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Editor’s comments 
 
We thank the editor for the encouraging evaluation and express our gratitude for the meticulous scrutiny 
of our manuscript. The editor's keen eye detected several errors that had evaded our careful proofreading 
efforts. 
 
Equations would best appear only in an appendix. Technical terms should be defined/explained 
briefly. 
 
We have relocated the mathematical descriptions of the methods to the Appendix section. 
 
Section 2.5 contains a lot of ideas but is is too technical, difficult to follow and hard to relate to the 
problem at hand. 
 
We have moved the technical details of SHAP analysis to the Appendix of the document. Additionally, we 
have included in the text a simplified interpretation of the concept that will allow readers to better 
understand the use of Shapley values in the context of clinical feature selection. 
 
I appreciate the effort made in producing high quality figures. They could be better leveraged with 
enhanced  captions and comments in the main text. 
 
Thank you! We corrected and enhanced the captions. 
 
p.6 table 5: Please define Average marginal mean and how it is computed (btw, isn't it Average 
Marginal Effect as suggested by the second column name?) 
 
Yes, indeed. It is a mistake. The column header correctly specified the values as an average marginal 
effect. We corrected the Table caption. 
 
There are two logistic regression (LR) models here (sections 2.3 and 3.1) and it is not always clear 
which model it is referred to later in the text. Also the wording GLM is sometime used instead of 
LR. Please choose one wording and stick to it consistently. 
 
Indeed, we have a simple regression (non-regularized) model introduced in Section 3.1 and the elastic-
net LR model, which is used for feature selection. We revised the text to ensure that these two models 
are not confused, and we mention the GLM framework only in the context of non-regularized models. 
 
p.6 fig 1 the caption refers to \gamma while it should presumably be \lambda 
 
Again, thank you for spotting the mistake! The caption was corrected. 
 
p.7 what is the "LS algorithm"? 
 
Thank you for bringing this error to our attention. We apologize for the confusion. We meant to refer to 
LR-ENET (elastic net regularized logistic regression), which was used for feature selection in our work. 
We have made the necessary revisions to the text. 
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Reviewer 1 
 
We thank the reviewer for providing thoughtful comments that have enabled us to improve the 
manuscript. The points raised by the reviewer (and the resulting changes made to the manuscript) are 
outlined in detail below. 
 
The part on "Dataset description" should be in Results section. The Methods section should 
include a description of (i) how the data was acquired (ii) what were the inclusion and exclusion 
criteria and (iii) what variables were collected, including a clear description of the outcome 
variables. 
 
We moved the tables so their placement corresponds to the relevant sections. 
 
Inclusion Criteria: Age ≥ 18 years, diagnosed with COVID-19, admitted to the ICU; Exclusion Criteria: 
None. The study was observational, encompassing all patients hospitalized between March 2020 and 
September 2020. Due to the de-identification process, exact admission dates are not available. 
 
Data were extracted from electronic health records (EHR), encompassing a comprehensive array of 
patient status descriptors amounting to several hundreds of features. It is crucial to clarify that the 
variables analyzed in this study were not predetermined but emerged as a result of a rigorous feature 
filtering and selection process, described in detail in the “Methods” section. As mentioned in the 
manuscript, our analysis focused on descriptors associated with the initial evaluation conducted within the 
first 24 hours of patient admission. 
 
Our approach to data analysis was fundamentally data-agnostic. We initially considered all quantifiable 
readings from the EHR. The primary step in our analysis involved the exclusion of variables with near-
zero variance and those with substantial missing inputs. Subsequently, the remaining variables underwent 
a feature importance analysis to identify the most significant predictors. All the relevant extracted 
predictors are described in the “Results” section. 
 
Patient characteristics are described in the results when compared between survivors and non-
survivors. This is already a univariate analysis for testing association with mortality. However 
patient characteristics should be compared between the categories of the main independent 
variable, which is delirium. Such analysis is typically useful for indicating confounders and other 
effects to be accounted for in the multivariate analysis. 
 
See the response to the following question in which we address the issue of delirium. 
 
As to the findings regarding delirium – could they be just another representation of an older age? 
Although age was included in the multivariate analysis, were there cases at all among the younger 
patients? A possible answer could be obtained by an additional subgroup analysis, assessing the 
effect of delirium among the older patients group only. 
 
