐸

√
𝜌2

1−𝜌2+(
𝜌(1−𝜇𝐺)

𝜎𝐺
+

𝜇𝐸
𝜎𝐸

)2

,                                           (S21) 

When 𝜌 =0, equation (S21) reduces to 𝑐𝑜𝑟𝑟(𝛼 − 𝛽1, 𝛽3) = 1. The direct test 𝑇𝐷𝑖𝑟𝑒𝑐𝑡 =
𝛽3

2

𝑣𝑎𝑟(𝛽3)
 still 

tests the 𝐺 × 𝐸 interaction, but testing 𝛼 − 𝛽1 = 0 by 𝑇𝑑𝑖𝑓𝑓 =
(𝛼−𝛽1)2

𝑣𝑎𝑟(𝛼−𝛽1)
 tests for 

𝜌𝜎𝐸

𝜎𝐺
𝛽2 + (𝜇𝐸 +

𝜌𝜎𝐸

𝜎𝐺
)𝛽3 = 0, which is testing for the combination of mediation (𝜌) and interaction (𝛽3).  

Above discussion suggests that when mediation is present, 𝑇𝑑𝑖𝑓𝑓 will also detect mediation 

even there is no 𝐺 × 𝐸 interaction. However, we can test the 𝐺 × 𝐸 interaction through two step 

procedure: 1) We apply 𝑇𝑑𝑖𝑓𝑓 to search for variants with joint effect of mediation and interaction 

effect; 2) we apply 𝑇𝐷𝑖𝑟𝑒𝑐𝑡  for the variants detected by 𝑇𝑑𝑖𝑓𝑓 . Although 𝑇𝑑𝑖𝑓𝑓  and 𝑇𝐷𝑖𝑟𝑒𝑐𝑡  are 

correlated, this procedure seems to have a good control of the type I error rate in the simulations 

which mimic the real data. The reason is that we can exclude the genetic variants strongly 

associated with the environment factor from the GWAS of E. Therefore, the contribution of 

mediation has little effect (see the simulation results Fig 3 and Fig S6). It also improves the power 

because of the mediation and the reduction of multiple test burden.  

When mediation effect presents, 𝑇𝑑𝑖𝑓𝑓 has a non-centrality parameter:  

𝑁𝐶𝑇𝑑𝑖𝑓𝑓 =
𝑛𝜎𝐺

2 [
𝜌𝜎𝐸

𝜎𝐺
(𝛽2+𝛽3) + 𝜇𝐸𝛽3]

2

𝜎2[
𝜌2

1 − 𝜌2 + (
𝜌(1 − 𝜇𝐺)

𝜎𝐺
+

𝜇𝐸

𝜎𝐸
)2]

, 𝑁𝐶𝑇𝐷𝑖𝑟𝑒𝑐𝑡 =
𝑛𝜎𝐺

2𝜎𝐸
2𝛽3

2

𝜎2
 

when 𝜌 ≠ 0 , 𝑇𝑑𝑖𝑓𝑓 can be more powerful than 𝑇𝐷𝑖𝑟𝑒𝑐𝑡 . 



 

 

  

 

 

Supplementary Figure 2. The theoretical power of  𝑇𝑑𝑖𝑓𝑓 under the scenario of Case 2. For each 

subplot, the x-axis represents the correlation coefficient 𝜌 of mediation, the y-axis represents the 

mean 𝜇𝐸 of the environmental factor, and the z-axis represents the theoretical power. 

Additionally, the sample size is 𝑛 = 100𝐾, the genotype has allele frequency or mean 𝜇𝐺=0.6. 𝜎 

was set to 1. As the correlation coefficient 𝜌 of mediation increases, the power of 𝑇𝑑𝑖𝑓𝑓 

significantly rises. Furthermore, due to the variance changes in 𝑁𝐶𝑇𝑑𝑖𝑓𝑓, the power does not 

symmetrically decrease as 𝜇𝐸 increases or decreases from 0.5. In fact, the decline in power with 

an increase in 𝜇𝐸 is slightly faster than the decrease in power with a reduction in 𝜇𝐸 from 0.1. 

Case 3. GWAS and GWIS are performed in different samples with overlapping. 

We are now working on the case when GWAS and GWIS are performed in different sample sizes. 

Let 𝑛1, 𝑛2 and 𝑛0 represent the sample sizes of GWAS, GWIS and overlapping sample between 

GWAS and GWIS. In this case, the marginal effect 𝛼 is estimated from GWAS and 𝛽1, 𝛽2, 𝛽3 are 

estimated from GWIS, respectively. We can deduce the covariance between 𝛼 and 𝛽1, 𝛽2, 𝛽3 using 

the work in Case 1 and 2. 

