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Introduction 

The demonstration that T cells with specific cytotoxic ac- 
tivity against autologous tumor are present in the peripheral 
blood or at the tumor site in patients with cancer suggests 
that T cells are capable of recognizing tumor-associated 
antigens (TAA) [3, 67, 80]. Recently, it has been estab- 
lished that T cells use the T cell receptor (TCR) for rec- 
ognition of antigenic peptides, which are presented by the 
major histocompatibility complex (MHC) molecules ex- 
pressed on antigen-presenting cells [24, 94]. Tumor-derived 
peptides are also recognized by tumor-specific T cells in the 
context of the MHC molecules [16, 34, 181]. The TCR 
expressed on T cells belongs to the immunoglobulin su- 
perfamily of cell surface molecules [24, 94]. In addition to 
TCR, the CD3 complex of accessory molecules plays an 
important role in T-cell-mediated recognition [48, 82]. 

In patients with cancer, specific cytolytic T cells (CTL) 
have been often derived from lymphocytic infiltrates pre- 
sent at the tumor site (tumor-infiltrating lymphocytes, TIL). 
Following activation with T-cell-activating cytokines, TIL 
proliferate in culture and acquire potent antitumor cytolytic 
properties [42, 65, 67, 99, 106, 136, 151]. Based on this 
observation, the hypothesis has been advanced that TIL 
infiltrate the tumor in response to TAA and thus are en- 
riched in autotumor(AuTu)-specific T lymphocytes, at least 
some of which may be able to lyse AuTu. Recognition by 
such CTL of an appropriately presented antigenic peptide 
should result in proliferation and expansion of 
AuTu-reactive T cell clones in the tumor [63, 67, 174, 179]. 
Indeed, the presence of a large number of T cells in tumors 
has been correlated with a prognostically favorable out- 
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come in some cases [18]. In addition to the tumor site, 
AuTu-reactive CTL have been found in peripheral blood 
[66, 183] or malignant ascites [66] of patients with cancer, 
indicating that a systemic response to the tumor may be 
present or that redistribution of CTL from the tumor to the 
periphery might occur. For example, Yasumura and col- 
leagues recently have obtained evidence for the presence of 
memory T cells with specific cytotoxic activity against 
AuTu in the peripheral blood of a patient free of the tumor 
burden, whose tumor (squamous-cell carcinoma of the 
tongue) had been removed 2 years previously [183]. 

Studies performed in animals bearing established tumors 
indicated that activated, adoptively transferred TIL had 
therapeutic efficacy [26, 125, 141]. Based on these prom- 
ising initial findings, clinical trials with human TIL were 
started in the mid 1980s. TIL were isolated from tumors, 
expanded in vitro in the presence of interleukin-2 (IL-2) for 
6 - 8  weeks and retransfused to patients with metastatic 
disease [85, 126, 150]. Using TIL and IL-2 for treatment of 
patients with metastatic malignant melanoma, Rosenberg 
and coworkers reported remission rates of up to 40%, in- 
cluding some long-lasting responses [126, 150]. However, 
the preparation of TIL for therapeutic administration to 
patients with cancer is complex, and AuTu-specific CTL 
are not consistently obtained in therapeutic TIL cultures 
[1]. For these reasons, better characterization of 
AuTu-specific CTL and improvements of methods for their 
activation and culture have been emphasized recently. 
Specifically, it is desirable to outgrow AuTu-specific CTL 
from TIL more effectively and consistently [71] and to 
simplify complex technologies required for TIL expansion. 
Attempts have been also made to define the repertoire of 
the TCR genes used by TIL freshly isolated from tumors or 
cultured in the presence of IL-2 [64, 108, 174]. At the same 
time, other studies have been focusing on defining the 
target on tumor cells for the TCR, namely, t]~e antigenic 
peptide presented to CTL in the groove of the class I MHC 
molecules [16, 145, 154, 160, 161]. 

In this brief review, we will attempt to summarize the 
current knowledge about a role of TCR in recognition of 
tumor-associated peptides and about cellular mechanisms 



induced by TCR-mediated antigen recognition on tumor 
cells. In addition, we will briefly evaluate future prospects 
for the use of T cells in the treatment of malignant diseases. 

Immunotherapy of malignant tumors using cytotoxic 
lymphocytes 

Many human progressive or metastatic cancers such as 
disseminated malignant melanoma or metastatic renal cell 
cancer are resistant to conventional therapies, including 
chemotherapy or radiotherapy. In these types of cancer, 
immunotherapy has been tried over the past 10 years and, 
although its success rate has been relatively modest, it re- 
mains a promising alternative to the conventional therapies 
[10, 112, 123, 124, 178]. Efforts to improve im- 
munotherapy have been ongoing worldwide in hope of 
generating highly effective cytotoxic antitumor effector 
cells [71, 107], introducing novel cytokines, combining 
immuno- with chemotherapy, or facilitating the delivery of 
immunotherapeutic agents to patients with cancer [78, 130, 
166]. Although high-dose IL-2 has been used for therapy as 
a bolus or continuous infusion in patients with melanoma or 
renal cell cancer, considerable toxicity and limited clinical 
efficacy have encouraged a search for alternative biological 
approaches [128]. Regimens involving systemic adminis- 
tration of IL-2 and interferon t~ (IFNct) appear to be among 
the more promising therapeutic combinations of cytokines 
[4, 11, 127]. In addition to individual cytokines or combi- 
nations of different cytokines, IL-2 in combination with 
various effector cells has been used for therapy of advanced 
cancers [85, 124-126, 128, 150, 178]. IL-2 has been found 
to activate and induce expansion of lymphocytes capable of 
destroying cancer cells both in vitro and in vivo [57, 61]. 
These IL-2-activated effector cells were first thought to be 
a newly discovered lymphocyte population, independent of 
T or natural killer (NK) cells, and they were named lym- 
phokine-activated killer (LAK) cells by Grimm and colla- 
borators [57, 58]. Since then, it has been realized that LAK 
cells consist of a mixture of various cytotoxic lymphocyte 
populations, mainly NK cells but also T cells, with distinct 
immune phenotypes [30, 41, 149, 169]. By now, fairly 
extensive clinical experience with LAK cells and IL-2 has 
accumulated [128]. Overall, the response rate has been 
approaching 30%, and, although no statistically significant 
difference in the proportion of responses has been observed 
between therapy with high-dose IL-2 alone or IL-2 with 
LAK cells, a greater tendency toward long-term complete 
responses has been observed in patients with melanoma 
treated with LAK cells and IL-2 [128]. 