Multiple reports have demonstrated that severe COVID-19 disproportionately affects elderly patients. 
Therefore, it is understandable that this group has a higher proportion of older patients. Indeed, according 
to our observations, delirium is more likely to occur among older female (but not male) patients; however, 
a further grouping within this cohort does not indicate that the emergence of delirium can be solely 
attributed to age. 
 
Here is an additional table that groups the patients into three age categories, with 157 patients in each 
group. As the table demonstrates, cases of delirium were observed in each of the age groups. A version 
of this Table has been added to the revised manuscript as Table 3). 
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 Females Males 
Age group No Delirium Delirium Total No Delirium Delirium Total 
[17.1, 51.8) 92.3%  (84) 7.7%  (7) 91 89.4%  (59) 10.6%  (7) 66 
[51.8, 66.9) 91.7%  (66) 8.3%  (6) 72 84.7%  (72) 15.3% (13) 85 
[66.9,101.5] 69.5%  (57) 30.5% (25) 82 80.0%  (60) 20.0% (15) 75 
Total 84.5% (207) 15.5% (38) 245 84.5% (191) 15.5% (35) 226 

 
 
Regarding the specific quantification of the delirium occurrence in different age groups of females and 
males, the Table (shown in Appendix as Table A1) below summarizes the analysis: 
 
 

Age-group comparison Sex Odds ratio  p-value  
[51.8, 66.9) vs. [17.1, 51.8) 

Male 

1.52           0.679  
[66.9,101.5] vs. [17.1, 51.8) 2.11           0.285  
[66.9,101.5] vs. [51.8, 66.9) 1.38           0.715  
[51.8, 66.9) vs. [17.1, 51.8) 

Female 

1.09           0.988  
[66.9,101.5] vs. [17.1, 51.8) 5.26           0.001  
[66.9,101.5] vs. [51.8, 66.9) 4.82           0.004  

 
Although there is a substantial difference between the occurrence of delirium in different age groups for 
females, the effect is less pronounced (and not statistically significant) for males.  
 
The delirium cases are also spread between two major racial groups, as the table below demonstrates: 
  

White Black 
 

Age group No Delirium Delirium Total No Delirium Delirium Total 
[17.1, 51.8) 88.9%  (64) 11.1%  (8) 72 94.1%  (64) 5.9%  (4) 68 
[51.8, 66.9) 90.0%  (54) 10.0%  (6) 60 86.7%  (78) 13.3% (12) 90 
[66.9,101.5] 71.9%  (46) 28.1% (18) 64 76.1%  (67) 23.9% (21) 88 
Total 83.7% (164) 16.3% (32) 196 85.0% (209) 15.0% (37) 246 

 
However, overall, there was no statistically significant difference between the occurrence of delirium in 
white and African American sub-cohorts (p=0.52) 
 
Known risk factors for COVID-19 mortality were not accounted for. Were all patients comorbidity 
free? 
 
We have addressed the issue of comorbidities in the added “Limitations” section. Briefly: It is widely 
recognized that COVID-19 has a greater impact on patients with preexisting health conditions [1–6]. The 
analysis of patient data from Indiana performed by the Regenstrief Institute reveals that hypertension, 
chronic pulmonary disease, congestive heart failure, diabetes, and renal diseases were among the most 
common comorbidities in the group from which our cohort was drawn. In fact, the findings suggest that 
admission to the ICU was highly unlikely for patients without any comorbidities. The EHRs provided us 
with the patient’s medical history in the form of ICD10 codes, dating back to 2 years prior to the 
admission. However, the vast diversity in comorbidities present in the analyzed cohort renders these data 
non-actionable from a machine-learning perspective. Additionally, our objective was not to link specific 
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comorbidities to patient survival, as this topic has already been extensively researched. Rather, we aimed 
to identify easily recognizable clinical features that may indicate a decreased likelihood of patient survival, 
regardless of their condition. 
 
"Importantly, Shapley values may have causal interpretations where the conventional 
“conditioning by observation” as in Pearl’s do-calculus, can be replaced by “conditioning by 
intervention” – please explain further – which of the effects is hypothesized as causal and why is 
it suitable to such definition. Was the causal effect estimated? If so please specify it clearly in the 
Results Section. 
 