Let a random variable 𝐼 takes 1 when samples are overlapped and 0 when samples are not 

overlapped. The estimates of  𝛼 and 𝜷 are the weighted estimates of them in overlapped sample 

and non-overlapped samples. That is,  



 

 

  

 

 𝛼 = 𝛼(𝑂)𝑃(𝐼 = 1) + 𝛼(𝑛1\𝑂 )𝑃(𝐼 = 0), 

𝜷 = 𝜷(𝑂)𝑃(𝐼 = 1) + 𝜷(𝑛2\Ο)𝑃(𝐼 = 0), 

where index (O), (𝑛1\𝑂) and (𝑛2\𝛰) represent overlapped, GWAS samples after excluding the 

overlapped, and GWIS samples after excluding the overlapped samples, which lead to the 

following: 

𝛼 =
𝑛𝑜

𝑛1
𝛼(𝑂) +

𝑛1 − 𝑛𝑜

𝑛1
𝛼(𝑛1Ο), 

  𝜷 =
𝑛𝑜

𝑛2
𝜷(𝑂) +

𝑛2 − 𝑛𝑜

𝑛2
𝜷(𝑛2\𝑂), 

𝑐𝑜𝑣(𝛼 − 𝛽1, 𝛽3) = 𝑐𝑜𝑣 (
𝑛𝑜

𝑛1
𝛼(𝑂) +

𝑛1 − 𝑛𝑜

𝑛1
𝛼(𝑛1Ο),

𝑛𝑜

𝑛2
𝛽3

(𝑂)
+

𝑛2 − 𝑛𝑜

𝑛2
𝛽3

(𝑛1\Ο)
) − 𝑐𝑜𝑣(𝛽1, 𝛽3)   

= 𝑐𝑜𝑣 (
𝑛𝑜

𝑛1
𝛼(𝑂),

𝑛𝑜

𝑛2
𝛽3

(𝑂)
) − 𝑐𝑜𝑣(𝛽1, 𝛽3) = −𝑐𝑜𝑣(𝛽1, 𝛽3)

=
𝜎2

𝑛2𝜎𝐺2
2 𝜎𝐸2

[
𝜌(1 − 𝜇𝐺2)

𝜎𝐺2
+

𝜇𝐸2

𝜎𝐸2
],                                                                            (S22) 

 

Thus,  𝑐𝑜𝑣(𝛼, 𝛽3) = 𝑐𝑜𝑣(𝛼 − 𝛽1, 𝛽3) + 𝑐𝑜𝑣(𝛽1, 𝛽3) = 0 

 

𝑐𝑜𝑣(𝛼, 𝛽1) = 𝑐𝑜𝑣 (
𝑛𝑜

𝑛1
𝛼(𝑂) +

𝑛1 − 𝑛𝑜

𝑛1
𝛼(𝑛1Ο),

𝑛𝑜

𝑛2
𝛽1

(𝑂)
+

𝑛2 − 𝑛𝑜

𝑛2
𝛽1

(𝑛1\Ο)
) 

=
𝑛𝑜𝜎

2

𝑛1𝑛2𝜎𝐺0
2 ,                                                                                                     (S23) 

𝑐𝑜𝑟𝑟(𝛼, 𝛽1) =
𝑛𝑜𝜎𝐺1𝜎𝐺2

𝜎𝐺0
2 √𝑛1𝑛2[

1
1 − 𝜌2 + (

𝜌(1 − 𝜇𝐺2)
𝜎𝐺2

+
𝜇𝐸2

𝜎𝐸2
)

2

]

,                    (S24) 

where 𝜇𝐺2 , 𝜎𝐺2 , 𝜇𝐸2 , and 𝜎𝐸2  refer to the mean and standard deviation of 𝐺  and 𝐸  in GWIS 

samples, 𝜇𝐺1, 𝜎𝐺1, 𝜇𝐸1, and 𝜎𝐸1 refer to the mean and standard deviation of 𝐺 and 𝐸 in GWAS 

samples, and 𝜇𝐺0, 𝜎𝐺0, 𝜇𝐸0, and 𝜎𝐸0 refer to the mean and standard deviation of 𝐺 and 𝐸 in the 

overlapped samples by GWAS and GWIS, respectively. Then we have the following: 

𝛼 − 𝛽1 =
𝜌𝜎𝐸1

𝜎𝐺1
𝛽2 + (𝜇𝐸1 +

𝜌𝜎𝐸1

𝜎𝐺1
)𝛽3 

and 

𝑣𝑎𝑟(𝛼 − 𝛽1) = 𝜎2 [
1

𝑛1𝜎𝐺1
2 −

2𝑛0

𝑛1𝑛2𝜎𝐺0
2 +

1

𝑛2𝜎𝐺2
2 (

1

1 − 𝜌2
+ (

𝜌(1 − 𝜇𝐺2)

𝜎𝐺2
+

𝜇𝐸2

𝜎𝐸2
)

2

)].     (S25) 



 

 

  

 

𝑇𝑑𝑖𝑓𝑓 has a non-centrality parameter:  