Regarding immunotherapy with adoptively transferred 
cytotoxic T lymphocytes, the very first reports of treatment 
with TIL expanded in vitro and IL-2 in patients with met- 
astatic melanoma were encouraging [126, 150]. However, a 
need for a unique expertise, high costs and the considerable 
manpower required for this type of therapy have restricted 
its application to a few specialized institutions. Further- 
more, it remains to be determined whether the promising 
clinical results obtained in the initial trials with TIL can be 
reproduced or improved upon, and whether therapy with 
TIL and IL-2 is effective in treatment of cancers other than 

metastatic melanoma. It also remains uncertain if TIL, 
considered to be mixtures of activated T lymphocytes 
which might or might not be enriched in AuTu-specific 
effector cells, are substantially more effective ther- 
apeutically than LAK cells. The mechanism through which 
CTL recognize tumor cells expressing the relevant anti- 
genic peptide in association with an appropriate class I 
MHC molecule [67, 179] is quite distinct from that used by 
activated non-specific T cells as well as NK cells, which 
recognize tumor cell targets regardless of MHC restriction 
[121]. Although the precise nature of such non-MHC-re- 
stricted recognition is not clear, it is likely that cellular 
adhesion molecules play an important role in the process of 
effector-cell/tumor-cell interactions, leading to effective 
signal transduction and subsequent release of cytotoxic 
granules capable of lysing the cell membrane of tumor cells 
[139, 189]. Cellular adhesion molecules are probably also 
important in CTL/tumor-cell interactions as accessory 
molecules, which stabilize contact and facilitate or even 
regulate signalling through quantitative or conformational 
alterations in [~1 or [~2 integrins on the surface of effector 
cells. While expression and utilization of the TCR-CD3 
complex by CTL distinguishes this subset of effector cells 
from NK or LAK cells, the cytolytic pathways activated by 
all these effector cells appear to overlap to a considerable 
extent, and it remains uncertain whether CTL employ some 
unique mechanisms to eliminate tumor cells as compared to 
non-MHC-restricted T cells or LAK cells [13]. It is cur- 
rently thought that CTL are more effective in eliminating 
tumor metastases than are non-MHC-restricted effector 
cells [13]. However, few direct comparison studies of in 
vivo antitumor efficacy of these two types of effector cells 
have been performed. In general, their antitumor effec- 
tiveness in vivo might depend not only on the ability to 
directly lyse tumor cells or inhibit their growth but also to 
produce various cytokines, extravasate and localize to the 
tumor or interfere with the tumor vasculature. 

The T cell receptor 

The T cell receptor (TCR) is a complex of several poly- 
peptide chains expressed on the T cell surface (Fig. 1) and 
consisting of variant and invariant regions, which are 
functionally closely associated with each other and with 
CD3 peptides [8, 86-88, 94, 176]. About 95% of human 
peripheral blood T cells express the tx~ heterodimer, com- 
prised of constant (C) and variable (V) regions [8, 86-88, 
94, 176]. The V region of this structure is involved in an- 
tigen recognition. Associated with the ct[~ he~erodimer are 
the Y, 8 and e chains [163] of the CD3 and the more recently 
discovered v and ~ chains [70]. These five invariant chains 
are most likely involved in the antigen binding and re- 
sponsible for signal transduction [70, 72, 163, 176]. The % 
5 and e chains of CD3 are usually expressed as ~-y or e-8 
heterodimers [27, 176], and the v and ~ chains as v-X, or ~-~ 
dimers [6, 177]. The sequence analysis has revealed that the 
v and ~ chains are differently spliced products of the same 
gene and, therefore, some authors refer to them as the 
chain family [48, 176]. It is assumed that by expressing 
different combinations of those dimers of invariant chains, 
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Fig. 1. T cell expressing the T cell receptor (TCR), including the 
associated molecules of the CD3 complex and its interaction with a 
conventional antigenic peptide or a superantigen bound to the MHC 
molecule expressed by an antigen-presenting cell 
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Fig. 2. Genomic organization of the T cell receptor (TCR) 0r and 
chain genes and their rearrangement patterns that give rise to 
functional TCR genes in mature T cells Q, sites of N region diversity 

the cell can be responsive to a variety of signals [82, 176]. 
The process of antigen recognition by the TCR involves the 
MHC molecules. With a few exceptions, antigens have to 
be presented by MHC molecules to induce T cell responses 
[14, 94, 152]. In order to be presented by MHC molecules, 
antigens first have to be processed to short (9 -14  amino 
acids) antigenic peptides by antigen-presenting cells, e.g., 
macrophages. Subsequently, during a series of intracellular 
events, these antigenic peptides are fitted into a groove of 
the newly synthesized MHC molecules, and the resulting 
MHC-peptide complex is expressed on the surface of an 
antigen-presenting cell, as shown in Fig. 1 [56, 77, 155, 
158]. The ability to recognize this MHC-peptide complex 
requires considerable diversity on the part of the TCR. The 
molecular basis for this diversity is provided by (a) the 
genomic organization of the genes for the variant chains of 
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Fig. 3. The V, D and J elements of the CDR3 region of the TCR V[3 
chain gene (a) and deletions of nucleotides at the D and J regions and 
addition of nucleotides at the sites of N region diversity (b) 