Shapley values, a concept borrowed from cooperative game theory, are used in our study to determine 
the importance or contribution of each clinical feature in a predictive model. The Pearl’s Do-Calculus 
(which we do not employ or report on) is a formal system developed by Judea Pearl for reasoning about 
causation in statistical models. It allows for the analysis of causal effects by manipulating variables within 
a model. In Pearl's framework, "do(x)" represents an intervention where one actively sets the value of a 
variable X, as opposed to just observing it.  
 
In the context of our study, “conditioning by observation" describes the traditional framework when we 
assess the probability of an outcome given the observation of certain variables. For instance, observing 
that a patient shows signs of delirium and then estimating the probability of subsequent patient’s death. 
On the other hand, "conditioning by intervention" occurs when one can actively intervene to set a variable 
to a specific value and then observe the outcomes. For instance, intervening to lower the probability of 
delirium, actively changing the treatment of specific patients with delirium, and observing the change in 
the effect.  
 
What we are trying to communicate is that if the interpretation of the Shapley values in a causal 
framework is mathematically justified, we can consider our results as preliminary evidence for a possible 
causal link. In simpler terms, we suggest that instead of just seeing how the presence of a feature 
correlates with the outcome, the computed Shapley values suggest that actively changing a feature 
(through an intervention) might affect the outcome. We are also aware of the critique of this interpretation 
among some computer scientists [7]. 
 
Obviously, we did not pursue any interventions in the reported work, and the study was entirely 
observational. Therefore, we cannot assess the strength of the putative hypothesized causal effect. 
However, due to the statistical interpretation of the feature importance scores we used, one could use the 
results as a convenient representation of highly plausible hypotheses that can (and should!) be tested in a 
study where intervention is available. Only then could the effect size be truly estimated. Therefore, our 
choice of metric that drove the feature selection makes the selected features good candidates for 
intervention-based studies. 
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Reviewer 2 
 
We would like to thank the reviewer for offering an insightful critique that highlighted the limitations of our 
study. The reviewer's thoughtful inquiries prompted us to add a new subsection titled “Limitations” into our 
manuscript. This section serves to emphasize the concerns raised by the reviewer, ensuring that our 
paper's conclusions are not extrapolated beyond their appropriate scope. 
 
Information on features definitions, engineering/grouping, what is available for selection, the 
coding system, what dataset is used and what is available in it (e.g. HES in the UK) – affects 
interpretation as a specific condition may have multiple distinct coding methods, diminishing 
their significance when examined separately. 
 
The hospitals used a health information system provided by Cerner. The systems are designed to 
support: 

• International Classification of Diseases (ICD): Cerner's electronic health record (EHR) systems 
are equipped to handle ICD codes for diagnosis and inpatient procedures (ICD-10-CM for clinical 
diagnosis and ICD-10-PCS for inpatient procedural coding).  

• Current Procedural Terminology (CPT) and Healthcare Common Procedure Coding System 
(HCPCS): For documenting and billing outpatient and professional medical services and 
procedures, Cerner's systems can accommodate CPT and HCPCS codes. 
 

The data were collected during the clinical care of COVID-19 patients and stored in the medical records 
of the hospital. The Regenstrief Institute, which acts as the data warehouse for relevant hospitals' 
electronic records, performed an unstructured data extraction [8,9]. The extracted data were then curated 
into patient-level variables to facilitate analysis. 
 
Given the relatively small sample size (N=471 with 72 cases), the XGB model may risk overfitting 
and limited generalisability. 
 
The reviewer is correct. The small group size means that our confidence regarding the prediction is only 
moderate. However, as we emphasized in the manuscript, the goal of using a classifier (whether it was 
XGBoost or Elastic Net regression) was to guide feature selection. In other words, the classifiers are 
useful only insomuch as they provide us with a reproducible and explainable methodology for feature 
selection during the training process. In our context, the features are deemed important if they drive the 
classification. Additionally, please note that two classifiers were used precisely because the feature 
selection guided by only one of the classifiers might be biased due to the risk of overfitting. Finally, the 
selected features were critically reviewed on the basis of the current understanding of the mechanisms 
and symptoms of COVID-19. 
 
In summary, even if the classifiers are imperfect, the feature selection they perform is useful if used as a 
guide for subsequent critical review of these features. The potential overfitting may indeed bring 
potentially irrelevant features, but we did not see any features being highlighted that were not 
independently observed in other clinical cohorts in other studies. 
 