𝑁𝐶𝑇𝑑𝑖𝑓𝑓 =
(
𝜌𝜎𝐸1

𝜎𝐺1
𝛽2 + (𝜇𝐸1 +

𝜌𝜎𝐸1

𝜎𝐺1
)𝛽3)

2

𝜎2[
1

𝑛1𝜎𝐺1
2 −

2𝑛0

𝑛1𝑛2𝜎𝐺0
2 +

1
𝑛2𝜎𝐺2

2 (
1

1 − 𝜌2 + (
𝜌(1 − 𝜇𝐺2)

𝜎𝐺2
+

𝜇𝐸2

𝜎𝐸2
)

2

)]

 

and 𝑇𝐷𝑖𝑟𝑒𝑐𝑡 has a non-centrality parameter: 

𝑁𝐶𝑇𝐷𝑖𝑟𝑒𝑐𝑡 =
𝑛2𝜎𝐺2

2 𝜎𝐸2
2 𝛽3

2

𝜎2
. 

Noted that 𝑐𝑜𝑣(𝛼, 𝛽3) = 0 is also hold when  𝛽3 is estimated from the GWAS sample excluding 

GWIS sample. As a result, 𝑇𝑑𝑖𝑓𝑓 is independent of 𝛽3 when the 𝛽3 is estimated from the GWAS 

sample excluding GWIS sample. Therefore, the direct test 𝑇𝐷𝑖𝑟𝑒𝑐𝑡 using the GWAS sample after 

excluding GWIS sample is an independent replication for either 𝑇𝑑𝑖𝑓𝑓 or GWIS 𝑇𝐷𝑖𝑟𝑒𝑐𝑡 test. 

𝑇𝑑𝑖𝑓𝑓 is still testing for the combined effect of mediation and interaction and its power depends on 

the environmental mean and variance in the GWAS data. Again, we can test the 𝐺 × 𝐸 interaction 

through the two-step procedure: 1) We apply 𝑇𝑑𝑖𝑓𝑓 to search variants with joint effect of mediation 

and interaction effect; 2) we apply 𝑇𝐷𝑖𝑟𝑒𝑐𝑡 for the variants detected by 𝑇𝑑𝑖𝑓𝑓. Since GWAS is often 

conducted in much larger sample size than GWIS, the power of  𝑇𝑑𝑖𝑓𝑓 is increased, therefore, the 

two-step procedure for testing interactions is also increased. 

In practice, the GWIS sample is often a subset of GWAS. In this case, 𝑛0 = 𝑛2, which leads to 

𝑁𝐶𝑇𝑑𝑖𝑓𝑓 =
(
𝜌𝜎𝐸1

𝜎𝐺1
𝛽2 + (𝜇𝐸1 +

𝜌𝜎𝐸1

𝜎𝐺1
)𝛽3)

2

𝜎2[
1

𝑛1𝜎𝐺1
2 −

2
𝑛1𝜎𝐺2

2 +
1

𝑛2𝜎𝐺2
2 (

1
1 − 𝜌2 + (

𝜌(1 − 𝜇𝐺2)
𝜎𝐺2

+
𝜇𝐸2

𝜎𝐸2
)
2

)]
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Supplementary Figure 3. The theoretical power of 𝑇𝑑𝑖𝑓𝑓 under the scenario of Case 3. For each 

subplot, the x-axis represents the mean 𝜇𝐸1 of the environmental factor, the y-axis represents the 

sample size 𝑛1 in the GWAS data, and the z-axis represents the theoretical power. Additionally, 

the sample size in the GWIS data is 𝑛2 = 100𝐾, the mean 𝜇𝐸2 of the environmental factor in the 

GWIS data is 0.3, the mean 𝜇𝐺 of the variant is 0.6, the correlation coefficient of mediation 𝜌 =
0, and the variance of the random error 𝜎 = 1. It can be observed that as 𝜇𝐸1 increases relative to 

the data in the GWIS, the power substantially rises and is insensitive to the increase in 𝑛1. 

 

 



 

 

  

 

 

Supplementary Figure 4. The comparison between 𝑇𝑑𝑖𝑓𝑓 and 𝑇𝑑𝑖𝑟𝑒𝑐𝑡 under the scenario of Case 

3 but no mediation. The z-axis represents the ratio of the power of 𝑇𝑑𝑖𝑓𝑓 over the power of 

𝑇𝑑𝑖𝑟𝑒𝑐𝑡. If this ratio is larger than 1, then 𝑇𝑑𝑖𝑓𝑓 is more powerful than than 𝑇𝑑𝑖𝑟𝑒𝑐𝑡. Generally, 

𝑇𝑑𝑖𝑓𝑓 is more powerful than 𝑇𝑑𝑖𝑟𝑒𝑐𝑡 if 𝜇𝐸2 > 0.5 and 𝜇𝐸1 = 0.3.  