the TCR and (b) complex rearrangement patterns of the 
defined fragments of these genes during early maturation of 
T cells [87, 94, 176] (Fig. 2). Thus, the gene for the TCR c~ 
chain consists of approximately 80 variable (V) region gene 
segments subgrouped in 30 V gene families (a V gene 
family is defined on the basis of more than 75% shared 
sequence homology) [87, 122], about 80 joining (J) regions 
[87], and one constant (C) region [138]. During the re- 
arrangement of this gene, one of the V regions is connected 
to one of the J regions and to the C region. T]he product of 
this rearranged gene becomes a TCR ct chain expressed on 
the mature T cell (Fig. 2) [87]. The unrearranged gene 
encoding the TCR [3 chain is somewhat more: complicated 
than that encoding the c~ chain. Here, there are about 60 
V gene segments subgrouped in 25 V~3 gene families [28, 
38, 87], followed by one diversity (D) region (C~31), six 
J regions (J~l. 1 - 1.6), one C region (C~I), another D region 
(D~32), a further group of seven J regions 0[32.1-2.7), and a 
second C region [79, 153, 185] (Fig. 2). The rearrangement 
of this gene proceeds according to the rules analogous to 
those for the c~ chain gene, resulting in a construct con- 
sisting of one V, one D, one J and one C region (Fig. 2) [2]. 
It is apparent that by multiplication of all the different TCR 
c~l gene segments, enormous variability of the: final variant 
part of the TCR can be generated. This variability, however, 
is further increased by a phenomenon called "N region 
diversity", which involves the addition or deletion of nu- 
cleotides at all the junctional areas between the V and 
J regions of both chains. Figure 3 illustrates this phenom- 
enon for the more complex TCR ~3 chain [8711. 

The three-dimensional structure of the TCR remains to 
be discovered. However, performing comparative analyses 
of immunoglobulins and the TCR c~ and [3 cl~ains, Choita 
and coworkers [24] have found that both types of molecule 
have similar structural features in the V regions. Like im- 
munoglobulins, the TCR a and [3 chains appear to have 
three complementarity-determining regions (CDR) which 
presumably bind to the MHC as well as the antigenic 
peptide in the groove. CDR1 and CDR2 are coded by the 
V gene of the TCR. The CDR3 domain is located in the 
region of hypelwariability. Therefore, it seems reasonable to 
postulate that if a T cell binds to an antigen-presenting cell, 
CDR3 binds to the most variable part of the MHC-peptide 
complex, namely the antigenic peptide. Currently, this ap- 
pears to be the most acceptable hypothesis [115, 23]. Figure 3 
illustrates the genetic basis for diversity of the CDR3 of the 
TCR [3 chain. During the rearrangement of fragments 
coding for the CDR3, several nucleotides are added next to 



the already complete V region genes (the N region). Sub- 
sequently, one of the D regions, usually with deletions of 
some nucleotides on both ends, which sometimes are so 
extensive that the D region is no longer recognizable, binds 
to the 3' end. Next, some more nucleotides are added, 
followed by the J region, which is usually missing one to 
three triplets at the 5' end. This type of rearrangement al- 
lows for recognition by CDR3 of an enormous variety or 
peptides presented for the T cell use by MHC molecules on 
antigen-presenting cells [8]. 

The ~{/5 TCR, which is also a heterodimer consisting of 
constant and variable regions and expressed in association 
with the CD3 complex on 3%-5% of human peripheral 
T cells, has a smaller repertoire of V regions compared with 
the c~[3 TCR [17, 87, 129]. Similarly to the a[~ TCR, the 
genes for the ?/8 TCR are rearranged from the germline 
configuration, including the same gene segments described 
above [87, 142]. The unrearranged human TCR ? chain 
gene is comprised (from the 5' to 3' end) of four Vy chain 
groups consisting of 11 V regions (V~tl.1-8, V'/2-4), four 
of which are pseudogenes; three J regions ( J? l . l -3)  one 
C~/1, two further J regions (J3t2.1, 2) and one C72 [64, 91]. 
The rearrangement of this gene results in a V-J-C gene, 
including N region diversity at the VJ junction [17]. For the 
8 chain, eight V, two D, two J and one C regions have been 
identified [79]. Rearrangements can result in a V-N-(D-N- 
D-N)-J-C complex [38]. However, the importance of the ~'/8 
TCR for tumor immunology remains speculative, and we 
refer the reader to several recent reviews for a more de- 
tailed description of its genomic organization [17, 47, 87, 
129, 142]. 

T cell activation pathways involving TCR/antigen 
interactions 

Because of its unique structure, the TCR is responsible for 
recognition of peptides presented in the MHC groove and is 
capable of discriminating one peptide from another. How- 
ever, the signal delivery via TCR/peptide interaction is not 
sufficient to induce proliferation and clonal expansion of 
the peptide-specific T cells, although it is apparently suf- 
ficient to induce expression of mRNA for interleukin-2 
(IL-2) in the responding T cells [187]. To sustain the 
TCR-mediated activation signal, another signal, probably 
mediated by various members of the family of cellular 
adhesion molecules expressed on the T cell surface, is 
necessary [55, 131, 163]. When a ligand recognized by the 
cellular adhesion molecule, expressed on T cells is 
co-presented by an antigen-presenting cell, signal trans- 
duction is likely to occur. Among the cellular adhesion 
molecules known to participate in T cell activation are 
CD28 [154], CDlla/CD18 [162], and CD2 [84] and their 
respective ligands B7, ICAM-1, LFA-3 and certain very 
late antigens in the [31 integrin family [33, 135]. The pos- 
sibility that cellular adhesion molecules serve as accessory 
molecules or as signal receptors capable of initiating an 
alternative activation pathway is of special interest for 
tumor immunology. It has been suggested that antigen 
presentation and/or signal transduction via the TCR may be 
defective in tumor-bearing hosts [81, 97, 120]. Indeed, the 

inability of tumor-bearing hosts to mount protective im- 
mune responses against tumors has been thought to be due 
to ineffective antigen or peptide presentation by anti- 
gen-presenting cells. In some cases, tumor cells lack or 
express few MHC molecules, and thus do not effectively 
present antigens to T cells. Tumor-associated macrophages 
are known to be functionally deficient and may not be ef- 
fective as antigen-presenting cells [93]. In view of these 
and possibly other defects in antigen presentation, activa- 
tion of antitumor effector cells via cellular adhesion mo- 
lecules or other surface molecules via alternative activation 
pathways is a potentially important mechanism. It is also 
likely that tumor cells themselves express cellular adhesion 
molecules or their receptors and thus are capable of 
inducing activation, albeit not MHC-restricted activation, 
of immune effector cells. Data are available in support of 
this hypothesis, indicating that susceptibility of tumor cells 
to AuTu-specific or non-specific effector cells may depend 
on the level of expression of ICAM-1 and other adhesion 
molecules on tumor cells [25, 101]. Little is known at 
present about expression by various tumors of the ligands 
able to mediate accessory or alternative activation of 
T lymphocytes, but there are indications that the CD28-B7 
activation pathway is operating normally in the tumor mi- 
croenvironment [188]. 