Defining COVID-19 mortality / clarifying if patients were admitted for COVID or other reasons, e.g. 
fatally-ingested toxic substances, but when admitted, found to have COVID? 
 
The cohort comprises patients who were admitted to hospitals in Indianapolis, IN, during the early phase 
of the pandemic. During this phase, patients were discouraged from seeking non-critical help due to the 
rapidly developing pandemic situation. It is not possible to retrospectively establish to what extent the 
deaths occurred due to COVID directly or due to a dramatically exaggerated immune response that 
coincided with patients' frailty related to their other comorbidities. This would require a careful inquiry and 
analysis of every individual case, possibly involving pathologists. We rely on electronic health records and 
the designations provided by the hospital. These definitions indeed evolved during the pandemic and are 
often retroactively revised. 
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The issue of incidental hospitalization of patients “with” COVID-19 and its influence on the model would 
be much more significant for data collected recently. Indeed, patients who suffer from COVID-19 and 
those who simply carry the virus often asymptomatically and are hospitalized for another reason can be 
distinguished, as demonstrated by Fillmore et al. [10]. We did not perform such an analysis. 
 
However, from a practical standpoint, the verification of the extent to which COVID-19 was a small factor, 
a large factor, or a direct cause of death is irrelevant. Our analysis demonstrated that patients admitted to 
the hospital with COVID-like symptoms and showing particular manifestations during the first 24 hours are 
much more likely to die. We do not believe that some of these manifestations are necessarily COVID-
limited. In fact, the appearance of delirium would be seen as a critical predictor for any other severe 
infectious disease. The same is true of symptoms that may arise from kidney damage. If our work leads to 
elevating the attention to particular symptoms that may be associated with higher mortality, then the 
actual underlying cause of these symptoms is of low importance as far as interventions can be designed 
to alleviate the proximal causes. On the other hand, the emergence of a pathogen to which most of the 
population is immunologically naïve will always increase the risk posed by the presence of other 
comorbidities, frequently resulting in symptoms that cannot be entirely disentangled in regards to a causal 
connection. 
 
Data collection time period – needed to account for potential variations in outcomes due to 
evolving treatment strategies and COVID variants. 
 
While the exact admission dates of patients in the dataset are not accessible due to the deidentification 
process, it is important to note that all the data were collected between March 2020 and September 2020. 
Although the samples were not genotyped, we surmise that the most probable variants affecting the 
patients in the research cohort were the original L strain of COVID-19 or one of the early mutations, 
including the S, V, GR, GH, or GV strains. Based on the location and timeline, it is highly probable that 
most of the patients were infected with the GR-strain variant [11–13]. 
 
Handling of missing data 
Why this benchmarking model/particular features? 
 
The approach was essentially assumption-free. As we tried to convey in our manuscript, our goal was not 
to build a predictive classifier for COVID-19 severity (which would be invalidated mainly by the evolution 
of the virus and the emergence of vaccination) but rather to identify the critical, observable features that 
may lead to better patient stratification and risk recognition. The broader goal was to show that the 
methodology could be used to recompute the critical features, given the emergence of new data. 
 
For the initial selection, we took all the available features that did not show missingness or near-zero 
variance. Further, among the multiple repeated measurements available, we selected the features 
describing the patient's status in the first 24 hours after admission, and we took the minimal and maximal 
values of the observations. From this point on, the feature selection was driven entirely by the classifiers 
constrained by the information about mortality. Consequently, the feature selection was not performed by 
the analysts but driven by the data. 
 
As mentioned in the manuscript, the choice of models (elastic net, XGBoost) was dictated by their 
previously reported high performance in feature selection. The use of the Shapely factor was inspired by 
its statistical interpretation, which incorporates the notion of causality. Additionally, as documented in the 
manuscript, the Shapley factor has previously been employed in the clinical context. 
 
Why is 20 predictors set as the limit for elastic-net? 
 
We based our decision on practical factors, such as the efficiency of computations, particularly when 
utilizing the outcomes for the subsequent SHAP analysis. Our initial investigation did not reveal any 
consistent and reliable informative characteristics beyond that count. In fact, as illustrated in Figure 3, the 
significance of the remaining clinical readouts was consistently minimal beyond the eighth feature. 
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Is oversampling (ROSE) done before creating bootstrap samples? This can introduce bias and 
artificially inflate the AUC, as the OOB samples overlap with the training sample. 
 