 

 

 

 

 

 

 

 

 



 

 

  

 

Supplementary Figure 5. The scatterplots between z-scores of 𝑇𝑀𝑅_𝐺𝑥𝐸 test based on (𝛼̂ − 𝜃𝛽1) 

and direct test (𝑇𝐷𝑖𝑟𝑒𝑐𝑡) based on effect sizes  𝛽̂3 obtained in GLI data. Because the GWAS was 

performed with smoking status as a covariate, the z-scores of 𝑇𝑀𝑅_𝐺𝑥𝐸 and 𝑇𝐷𝑖𝑟𝑒𝑐𝑡 should be 

similar. The Pearson correlation coefficient between z-scores of 𝑇𝑀𝑅_𝐺𝑥𝐸 test and 𝑇𝐷𝑖𝑟𝑒𝑐𝑡 is 

0.977, which is consistent. The red straight line represents the regression line. 

       

  

 

 



 

 

  

 

 

Supplementary Figure 6. The estimations of 𝜃, interaction effect 𝛽3, and the comparison of 

type I error and power for 𝑇𝑀𝑅_𝐺𝑋𝐸 and the direct test for the 𝐺 × 𝐸  interaction when there is no 

mediation. The GWAS sample size is two times of GWIS sample size and GWIS sample is the 

subset of GWAS sample: 𝑛1 = 2𝑛2 = 2𝑛0. The sample size 𝑛2 increases from 60k to 150k. We 

set 𝜇𝐸
𝑚𝑎𝑟 = 1 and 𝜇𝐸

𝑖𝑛𝑡 = 0.5. (a). Box plots of  𝜃  in simulations under different GWIS sample 

sizes. The top and bottom edges of the box plots represent the 25th and 75th percentiles of  𝜃, and 

the horizontal middle line represents the 50th percentile. The vertical bars extend from the 25th 

(or 75th) percentile of 𝜃 to the minimum (or maximum) value of simulated data.  𝐸(𝜃) converges 

to 1 as sample size increases. (b). Box plots of the direct estimate of  𝛽3 in GWIS (top panel) and 

by (𝛼̂ − 𝛽̂1𝜃)/𝜇𝑒 through MR- 𝐺 × 𝐸 analysis (bottom panel). The box plots are interpreted the 

same as in A accordingly. The direct estimate of  𝛽3 in GWIS or by (𝛼̂ − 𝛽̂1𝜃)/𝜇𝑒 through MR-

GxE analysis are both unbiased. Here s=-1 refers to the main effect and interaction effect have 

opposite effect directions; s=0 refers no main effect; and s=1 refers that the main effect and 

interaction effect have the same effect direction.  (c). Type I error rate comparison between 

𝑇𝑀𝑅_𝐺𝑥𝐸 and the direct test for different main and interaction effect directions. Both 𝑇𝑀𝑅_𝐺𝑥𝐸 and 

the direct test maintain the type I error well. (d) Power comparison between 𝑇𝑀𝑅_𝐺𝑥𝐸 and the 

direct test for different main and interaction effect directions. 

 

 



 

 

  

 

 

 



 

 

  

 

Supplementary Figure 7. (a) and (c): direct estimate 𝛽̂3 and MR-GxE estimate (𝛼̂ − 𝛽̂1𝜃)/𝜇𝐸
𝑚𝑎𝑟 of interaction effect when true 𝛽3 =

0. (b) and (d): direct estimate 𝛽̂3 and MR-GxE estimate (𝛼̂ − 𝛽̂1𝜃)/𝜇𝐸
𝑚𝑎𝑟 of interaction effect when true 𝛽3 = 0.005. Settings of (a) 

and (b): 𝜇𝐸
𝑚𝑎𝑟 = 1, 𝜇𝐸

𝑖𝑛𝑡 = 0.5, 𝑛1 = 2𝑛2 = 2𝑛0 where 𝑛2 increases from 60k to 150k. Settings of (c) and (d): 𝑛1 = 160𝑘, 𝑛2 = 80𝑘, 

𝑛0 = 80𝑘, 𝜇𝐸
𝑖𝑛𝑡 is fixed to 0.5, 𝜇𝐸

𝑚𝑎𝑟 increases from 0.1 to 1.5, and environment factor mean ratio increases from 0.2 to 3.  In each 

panel. the top and bottom edges of the box plots represent the 25th and 75th percentiles of the estimate, and the horizontal middle line 

represents the 50th percentile. The vertical bars extend from the 25th (or 75th) percentile of 𝜃 to the minimum (or maximum) value of 

simulated data. The simulation results suggest that the direct estimate  𝛽̂3 and MR-GxE estimate (𝛼̂ − 𝛽̂1𝜃)/𝜇𝐸
𝑚𝑎𝑟 are all unbiased. 