Activation of T cells after MHC-restricted recognition of 
peptides as well as cellular adhesion molecule ligands is 
coordinated by a cascade of enzymatic reactions referred to 
as "signal transduction" [72, 105]. Although our knowledge 
about various signal transduction pathways has been in- 
creasing rapidly in recent years, exact intracellular me- 
chanisms operative between the initial recognition, sub- 
sequent signal transduction and final functional responses 
of T cells remain largely unknown. Nevertheless, functional 
differentiation of the T cell after recognition via the TCR of 
antigenic peptides or cellular adhesion molecule ligands, 
including its repertoire of cytokines or the ability to med- 
iate cytolytic activity, may, in part, be programmed by the 
way molecules involved in signal transduction are grouped 
on the cell surface. Thus, for example, it has become evi- 
dent that co-expression of one or another dimer of chains 
associated with the TCR o~ complex may ultimately lead 
to different functional properties of the T cell [72, 82]. 
After an MHC-restricted contact of the TCR with a peptide 
on the antigen-presenting cell, intracellular levels of a 
group of enzymes, including phospholipase C, protein 
tyrosine kinases, protein tyrosine phosphatases or protein 
serine kinases, which induce activation of T cell metabo- 
lism, increase within seconds [73, 105]. This observation 
implies that these enzymes are participants in the T cell 
activation. Furthermore, activation of these enzymes ap- 
pears to be required for transcription of cytokine genes after 
TCR-mediated signaling. For example, activation of pro- 
tein kinase C by phorbol esters has been shown to be 
necessary for cytokine production by T cells responding to 
the TCR- and CD28-mediated signals [147]. 

The cascade of signal transduction events in activated 
T cells is followed by differentiation into effector cells 
having activities important for the control of tumor growth 
and progression. Clonal proliferation of CTL in response to 
a tumor-associated peptide as well as secretion of various 



cytokines and cytotoxic enzymes is instrumental for the 
development of effective antitumor responses. Some of the 
cytokines produced, such as tumor necrosis factor 
(TNFo~), interferon ~ (IFNy) or interleukin-6 (IL-6) are 
known to have direct antitumor effects [5, 54, 59, 102, 
170]. Other cytokines, e.g., IL-2, IL-4, IL-7 and, possibly, 
IL-13, are capable of activating cytotoxic mononuclear 
cells [63, 96, 100, 143, 179]. Furthermore, there is in- 
creasing evidence for the ability of IL-2 to down-regulate 
growth of some tumors via functional IL-2 receptors ex- 
pressed on tumor cells [164, 173]. IL-2 and a number of 
other cytokines mentioned above have been increasingly 
frequently used for immunotherapy of malignant human 
tumors in the past 10 years [11, 85, 112, 123, 124, 126, 127, 
150, 166, 178]. The ability of activated T cells to secrete 
cytolytic molecules such as perforin/cytolysin or serine 
esterases/granzymes seems to be another specific function 
of T cells that have recognized an antigenic peptide [12, 35, 
189]. These molecules enable the activated T cells to de- 
stroy tumor cells by forming pores in the tumor cell 
membranes with a subsequent loss of viability [12, 189]. 

Another pathway of T cell activation, which most likely 
does not play a major role in human tumor immunology, 
but should at least be mentioned briefly, is the TCR inter- 
action with the so called "superantigens". Superantigens are 
generally products of bacteria (i.e., staphylococcal en- 
terotoxins [46, 60, 75] or viruses, i.e., mouse mammary 
tumor viruses [37, 49], which are exceptionally potent 
T-cell-activating molecules. They are recognized by the 
TCR V regions irrespective of the hypervariable CDR3 
region (see above) [23, 116]. Often they react with all 
T cells expressing a particular TCR V[3 family, leading to 
activation of the entire population of these T cells [46]. 
Recognition of a superantigen by immature T cells leads to 
clonal elimination in the thymus of all T cells bearing the 
V[3 family genes involved in the process of recognition 
[182]. In contrast, mature T cells respond to superantigens 
by a rapid activation followed by proliferation and cytokine 
production [140]. After superantigen-mediated activation, 
the responding T cells frequently undergo apoptosis, 
resulting in the elimination of all T cells expressing a 
particular TCR V beta family (for review see [20, 36, 45]). 

Tumor-specific cytotoxic T cells 

As indicated above, MHC-restricted T cells capable of 
mediating lysis of AuTu cells recognize processed anti- 
genic peptides bound within the cleft of appropriate HLA 
molecules, Such AuTu-specific CTL have been demon- 
strated to be present in tumor-bearing hosts [26, 141] and in 
patients with cancer [3, 42, 63, 65, 67, 80, 99, 136, 151, 
179]. TIL are thought to be enriched in this population of 
effector T cells [63, 174, 179]. However, TIL freshly iso- 
lated from human tumors generally fail to lyse AuTu cells 
[63, 95, 180] and either do not proliferate or proliferate 
poorly in response to AuTu, phytohemagglutinin, phorbol 
myristate acetate or other T-cell-activating agents [95, 180]. 
These same cells, however, activated with T-cell-stimulat- 
ing cytokines such as IL-2, become responsive, i.e., pro- 
liferate and acquire the ability to lyse AuTu cells [3, 42, 63, 

