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1 Elastic-net regularized logistic regression

The elastic net model has been represented as follows. Given a dataset with n observations {(xi, yi)}ni=1,
where xi is the feature vector for the i-th observation and yi is the binary response variable (0 or 1), the
elastic-net logistic regression model seeks to find the coefficient vector β:
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where σ(z) = 1
1+e−z is the logistic function, ∥β∥1 =

∑
|βj | is the ℓ1 norm of β, which is the sum of the

absolute values of the coefficients.∥β∥22 =
∑

β2
j is the ℓ2 norm squared of β, which is the sum of the squares

of the coefficients, and λ is the tuning hyperparameter controlling the overall strength of the LASSO (ℓ1) and
ridge (ℓ2) penalties, and α controls the balance between them [1].

Because the elastic net regularization penalizes the size of the coefficients, sets some irrelevant values to 0,
and minimizes the impact of irrelevant features, the feature importance can be expressed straight from the
model by the absolute values of the non-zero coefficients of the covariates.

It is important to recognize that minor adjustments in the random initialization or train-test split of the
model may to considerable variances in the selected feature set for the majority of embedded feature selection
methods. This problem is known as a selection instability [2, 3]. In general, ℓ1 regularization is known to
be unstable [4]. However, investigating ensemble feature selection, in which the set of optimal features is
produced from a collection of multiply independently trained models, helps resolve this issue. There are
multiple approaches to increase the feature selection stability by performing various implementations of
the ensemble approach, most notably the RENT model, which combines information about the frequency
of feature occurrence and feature weights [2]. We followed a simple, yet effective, approach of training 10
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independent models, each of which was initiated with a different random seed. To account for the data
imbalance, we used the ROSE (Random OverSampling Examples) algorithm [5]. The simulated instances for
training were generated de novo for each independent model.

2 XGBoost model

For a dataset D = {(xi, yi) : i = 1...n, x ∈ Rm, y ∈ R} with n samples and m features, the predicted value ŷi
of the XGBoost model can be represented as:

ŷi =

K∑
k=1

fk(xi) , fk ∈ F (B)

where fk represents a CART tree and the score given by the k-th tree to i-th data sample is denoted by fk(xi).
The set of K such functions is learned by minimizing the following objective function:

Obj =

n∑
l=1

l(yi, ŷi) +

K∑
k=1

Ω(fk) , where Ω(f) = γT +
1

2
λ||w||2 (C)

Here, l is a convex training loss function that measures the difference between prediction ŷi and target yi; Ω
is a model complexity function term that penalizes the complexity of the XGBoost model, where γ and λ
are degrees of regularization. T and w refer to the number of leaves and the scores on each leaf of the tree,
respectively. The XGBoost model can be trained in an additive manner. Given ŷi

(t) as the prediction of the ith

instance at tth iteration, function ft needs to be added to minimize the objective function:

Obj(t) =

n∑
i=1

l(yi, ŷi
(t−1) + ft(xi)) + Ω(ft) (D)

By applying Taylor expansion this function is simplified as:
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where gi and hi are the first and second derivatives obtained on the loss function, respectively. By calling the
stated tree creation model repeatedly, a large number of regression tree structures are acquired. The objective
function, Obj, is then used to choose the optimal tree structure and insert it into the existing model to create
the optimal XGBoost result.

3 Shapley values

Briefly, the exact Shapley values are computed based on the following procedure [6–8]. Let’s consider an
M-player cooperative game in which the objective is to maximize the payoff, and let S ⊆ M = {1, ...,M}
be a subset of |S| players. Further, let’s assume we have a contribution function v(S) that maps subsets of
players to real numbers, which we refer to as the worth or contribution of coalition S . The worth of coalition
S describes the expected total sum of payoffs that the members of S can obtain through cooperation [9].
The Shapley value is one method for distributing the total gains to the players, assuming that they are all
cooperating. It is a “fair” distribution (i.e., characterized by efficiency, symmetry, null player property, and
linearity) and is expressed as:

φj(v) = φj =
∑

S⊆M\{j}

|S|!(M − |S| − 1)!

M !
(v(S ∪ {j})− v(S)), j = 1, . . . ,M (F)

which is the weighted mean over contribution function differences for all subsets S of players not containing
player j. Colloquially, the S values illustrate how important each player is to the overall cooperation and
what payoff the player can reasonably expect from participation in the game. SHAP values provide a
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straightforward way to determine which features contribute to a prediction by considering a model trained
on a set of features as a value function on a coalition of players. Importantly, Shapley values may have
causal interpretations where the conventional “conditioning by observation” as in Pearl’s do-calculus, can be
replaced by “conditioning by intervention” [10, 11].

4 Model describing the probability of death.

log

[
P (Class = died)

1− P (Class = died)

]
= α+ β1(DeliriumYes) + β2(SexFemale) + β3(AgeMiddle) +

β4(AgeOlder) + β5(RaceBlack) + β6(RaceOther/Unknown) + β7(Braden)

(G)

5 Additional patient characteristics information and analysis

Age-groups comparison Sex Odds ratio p-value

[51.8, 66.9) vs. [17.1, 51.8)
Male

1.52 0.679
[66.9,101.5] vs. [17.1, 51.8) 2.11 0.285
[66.9,101.5] vs. [51.8, 66.9) 1.38 0.715

[51.8, 66.9) vs. [17.1, 51.8)
Female

1.09 0.988
[66.9,101.5] vs. [17.1, 51.8) 5.26 0.001
[66.9,101.5] vs. [51.8, 66.9) 4.82 0.004

Table A. Summary of differences in the occurrence of delirium among the three age groups of patients.

Predictor

Class: died/survived Log odds (SE)

Delirium symptoms 1.655∗∗ (0.339)
Female −0.707∗ (0.319)
Age [51.8, 66.9) 2.486∗ (1.058)
Age [over 66.9] 4.440∗∗ (1.028)
Black −0.158 (0.317)
Other 0.108 (0.785)
Braden score −0.043∗ (0.021)
Constant −4.330∗∗ (1.081)

Observations 471
Log Likelihood -136.291
AIC 288.583
R2 Tjur 0.282
Note: ∗p<0.05; ∗∗p<0.01

Table B. Statistical summary of the regression model shown in Equation G

April 15, 2024 3/4



Predictive patient characteristics for COVID-19 in-hospital mortality assessment

Factor AME p-value LCL UCL

Age [51.8, 66.9) 0.072 0.002 0.027 0.117
Age [over 66.9] 0.322 0.000 0.251 0.393
Braden score -0.004 0.041 -0.008 0.000
Delirium symptoms 0.187 0.000 0.105 0.268
Black -0.014 0.620 -0.071 0.043
Other 0.010 0.892 -0.139 0.159
Female -0.063 0.022 -0.118 -0.009

Table C. Average marginal effect (AME), p-values, and confidence intervals associated with the factors
incorporated in the benchmark model introduced in Equation G. The AME represents the average effect of a
unit change in a predictor variable on the predicted outcome, averaged across all observations in the dataset.
It provides a straightforward measure of the influence of each independent variable, revealing the expected
average change in the dependent variable with a one-unit increase in that independent variable, while
keeping all other variables constant.
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