 



 

 

  

 

Supplementary Figure 8. The estimates of 𝜃 and 𝛽3 when GWAS and GWIS are performed in 

different samples or the same samples. (a): estimate of 𝜃, left: there is no sample overlapping 

between GWAS and GWIS; right: GWAS and GWIS were performed in the sample. (b): direct 

estimate 𝛽̂3 and MR-GxE estimate (𝛼̂ − 𝛽̂1𝜃)/𝜇𝐸
𝑚𝑎𝑟 of interaction effect. Settings: 𝑛1 = 200𝑘, 

𝑛2 = 80𝑘, 𝑛0 = 0 (0% sample overlap) or 𝑛0 = 80𝑘 (100% sample overlap), 𝜇𝐸
𝑖𝑛𝑡 = 0.5, 𝜇𝐸

𝑚𝑎𝑟 

increases from 0.32 to 2, and environment factor mean ratio increases from 0.64 to 4. In each 

panel. the top and bottom edges of the box plots represent the 25th and 75th percentiles of the 

estimate, and the horizontal middle line represents the 50th percentile. The vertical bars extend 

from the 25th (or 75th) percentile of 𝜃 to the minimum (or maximum) value of simulated data. 



 

 

  

 

Supplementary Figure 9. (a): Type-I errors of direct test 𝑇𝑑𝑖𝑟𝑒𝑐𝑡 and MR-GxE test 𝑇𝑀𝑅−𝐺𝑥𝐸. The dash 

lines represent the 95% CI.  b) Power of direct test 𝑇𝑑𝑖𝑟𝑒𝑐𝑡 and MR-GxE test 𝑇𝑀𝑅−𝐺𝑥𝐸.  Settings: 𝑛1 =

200𝑘, 𝑛2 = 80𝑘, 𝑛0 = 0 (0% sample overlap) or 𝑛0 = 80𝑘 (100% sample overlap), 𝜇𝐸
𝑖𝑛𝑡 = 0.5, 𝜇𝐸

𝑚𝑎𝑟 

increases from 0.32 to 2, and environment factor mean ratio increases from 0.64 to 4. 

 



 

 

  

 

Supplementary Figure 10. Type I error and power for 𝑇𝐷𝑖𝑟𝑒𝑐𝑡 (red), 𝑇𝑀𝑅_𝐺𝑥𝐸 (green) and two-

step (blue). In brief, we simulated a continuous trait, environmental factor and 20 independent 

genetic variants for 1000 times. The type I error and power for 𝑇𝐷𝑖𝑟𝑒𝑐𝑡 and 𝑇𝑀𝑅_𝐺𝑥𝐸 were 

calculate by correcting for 20 tests using the Bonferroni correction. The environment mean was 

set to 0.5. For the two-step procedure, we first applied 𝑇𝑀𝑅_𝐺𝑥𝐸 and Bonferroni correction. The 

variants survived after 𝑇𝑀𝑅_𝐺𝑥𝐸 were further tested by 𝑇𝐷𝑖𝑟𝑒𝑐𝑡 and Bonferroni correction was also 

applied. The sample size for marginal effect estimation varied from 𝑛2 = 20,000 𝑡𝑜 300,000.   
The sample size for the main effect estimate was fixed to 𝑛2 = 20,000. A. All the variants have 

no contribution of either mediation or GxE interaction. B. One variant has mediation effect and 

accounts for 0.25% of environment variation, and E contributes 1% of phenotypic variation. C. 

One variant has mediation effect and accounts for 0.25% of environment variation, and E 

contributes 5% of phenotypic variation. The dash line represents the 5% typer I error rate.  D. 

One variant has GxE interaction but no mediation. E. One variant has both mediation and GxE 

interaction. This variant accounts for 0.25% of environment variation, and E contributes 1% of 

phenotypic variation. F. One variant has both mediation and GxE interaction. This variant 

accounts for 0.25% of environment variation, and E contributes 5% of phenotypic variation. The 

simulations suggested the type I error rate is in general well controlled except when E has a large 

contribution to the phenotype when GWAS and GWIS are performed in the same dataset. 

Mediation effect improves the power to detect GxE for 𝑇𝐷𝑖𝑟𝑒𝑐𝑡, 𝑇𝑀𝑅_𝐺𝑥𝐸 and two-step, with more 

power improvement for 𝑇𝑀𝑅_𝐺𝑥𝐸 and two-step. 

 

 

  



 

 

  

 

Supplementary Figure 11.1. Zoomed locus-specific plots for the GxE loci identified by 𝑇𝑀𝑅−𝐺𝑥𝐸  for LDL-C. In 

each panel, top is -log10(P-value) and bottom is the corresponding CADD and RegulomDB score generated by 

software FUMA. (a) APOE/BCAM , Current Drinking. (b) SUGP1, Current Drinking. (c) SMARCA4, Current 

drinking. (d) APOB, regular drinking. (e) SMARCA4, Regular drinking. (f) SUGP1, Regular Drinking. (g) 

APOE/BCAM , Regular Drinking.  

