Supplementary Data

Extending MeCP2 interactome: Canonical nucleosomal histones interact with MeCP2

David Ortega-Alarcon¹, Rafael Claveria-Gimeno², Sonia Vega¹, Ladan Kalani³, Olga C. Jorge-Torres⁴, Manel Esteller^{4,5,6,7}, Juan Ausio³*, Olga Abian^{1,8,9,10}*, and Adrian Velazquez-Campoy^{1,8,9,10}*

¹ Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, 50018, Spain

² Certest Biotec S.L., 50840, Zaragoza, Spain

³ Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada

⁴ Josep Carreras Leukaemia Research Institute (IJC), 08916, Badalona, Barcelona, Spain

⁵ Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029, Madrid, Spain

⁶ Institucio Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain

⁷ Physiological Sciences Department, School of Medicine and Health Sciences,

University of Barcelona (UB), 08907, l'Hospitalet de Llobregat, Barcelona, Spain

⁸ Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009, Zaragoza, Spain

⁹ Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain

¹⁰ Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009, Zaragoza, Spain

* To whom correspondence should be addressed:

Adrian Velazquez-Campoy, Institute BIFI – University of Zaragoza, Mariano Esquillor s/n, 50018, Zaragoza, Spain, Email: adrianvc@unizar.es

Correspondence may also be addressed to:

Olga Abian, Instituto de Investigación Sanitaria Aragón (IIS Aragon), San Juan Bosco 13, 50009, Zaragoza, Spain, Email: oabifra@unizar.es

Juan Ausio, University of Victoria, 9882 Ring Rd, BC V8W 2Y2, Victoria, Canada, Email: jausio@uvic.ca

Figure S1. Trimethylation induces small structural effects on H3. Far-UV circular dichroism spectra for H3 (black), H3 K27C (orange), and H3 K27me3 (red). The substitution of K2 of a cysteine in K27 position required for the trimethylation procedure did not perturb much the structure of H3, whereas the trimethylation somewhat perturbed the structure of H3.

Figure S2. MeCP2 R106W interaction with trimethylated H3 by ITC. Calorimetric titrations of MBD R133C interacting with H3 trimethylated at K4, K9, K27, and K36. The upper panels show the thermograms (thermal power as a function of time to maintain the same temperature in the sample cell with respect to the reference cell), and the lower panels show the binding isotherms (ligand-normalized heat effect per injection as a function of the molar ratio in the sample cell). The continuous lines correspond to the non-linear least-squares fitting according to a single binding site model.

Figure S3. MeCP2 R133C interaction with trimethylated H3 by ITC. Calorimetric titrations of MBD R133C interacting with H3 trimethylated at K4, K9, K27, and K36. The upper panels show the thermograms (thermal power as a function of time to maintain the same temperature in the sample cell with respect to the reference cell), and the lower panels show the binding isotherms (ligand-normalized heat effect per injection as a function of the molar ratio in the sample cell). The continuous lines correspond to the non-linear least-squares fitting according to a single binding site model.