65, 67, 80, 99, 106, 136, 151, 179]. This in vitro phe- 
nomenon, indicating that CTL precursors are present 
among TIL, has been observed with a variety of tumors, 
including malignant melanoma [3, 67, 80], squamous-cell 
carcinoma. [66], ovarian cancer [64, 65], gastric cancer 
[136], renal cell cancer [42, 83], glioma [99] and others 
[106, 133]. In some cases, CTL with specific AuTu cyto- 
toxicity have been also derived from peripheral blood 
lymphocytes (PBL) obtained from patients with cancer [16, 
18, 26, 42, 48, 63, 65, 66, 82, 99, 106, 136, 141, 151, 174, 
179, 181, 183]. The specific AuTu reactivity of these cy- 
tolytic effector cells can be blocked by monoclonal anti- 
bodies (mAb) against the TCR and MHC molecules, 
strongly suggesting that the recognition of AuTu cells is 
both TCR-mediated and MHC-restricted [66, 67, 136, 181 ]. 
These studies support the view that, although T cells in- 
filtrating the tumor or found in the circulation of patients 
with cancer may be unable to mediate effective AuTu re- 
sponses, CTL precursors are present and are responsive to 
some exogenous activation signals. While fresh TIL often 
lack the abiIity to lyse AuTu cells, TIL isolated from a 
variety of human tumors and cultured in the presence of 
IL-2 and AuTu cells can develop into excellent antitumor 
effector cells [66, 67, 136]. On the basis of this type of 
evidence, it has been concluded that CTL reactive with 
AuTu are functionally suppressed in cancer patients [180]. 
Poor expression of T-cell-mediated antitumor activity in 
cancer patients with advanced malignancies may be related 
to the presence of tumor-derived immunosuppressive fac- 
tors in the tumor environment as well as in the peripheral 
circulation. For example, there is evidence that transform- 
ing growth factor [3 (TGF[3), known to be produced by 
several human tumor types and to suppress T cell activa- 
tion, might be, in part, responsible for blocking CTL in 
some patients with cancer [63, 118]. Recent studies in 
tumor-bearing mice have indicated that tumor-derived 
factors, probably different from TGF[3, are responsible for 
the failure of signal transduction in T cells obtained from 
these animals. Apparently, the TCR-CD3 complex on the 
surface of T cells isolated from mice bearing long- 
established tumors is unable to transduce activation signals 
effectively, signals that normally lead to the generation of 
antitumor effector cells [97]. More recently, the same de- 
ficiency has been demonstrated in TIL obtained from 
human solid tumors [43, 107]. On the other hand, TIL in 
sitn have been shown to express activation markers, the 
MHC class II molecules or IL-2 receptors [63, 179] and 
mRNA for several cytokines [167], and produce cytokines 
in response to autologous tumors [133]. These data suggest 
that not all activation pathways and not all functions of TIL 
are blocked. Rather, selective inhibition of some activation 
pathways in T cells responsive to the tumor may occur in 
tumor-beating hosts. From the point of view of im- 
munotherapy, it is fortunate that this tumor-induced im- 
munosuppression can be reversed by the use of exogenous 
cytokines or other activating agents. 

Numerous studies of phenotypic and func~tional char- 
acteristics of TIL or PBL obtained from cancer patients 
have been performed after their in vitro activation with 
T-cell-stimulating agents in the search for AuTu-specific 
T cells [3, 16, 34, 48, 67, 80, 82, 106, 174, 179, 181]. In- 



itially, in vitro activation of AuTu-specific CTL was at- 
tempted using relatively high doses of IL-2 (6000 IU/ml) 
[151]. Under these conditions, T cells cytotoxic against 
AuTu tumor cells could be generated, but CTL lines 
growing in high-dose IL-2 frequently have a broad spec- 
trum of cytotoxicity and, by definition, should be categor- 
ized as LAK cells. More recently, lower doses of IL-2 
(100-600 IU/ml) have been used to generate CTL lines 
capable of lysing AuTu tumor cells. This approach seems 
to result more consistently in expansion of the 
MHC-restricted AuTu-specific CTL, which demonstrate 
high levels of cytotoxicity against AuTu, may also kill al- 
logeneic histologically related tumor cells but do not lyse 
allogeneic unrelated tumors [66, 136]. In some cases, e.g., 
using lymph node lymphocytes of patients with pancreatic 
cancer, it has been possible to generate non-MHC-restricted 
AuTu-specific CTL lines consistently in vitro, which re- 
cognize tumor-associated mucins [7, 68, 69]. These 
non-MHC-restricted mucin-specific CTL have been studied 
by Finn and collaborators, and they have been demon- 
strated to recognize peptides in the polar peptide mucin 
core composed of repeating units nine amino acids long [7, 
68, 69]. Evidently, tumor-associated mucins composed of 
underglycosylated repeating subunits are immunogenic and 
are easily recognized by CTL without a need for antigen 
presentation on HLA molecules. Thus, not all tumor pep- 
tides require antigen presentation in the groove of the MHC 
molecule. 

In some cases, it has been shown that addition of cy- 
tokines other than IL-2, e.g., IL-4 or IL-7 or even IL-13, 
may further facilitate generation of AuTu-specific CTL in 
vitro [96, 100, 107]. To maintain the specificity of these 
CTL lines, culture with fresh or irradiated AuTu cells 
seems to be required, presumably because expansion of 
these CTL in vitro is dependent on the activation signal 
involving TCR/tumor-peptide interactions. Schwartzen- 
truber and coworkers [132, 133] have shown that stimula- 
tion of specific CTL with AuTu but not unrelated allo- 
geneic tumor cells leads to secretion of cytokines, possibly 
in response to the MHC-restricted recognition of peptides 
derived from TAA. Other groups reported the release of 
cytotoxic granules from T cells in response to AuTu cells 
added to T cell cultures [35]. 

To obtain more detailed information about 
tumor-specific CTL, several groups have successfully at- 
tempted to clone by limiting dilution and subsequently 
study phenotypic and functional features of these cells [16, 
65-67, 82, 136, 174, 179, 181]. Most of the initial cloning 
analyses of AuTu-specific T cells were performed in pa- 
tients with malignant melanoma. Clones of AuTu-specific 
T cells obtained from PBL or TIL of such patients and 
successfully maintained in culture were used to study ef- 
fector-cell/tumor interactions [34, 67, 161, 181]. Boon and 
colleagues have utilized T cell clones as probes for de- 
fining the nature of antigens recognized by the T cell clones 
on AuTu cells [154, 160, 161]. The family of shared mel- 
anoma-associated antigens named MAGE, which are re- 
cognized by T cells as nine-amino-acid peptides presented 
by HLA-A1 molecules, has been defined by these in- 
vestigators [154, 160, 161]. Others have also provided 
evidence for the presence of both unique and shared anti- 