 

      

   

      

      

 
 
 
  

  
  
 
  
 
 
  
 
  
 
  
 
 

 
 
 
  

  
  
 
 
 
  
  
 
  
 
  
 
 



 

 

  

 

Supplementary Figure 11.2. Zoomed locus-specific plots for the GxE loci identified by 𝑇𝑀𝑅−𝐺𝑥𝐸  for LDL-C. In 

each panel, top is -log10(P-value) and bottom is the corresponding CADD and RegulomDB score generated by 

software FUMA. (a) SMARCA4, Current Smoking. (b) SUGP1, Current Smoking. (c) AC008897.2, Current 

smoking. (d) APOE, current smoking. (e) CELSR2/PSRC1, Ever Smoking. (f)  APOE/BCAM , Ever Smoking. (g) 

SMARCA4, Ever Smoking. 

 

      

      

      

   

 
 
 
  

  
  
 
  
 
 
  
 
 
 
  
 
 

 
 
 
  

  
  
  
  
 
 
 
  
 
 



 

 

  

 

Supplementary Figure 11.3. Zoomed locus-specific plots for the GxE loci identified by 𝑇𝑀𝑅−𝐺𝑥𝐸  for HDL-C. In 

each panel, top is -log10(P-value) and bottom is the corresponding CADD and RegulomDB score generated by 

software FUMA. (a) LIPC/ALDH1A2, Current Drinking. (b) DDX28/DUS2/NFATC3, Current Drinking (c) CETP, 

Current Drinking. (d) GALNT2, Current drinking. (e) RPL5P26, regular drinking. (f) LIPC/ALDH1A2, Regular 

drinking. (g) CETP, Regular Drinking. (h) LPL, Regular Drinking.  

 

      

      

      

      

 
 
 
  

  
  
 
  
 
 
  
 
  
 
  
 
 

 
 
 
  

  
  
 
 
 
  
  
  
  
 
  
 
 



 

 

  

 

Supplementary Figure 11.4. Zoomed locus-specific plots for the GxE loci identified by 

𝑇𝑀𝑅−𝐺𝑥𝐸  for HDL-C. In each panel, top is -log10(P-value) and bottom is the corresponding 

CADD and RegulomDB score generated by software FUMA. (a) CETP, Current Smoking. (b) 

LIPC/ALDH1A2, Current Smoking. (c) LPL, Current smoking. (d) APOC1, current smoking.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

      

                       



 

 

  

 

Supplementary Figure 11.5. Zoomed locus-specific plots for the GxE loci identified by 

𝑇𝑀𝑅−𝐺𝑥𝐸  for HDL-C. In each panel, top is -log10(P-value) and bottom is the corresponding 

CADD and RegulomDB score generated by software FUMA. (a) LIPC/ALDH1A2, Ever 

Smoking. (b) DDX28/DUS2/NFATC3, Ever smoking. (c) LPL, Ever smoking. (d) CETP, ever 

smoking. 

 

 
 

 

 

 

      

      

   

                    



 

 

  

 

Supplementary Figure 11.6. Zoomed locus-specific plots for the GxE loci identified by 𝑇𝑀𝑅−𝐺𝑥𝐸  for TG. In each 

panel, top is -log10(P-value) and bottom is the corresponding CADD and RegulomDB score generated by software 

FUMA. (a) LPL, Current Drinking. (b) BUD13, Current Drinking (c) APOE/APOC1, Current Drinking. (d) 

AC091114.1, Regular drinking. (e) BUD13, regular drinking. (f) APOE/APOC1, Regular drinking. (g) LPL, Regular 

Drinking.  

 

      

   

      

      

 
 
  
  
 
  
 
 
  
 
  
 
  
 
 

 
 
  
  
 
 
 
  
  
 
  
 
  
 
 



 

 

  

 

Supplementary Figure 11.7. Zoomed locus-specific plots for the GxE loci identified by 

𝑇𝑀𝑅−𝐺𝑥𝐸  for TG. In each panel, top is -log10(P-value) and bottom is the corresponding CADD 

and RegulomDB score generated by software FUMA. (a) ZNF512, Current Smoking. (b) 

AC091114.1, Current Smoking  (c) BUD13, Current Smoking (d) LPL, Current Smoking. (e) 

APOE/APOC1, Current Smoking.  

 

      

      

   

                    



 

 

  

 

Supplementary Figure 11.8. Zoomed locus-specific plots for the GxE loci identified by 

𝑇𝑀𝑅−𝐺𝑥𝐸  for TG. In each panel, top is -log10(P-value) and bottom is the corresponding CADD 

and RegulomDB score generated by software FUMA. (a) BUD13, Ever Smoking. (b) 

APOE/APOC1, Ever Smoking.  (c) AC091114.1, Ever Smoking. (d) LPL, Ever Smoking. 
 

 

      

      

                 



 

 

  

 

Supplementary Figure 12. The circle Manhattan plots of 𝐺 × 𝐸 by 

𝑇𝑀𝑅 𝐺𝑥𝐸 for LDL-C, HDL-C and TG in ancestry specific analysis.