We understand that the reviewer is inquiring whether the entire dataset in our setting was oversampled 
using ROSE before any training took place. We would like to clarify that this was not the case. The ROSE 
algorithm was employed during training instead. A bootstrap sample of the original dataset is generated 
for each iteration. Subsequently, the ROSE algorithm is executed to generate synthetic samples for the 
minority class contained within that bootstrap sample. This step is conducted separately for each 
bootstrap iteration. Finally, the model is trained on the newly balanced dataset (post-ROSE application) 
and then evaluated. 
 
We updated the text to clarify the confusing wording. 
 
The manuscript's claims that predictive combinations of clinical features are causally linked to 
mortality or that the study produces easily understandable and actionable clinical features lack 
sufficient support based on the presented analysis. As the authors mentioned, the different 
approaches selected “very different sets of predictive features,” and that the selected features 
vary considerably depending on the seed. The selected features may also well be a proxy for 
other conditions. 
 
Three important points must be emphasized in the response: 

1) The generation of different subsets of predictive features when using sparse regularization 
methods is an expected and understandable result (See [14]). Indeed, we used multiple repeats 
(multiple seeds) for the classification training and feature selection to take advantage of the 
properties of the sparse selection methodology. The features reported were derived from 
averaging the results of multiple seeds. The figures depict the extent to which the features 
impacted the trained classifiers. Sparse methods have an inherent property of yielding varying 
orders of features or even slightly different features with different seeds. However, it is not a 
concern as informative feature sets may have multiple subsets that lead to the same classification 
success. Our features were quite stable, and we do not see it as an issue. If every rerun of the 
training/feature selection yielded the same result, it would indicate that most features are 
meaningless and do not contribute to the model's prediction. 

2) The features are expected to be proxies or surrogate measures because most of them, by 
definition, are not mechanically tied to a single condition or comorbidity. Again, we do not see this 
as a problem, as general clinical features cannot, by their nature, be considered exclusive. For 
instance, an elevated temperature or high CRP level in the blood may point to multiple conditions 
that are manifested by a proximal cause, which is inflammation. 

3) Specific clinical manifestations might be causally linked to mortality. However, we are discussing 
connections that are not exclusive. For instance, the emergence of kidney failure is associated 
with a higher level of mortality, and kidney failure can indeed be caused by multiple factors. 
However, multiple studies are now documenting the association between kidney failure and 
COVID-19 infection [15–20]. The EHR includes measures such as BUN that our feature selection 
process has identified. However, our feature selection procedure also identified the frequency of 
voiding as one of the critical predictive factors. Of course, we recognize that an abnormally high 
urination frequency is not “causing” mortality, and there is no direct causal link between COVID-
19 infection and urination. Following the reviewer's critique, the voiding frequency in this context 
would be a proxy/surrogate measure related indirectly (although still causally) to the infection. 
However, the surrogate nature of this feature does not make it less important or useful. On the 
contrary, it makes this easily observable feature extremely valuable, as it can be evaluated in the 
hospital without any specialized equipment. The fact that the selection of features agrees with 
observations reported in the literature demonstrates not only the value of our approach for 
agnostic feature selection but also the practicality and applicability of the result. 

 
Finally, it is essential to note that in isolation, none of the observations of the association between 
particular symptoms and poor outcomes is sufficient to demonstrate, without a doubt, the causal links. For 
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instance, in isolation, every one of the cited kidney injury reports would be insufficient. Only a carefully 
designed, sufficiently powered, randomized trial would provide us with a self-sustained body of evidence 
within a single study. However, our report, just like other reports documenting observational results, 
should be seen in the context of other supporting evidence. The fact that the EHR analysis demonstrates 
a link between acute kidney injury and COVID-related mortality increases the weight of the existing 
evidence and encourages the search for a mechanism. The current literature admits that the mechanism 
of COVID-related kidney injury still has not been fully elucidated. Yet, failing to aggregate evidence from 
multiple sources to update our beliefs or conclusions is a logical fallacy. 
 
Following the reviewer's comment, we updated our discussion to emphasize that our observations should 
be considered in conjunction with other discussed papers that provide concurrently and independently 
obtained observations. We do not suggest that our models in isolation sufficiently provide links between 
the observed symptoms and outcomes 
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