gens on melanoma [31, 181, 186], some of which are 
presented to CD8 + T cells by HLA-A2 molecules [62, 76, 
181]. Furthermore, melanoma cells that failed to express 
HLA-A2 were shown to be resistant to lysis by autologous 
CTL and were killed only when transfected with the 
HLA-A2 gene [62, 76]. In addition to HLA-A1 or 
HLA-A2, other class I molecules have been shown to 
present TAA-derived peptides. W61fel and coworkers 
demonstrated that the same melanoma antigen could be 
presented by HLA-A2 and HLA-Bw6 molecules [181]. In a 
study performed by Yasumura and colleagues [184], 
tumor-specific CTL derived from PBL of a patient with 
squamous-cell cancer of the tongue were found to have a 
cytolytic response restricted by HLA-A2 and HLA-B44 
molecules. The data from this study indicated that T cells 
expressing the TCR V~6 gene recognized an antigen epi- 
tope presented by HLA-A2 molecules, while an antigenic 
epitope presented by HLA-B44 molecules was recognized 
by autologous T cells expressing the TCR V~2 gene. 

Recent data also suggest the existence of shared tumor 
antigens on tumors with different histologies. Studies by 
Barnd et al. [7] and Jerome and coworkers [68] indicate 
that CTL recognize tandem repeats of the mucin polypep- 
tide core, which can be expressed by breast, pancreatic, 
ovarian and perhaps other epithelial cancers [7, 29, 68, 
186]. As indicated above, this type of recognition is not 
restricted by MHC molecules, but is mediated by TCR, and 
it represents the only exception to the TCR-peptide-MHC 
activation complex discovered so far [7, 68]. 

Expression of TCR V genes in cytotoxic T cells 

At the site of T cell infiltration of a tumor, clones of acti- 
vated T cells responding to TAA are expected to be present. 
Therefore, the hypothesis has been that in tumors infiltrated 
by T cells, TCR gene expression may show either a 
monoclonal or oligoclonal pattern [108, 174]. The presence 
of restrictions in expression of the TCR V genes could be 
taken as evidence of clonal expansion of T cells responsive 
to the antigen driving the local immune response. Mono- 
clonal antibodies against V regions of the TCR have been 
used to document such restricted cellular responses [19, 
114]. However, only a limited number of such mAbs are 
available for human V chains. As an alternative, several 
qualitative or semi-quantitative approaches utilizing the 
polymerase chain reaction (PCR) have been introduced to 
test the hypothesis. Both approaches are based on a similar 
principle. RNA is extracted from the circulating T cells or 
tissues infiltrated with T cells and reverse-transcribed (RT) 
into cDNA. This cDNA is then amplified by PCR using a 3' 
primer annealing in the C region of a given TCR chain gene 
and 5' primers, which recognize the different V region gene 
families of the TCR c~ or [3 chains. By introducing internal 
standards and performing PCR in the presence of radioac- 
tive isotopes, the percentage of gene expression of each Vc~ 
or V[3 region can be determined [22, 38, 122, 174]. Using 
RT-PCR, the oligoclonal T cell repertoire at the site of 
disease has been found in several autoimmune diseases 
associated with T cell infiltrations including rheumatoid 
arthritis [111], autoimmune thyroiditis [32] or multiple 



sclerosis [110]. More recently, evidence has been obtained 
for oligoclonal T cell receptor expression in tumors in- 
filtrated by T cells [21, 39, 40, 44, 74, 108, 109, 113, 115, 
134, 137, 146, 148, 159, 165, 171,174, 175]. In 1990, Nitta 
and coworkers were the first to report the predominant 
expression of Vc~7 among TIL in seven out of eight T cell 
infiltrates in uveal melanomas in situ [108]. They con- 
cluded that a shared melanoma antigen might have been the 
initial stimulus for induction of proliferation of T cells 
expressing Vc~7 [108]. In later publications, the same group 
of investigators described restricted TCR V(z or V~ ex- 
pression in other melanomas, medulloblastomas and glio- 
mas [109]. However, these studies were performed with a 
non-quantitative PCR system and, therefore, interpretation 
of these results has been equivocal. More recent work, 
using quantitative RT-PCR to analyze the TCR repertoire of 
TIL in situ, has confirmed the oligoclonality of T cells 
infiltrating a variety of human tumors, including malignant 
melanoma [148, 171,172], hepatocellular carcinoma [174], 
basal cell carcinoma [146], renal cell cancer [21], ovarian 
cancer [44, 107] and neuroblastoma [159]. While these 
observations have suggested that oligoclonal expression of 
certain TCR Vcz or V~ genes by T cells accumulating at the 
tumor site or even by T cells in the circulation of patients 
with cancer may be related to an immune response directed 
at the AuTu-related antigen or peptide, preferential ex- 
pression of a particular TCR V region gene in response to 
one tumor type has not been confirmed. 

Regarding the studies of TIL in malignant melanoma, a 
restricted repertoire of the TCR V genes has been de- 
scribed, but the restriction patterns were different in each 
patient within the patient populations studied [148, 171, 
172]. These results may suggest that TIL respond to dif- 
ferent melanoma antigens expressed on tumors obtained 
from different patients but might, in part, also be explained 
by presentation of the same peptide by different restriction 
elements of the MHC molecules. In contrast, in a metastasis 
of a disseminated malignant melanoma, Ferradini and 
colleagues have identified completely diverse hypervari- 
able regions within the same TCR V~3 region genes and 
have suggested that non-specific, inflammatory-like in- 
filtration with T cells occurs in advanced tumor stages [39]. 
On the other hand, the same group of investigators reported 
later that, through direct sequencing of TCR transcripts, it 
was possible to show that unique T cells were selected and 
amplified at the tumor site in a spontaneously regressing 
melanoma lesion [40, 92]. In hepatocellular carcinoma, we 
showed that the frequency of gene expression for a certain 
V[3 region was as high as 32% in TIL or PBL examined by 
RT-PCR for expression of 20 VJ3 gene families [174]. In 
peripheral blood obtained from healthy donors and ana- 
lyzed using the same technique, the percentage of V~3 gene 
expression ranged from 0 to 14% and all 20 V]3 gene fa- 
milies were represented [172, 174]. Sequencing analyses of 
the amplified products of the two most highly expressed V]3 
families in hepatocellular carcinoma demonstrated se- 
quence homology in the majority of the clones that were 
sequenced, suggesting that a clonal proliferation, possibly 
in response to a TAA, had occurred in vivo [174]. However, 
the possibility has to be considered that preferential ex- 
pansion of T cells with the same TCR V~3 gene restriction in 