                

                

               

            

   

                

                

               

            

   

                

                

               

            

   

                

                

               

            

   



 

 

  

 

 

 

                

                

               

            

   

                

                

               

            

                

                

               

            

                

                

               

            

   

      



 

 

  

 

 

 

                

                

               

            

   

                

                

               

            

   

                

                

               

            

   

                

                

               

            

   



 

 

  

 

Supplementary Figure 13.1. (a)-(b): the MAGMA tissue enrichment analysis across 30 general 

tissue types and 54 specific tissue types from GTEx, respectively, for LDL-C and Current 

Drinking based on 𝑇𝑀𝑅−𝐺𝑥𝐸 test; (c)-(d): Differentially expressed genes across 30 general tissue 

types and 54 specific tissue types, respectively, for LDL-C and Current Drinking based on 

𝑇𝑀𝑅−𝐺𝑥𝐸 test. (e)-(h): the counterparts of (a)-(d) for LDL-C and Regular Drinking.
      

      

      

      

  
   

   
  

   
   

  
   

   
  

   
   

  
  

   
  
   

   
 



 

 

  

 

Supplementary Figure 13.2. (a)-(b): the MAGMA tissue enrichment analysis across 30 general tissue 

types and 54 specific tissue types from GTEx, respectively, for LDL-C and Current smoking based on 

𝑇𝑀𝑅−𝐺𝑥𝐸 test; (c)-(d): Differentially expressed genes across 30 general tissue types and 54 specific tissue 

types, respectively, for LDL-C and Current smoking based on 𝑇𝑀𝑅−𝐺𝑥𝐸 test. (e)-(h): the counterparts of 

(a)-(d) for LDL-C and Ever Smoking.
      

      

      

      

  
   

   
  

   
   

  
  

   
  

   
   

  
   

  
  

   



 

 

  

 

Supplementary Figure 13.3. (a)-(b): the MAGMA tissue enrichment analysis across 30 general tissue 

types and 54 specific tissue types from GTEx, respectively, for HDL-C and Current Drinking based on 

𝑇𝑀𝑅−𝐺𝑥𝐸 test; (c)-(d): Differentially expressed genes across 30 general tissue types and 54 specific tissue 

types, respectively, for HDL-C and Current Drinking based on 𝑇𝑀𝑅−𝐺𝑥𝐸 test. (e)-(h): the counterparts of 

(a)-(d) for HDL-C and Regular Drinking.

   

      

   

  
   

   
  

   
   

  
   

   
  

   
   
  

  
   

  
   

   
 

      

      



 

 

  

 

Supplementary Figure 13.4. (a)-(b): the MAGMA tissue enrichment analysis across 30 general 

tissue types and 54 specific tissue types from GTEx, respectively, for HDL-C and Current 

smoking based on 𝑇𝑀𝑅−𝐺𝑥𝐸 test; (c)-(d): Differentially expressed genes across 30 general tissue 

types and 54 specific tissue types, respectively, for HDL-C and Current smoking based on 

𝑇𝑀𝑅−𝐺𝑥𝐸 test. (e)-(h): the counterparts of (a)-(d) for HDL-C and Ever Smoking, respectively.

      

      

      

      



 

 

  

 

Supplementary Figure 13.5. (a)-(b): the MAGMA tissue enrichment analysis across 30 general 

tissue types and 54 specific tissue types from GTEx, respectively, for TG and Current Drinking 

based on 𝑇𝑀𝑅−𝐺𝑥𝐸  test; (c)-(d): Differentially expressed genes across 30 general tissue types and 

54 specific tissue types, respectively, for TG and Current Drinking based on 𝑇𝑀𝑅−𝐺𝑥𝐸 test. (e)-

(h): the counterparts of (a)-(d) for TG and Regular Drinking. 

 
      

      

      

      

  
   

  
   

   
  

   
   

  
   

  
  

   
  
   

   
 



 

 

  

 

 
Supplementary Figure 13.6. (a)-(b): the MAGMA tissue enrichment analysis across 30 general tissue 

types and 54 specific tissue types from GTEx, respectively, for TG and Current Smoking based on 

𝑇𝑀𝑅−𝐺𝑥𝐸 test; (c)-(d): Differentially expressed genes across 30 general tissue types and 54 specific tissue 

types, respectively, for TG and Current Smoking based on 𝑇𝑀𝑅−𝐺𝑥𝐸 test. (e)-(h): the counterparts of (a)-

(d) for TG and Ever Smoking.  

      

      

      

      

  
   

  
   

   
  

  
   

  
   

  
   

  
  

   



 

 

  

 

Supplementary Figure 14. Colocalization between TM6SF2 gene and LDL-C x Current 

Smoking in Lung tissue. rs1009136 is a potential causal SNP with CLPP 0.5216. 