PBL and TIL obtained from the same patients with hepa- 
tocellular carcinoma might indicate a generalized response 
to an antigen from another source, e.g., a viraI antigen 
[174]. In further studies of V[3 gene expression in TIL, cells 
isolated from malignant melanoma and those obtained from 
ascites to patients with ovarian carcinoma were analyzed 
after in vitro activation and culture in the presence of cy- 
tokines [64, 172]. In melanoma TIL, cultured for thera- 
peutic purposes in the presence of IL-2 and IL-4 but 
without addition of irradiated AuTu cells, V[3 gene ex- 
pression did not correlate with either the predominant V~ 
expression before culture or with AuTu cytotoxicity of 
cultured effector cells [172]. These studies suggest that, in 
cultures without added AuTu cells, selection of T cells that 
find optimal culture conditions occurs and that these cells 
outgrow AuTu-specific T cells [171, 172]. Ioannides and 
Freedman [64] observed preferential usage of V138.1 and 
V[36.7 in CTL lines established from malignant ascites in 
five patients with ovarian cancer and suggested the possible 
association between expression of certain TCR V]3 genes 
and the ability of T cells to mediate AuTu cytotoxicity. Our 
own studies, with CTL specific for squamous-cell carci- 
noma of the head and neck, support this hypothesis. 
Overall, these studies further strengthen the argument in 
favor of the role of clonally restricted cytolytic T cells in 
human AuTu responses. 

Several recent studies of TCR V genes in cancer patients 
who have received tumor vaccinations indicate that oligo- 
clonal restrictions in the use of these genes are detectable 
[74, 175]. In a single case of a patient with bilateral renal 
cell cancer and two lung metastases, we showed a pre- 
dominant expression of the TCR V~313.1 gene in a lung 
nodule that responded to treatment with irradiated AuTu 
cells and in vitro tumor-sensitized lymphocytes obtained 
from a vaccine-draining lymph node [175]. This lung 
nodule contained prominent T cell lymphocytic infiltrate 
[175] and T cells cultured from the lesion in the presence of 
IL-2 and irradiated AuTu cells have been shown to be 
CD4 + and able to kill AuTu preferentially in a 51Cr-release 
assay. Although in non-responding renal tumor, V~313.1 
gene expression was also somewhat increased in compari- 
son to PBL, this tumor was only moderately infiltrated by 
cells which, upon expression with IL-2 and AuTu, gave rise 
to a mixed population of CD3+CD56 T cells and CD3- 
CD56 + NK cells [175]. 

The studies of TCR V gene expression in fresh or cul- 
tured TIL that have been performed to date are summarized 
in Table 1. Altogether, the available data strongly support 
the hypothesis that AuTu-specific T cells recognizing TAA 
or peptides via the TCR are present in the tumor and blood 
of patients with cancer and that these T cells may play an 
important role in response against malignancies. Possible 
consequences of these findings for tumor immunotherapy 
are discussed below. 

Future prospects for immunotherapy with 
tumor-specific T cells 

As a result of a greatly improved understanding of inter- 
actions between AuTu-specific effector T cells and tumor 
cells via the TCR-peptide-MHC complex, a large number 
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Table 1. T cell receptor Vc~ or V[3 gene expression in fresh lymphocytes and in lymphocytes activated in vitro, all derived from mononuclear cell 
infiltrates in human solid tumors or from peripheral blood lymphocytes of patients with cancer 

Tumor type Cell type TCR restriction Reference 

Uveal melanoma TIL in situ Vc~7 [31] 

Malignant melanoma TIL in situ Vo~ V[3 oligoclonal a [155] 
TIL in situ V[31, 3, 7, 10, 13, 14 [157] 
TIL in situ, primary lesions Vc~4, Vcz22, V~8 [158] 
Metastasis responding to IL-2 V[34, 13, 14, 16 [169] 
Metastasis responding to IL-2 V~313.1, J[31.1 [170] 
Metastasis No restriction [163] 
Responding to IL-2 V[~ JI3, VDJ oligoclonal a [166] 
In vivo primed T cell V{Z V[~ [164] 
Cultured TIL Vod7, V~7 [156] 
CTL clones and TIL in situ Vc~8.2, V~32.1 [167] 

Ovarian cancer Tumor-specific CTL V~5, 6, 8 [32] 
Cultured TIL V ~ oligoclonal a [ 161 ] 
Tumor-specific CTL V~2, 6, 5.1 [168] 

Hepatocellular carcinoma TIL in situ V~ oligoclonal a [19] 

Basal cell cancer TIL in situ V~I, 2, 5.1, 6, 8 [159] 

Renal cell cancer TIL in situ V[3 oligoclonal a [160] 
Metastasis responding to IVS V~ 13.1 [ 165] 

Neuroblastoma TIL in situ Vo~ V~ oligoclonal a [162] 

Squamous-cell cancer Tumor-specific CTL clones V~36 or V~2 [147] 

Adrenal cell cancer Cultured TIL V~6 or V~38 [188] 

TIL, tumorqnfiltrating lymphocytes; CTL, cytotoxic T lymphocytes; TCR, T cell receptor; IVS, in vitro sensitization 
a Vc~ or V~ repertoire was restricted compared to autologous or normal peripheral blood T cells, but the restrictions were different in 
from various tumors of the same histological type 

TIL obtained 

of novel approaches to activation, generation, and in vitro 
expansion of tumor-specific CTL have been proposed. 
These include in vitro activation of effector cells with 
combinations of  cytokines or mAbs,  the addition of irra- 
diated tumor cells or tumor-derived peptides to cultures of  
effector cells, and new gene-transfer technologies [104]. 
Strategies for in vivo activation of antitumor immune re- 
sponses using cytokines, tumor cells transduced with cy- 
tokine genes or tumor vaccines have also been evaluated 
[52, 53, 81, 107, 144, 161]. Since a detailed description of 
all these approaches to immunotherapy is beyond the scope 
of this review, we prefer to focus on a few most  promising 
strategies. 