 

                                  

 

 

 

 

 

 

 

 

 

 

 

   

   

   

   

   

   

   

   

   

 

 

 

 

 

  

 

   

   

   

   

   

   

   

   

   

                                

                  

  
  

   
  

  
  
  
  
  

 
 
  

  
   

  
  
  
  

  
  
   

 
  

  

  
  

 
  
  

   
  
  

  
   

 
  

  
  

  
 
  
  

   
  
  

  
   

 
  

  



 

 

  

 

Colocalization between MAU2 gene and LDL-C x Current Drinking in Liver tissue. rs10401969 

is a potential causal SNP with CLPP 0.8211. 

 

                                  

 

 

 

 

 

  

 

   

   

   

   

   

   

   

   

   

 

 

 

 

 

 

 

 

 

 

   

   

   

   

   

   

   

   

   

                                

                  

 
 
  

   
  

  
  
  
  
  

 
 
  

  
   

  
  
  
  

  
  
   

  
 

  
  

 
  
  

   
  
  

  
   

 
  

  
  

  
 
  
  

   
  
  

  
   

 
  

  



 

 

  

 

Colocalization between OPA3 gene and LDL-C x Current Drinking in Liver tissue. rs4420638 is 

a potential causal SNP with CLPP 0.3284. 

 

                                      

 

 

  

  

  

  

  

 

 

  

  

  

 

   

 

   

 

   

 

 

 

  

  

  

                                

                  

 
 
  

   
  

  
  
  
  
  

 
 
  

  
   

  
  
  
  

  
  
   

  
 

  
  

 
  
  

   
  
  

  
   

 
  

  
  

  
 
  
  

   
  
  

  
   

 
  

  



 

 

  

 

 

Colocalization between APOC1P1 gene and TG x Regular Drinking in Liver tissue. rs584007 is 

a potential causal SNP with CLPP 0.1479. 

 

                                      

 

 

 

 

 

  

  

 

 

  

  

  

 

   

 

   

 

   

 

 

  

  

  

                                

                  

 
 
  

   
  

  
  
  
  
  

 
 
  

  
   

  
  
  
  

  
  
   

  
  

  

  
  

 
  
  

   
  
  

  
   

 
  

  
  

  
 
  
  

   
  
  

  
   

 
  

  



 

 

  

 

Colocalization between APOC1P1 gene and TG x Current Drinking in Liver tissue. rs584007 is 

causal SNP with CLPP 0.1459 

 

 

  

                                      

 

 

 

 

 

 

 

 

 

 

 

 

  

  

  

 

   

 

   

 

   

 

 

  

  

  

                                

                  

 
 
  

   
  

  
  
  
  
  

 
 
  

  
   

  
  
  
  

  
  
   

  
  

  

  
  

 
  
  

   
  
  

  
   

 
  

  
  

  
 
  
  

   
  
  

  
   

 
  

  



 

 

  

 

 

Colocalization between MT1DP gene and TG x Current Drinking in Liver tissue.  

rs584007 is causal SNP with CLPP 0.8305. 

 

                                     

 

 

 

 

 

  

  

  

 

  

  

  

  

   

 

   

 

   

 

   

 

   

 

 

  

  

  

  

   

                                

                  

 
 
  

   
  

  
  
  
  
  

 
 
  

  
   

  
  
  
  

  
  
   

  
 
 

  
  

 
  
  

   
  
  

  
   

 
  

  
  

  
 
  
  

   
  
  

  
   

 
  

  



 

 

  

 

 

Colocalization between CETP gene and HDL-C x Ever Smoking in Stomach tissue. rs12720926 

is a potential causal SNP with CLPP 0. 2736. 

 

                                     

 

 

 

 

 

  

  

  

 

  

  

  

  

   

 

 

 

 

 

 

 

  

  

  

  

   

                                

                  

 
 
 
  
  
  

  
  
  
  
 
  

 
  

  
  
  

  
  
  
  
 
  
   

  
 

 
  

  
 
  
  
  
 
  
  
  
  
 
  

 
 

 
  

  
 
  
  
  
 
  
  
  
  
 
  

 
 



 

 

  

 

 

Colocalization between CETP gene and HDL-C x Ever Smoking in Stomach tissue. rs3816117 is 

a potential causal SNP with CLPP 0.1678. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

  

                                     

 

 

 

 

 

  

  

  

 

  

  

  

  

   

 

 

 

 

 

 

 

  

  

  

  

   

                                

                  

 
 
  

  
  
  

  
  
  

  
  

 
  

  
   

  
  
  
  

  
  
   

  
 

  
  

 
  
  

   
  
  

  
   

 
  

  
  

  
 
  
  

   
  
  

  
   

 
  

  



 

 

  

 

Supplementary Figure 15.  The effect of adding a variant within the 500kb  region of the SNP reported in Table 1. The significance 

(P-value of the interaction test) of the SNPs in table 1 have little changes, indicating no variants in the region can account for the  

interaction evidence. 
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