In a number  of  studies, various combinations of  T-cell- 
activating agents have been utilized to increase activity and 
preferentially induce outgrowth of tumor-specific T cells in 
culture. This has proven to be a difficult and often un- 
rewarding task, because cytokines are not capable of  T cell 
activation in a specific manner  [55, 187]. Cytokines can 
and do promote growth of tumor-specific CTL following 
their activation via the TCR and other T-cell-associated 
molecules [163]. Therefore, effective presentation to the 
tumor-specific T cell of  the relevant TAA or peptide is 
initially required, and contact at carefully timed intervals 
with tumor cells seems to be necessary to proliferate T cells 
able to maintain specific AuTu cytotoxicity in long-term 
cultures [171, 172]. While this strategy appears to be fea- 
sible, it does require fresh or cultured AuTu, HLA typing, 
information about expression of  a given TAA by the 
patient 's  tumor and selection of  effective antigen-presenting 

cells. However,  human tumor cells in numbers sufficient to 
stimulate therapeutic CTL cultures repeatedly during the 
course of  expansion are seldom available. Since increasing 
numbers of  peptides derived from TAA are being identified 
and are expected to be soon available as purified or syn- 
thetic products, it might be possible in the future to facil- 
itate culture of AuTu-specific T cells by adding peptides to 
their cultures. Of  special interest in this context are antigens 
expressed by a number  of  different tumors such as 
tumor-associated mucins [7, 68, 69] or other TAA shared 
within the same tumor type [154, 160, 161]. Such peptides 
could be synthesized biochemically and added to thera- 
peutic T cell cultures in the presence of antigen-presenting 
cells expressing the MHC molecules able to present the 
peptide to the TCR. Following such in vitro sensitization, 
AuTu-specific cytotoxic T cells obtained from the patient 's  
PBL, TIL or lymphnode lymphocytes  (LNL) could be 
adoptively transferred to the donor in conjunction with IL-2 
or other cytokines. Therapeutic efficacy of the adoptively 
transferred CTL would, in theory, depend on their ability to 
localize to the tumor or its metastases and to kill AuTu 
cells. However,  it remains unconfirmed that human CTL 
are localized to the tumor in any substantial numbers or that 
their antitumor efficacy in vivo is dependent on cytolytic 
activity. 

In vitro activation of T cells to induce or up-regulate 
specific lytic activity against AuTu, as described above, 
involves substantial effort and expense, and its therapeutic 
effectiveness is unproven at this time. A reasonable alter- 
native might be vaccination of  patients with TAA, using 



peptides derived from AuTu cells or synthetic peptides [9, 
81, 98, 144]. This principle of  in vivo activation of  T cells 
has been discussed for many years, but most of  the clinical 
trials performed so far have not been promising [144]. This 
could be explained by the lack of  complete understanding 
of antitumor responses, resulting in imperfect vaccines or 
ineffective administration of vaccines that could work 
otherwise. In view of  substantial recent advances in the 
characterization and synthesis of  tumor peptides and in our 
understanding of  the mechanisms of  presentation and rec- 
ognition of  these peptides, it appears likely that current 
vaccination efforts might be more successful. One strategy 
for in vivo vaccination of  cancer patients involves admin- 
istration of  synthetic peptides or peptides derived from 
TAA. Although theoretically attractive, no effective tumor 
peptide vaccine is available at this time. Furthermore, not 
only the nature of  tumor peptides, but also their im- 
munogeneity in tumor-bearing hosts, the optimal route of  
administration, and the involvement of  appropriate anti- 
gen-presenting cells would have to be evaluated before this 
strategy can be clinically applied. At least one synthetic 
vaccine, containing mucin peptides, is being currently 
evaluated for safety and ability to induce delayed-type 
hypersensitivity in patients with cancer [91]. 

Another promising new technology, already in use in 
phase I clinical trials, employs genetically engineered 
tumor cells transduced with cytokine genes. Administration 
of  tumor cells transduced with IFN 7 and/or IL-2 genes as 
tumor vaccines in animal models of  tumor metastasis pro- 
duced encouraging results [50, 51,103,  117, 168]. This type 
of  vaccination is based on the hypothesis that continuous 
production of  IFN 7 by transduced tumor cells may lead to a 
cytokine-mediated increase of  MHC expression and thus 
better antigen presentation by the tumor or anti- 
gen-presenting cells. Additionally, the production of  IL-2 
by tumor cells should lead to further activation and pro- 
motion of  AuTu-specific CTL at the site of  vaccination [50, 
156, 157, 168]. The strategy of  improving the presentation 
of TAA or peptides to immune cells, on the one hand, and 
increasing activation or recruitment of  specific effector 
cells at the site of  vaccination on the other, using geneti- 
cally engineered tumor vaccines, is attractive. It has already 
been applied in patients with disseminated inoperable tu- 
mors and will shortly be evaluated for effectiveness in 
preventing metastases [90]. 

Another possible way of  active immunization may be 
realized by vaccination with tumor cells transduced with 
genes for TAA [69]. The rationale behind this strategy is 
the augmentation of sites on the tumor capable of  inducing 
specific T cell response in vivo. This approach might be 
possible in tumors expressing shared TAA such as mucins 
or the MAGE family of  antigens [7, 68, 69, 89, 154, 160]. 
Since several cellular adhesion molecules have been shown 
to be involved in TCR-mediated T cell activation (see 
above), augmentation of  expression by transfection into 
tumor cells of  ligands for cellular adhesion molecules 
might further increase tumor-specific T cell responses 
[119]. Most of  the strategies discussed above should pre- 
ferably be performed in the autologous system, but some 
may also be applicable in allogeneic tumors that share TAA 
or restriction elements for TCR-mediated recognition. A1- 

together, a rapidly increasing knowledge of  the TCR and 
cellular activation, especially of  the pathways induced by 
tumor antigerdpeptide recognition, are likely to facilitate 
the development of  efficient new in vitro and in vivo 
strategies for tumor-specific immunotherapy of  cancer. 
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