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Figure S1. Mas modulates cellular infiltration and resident population
response during AlILI. A) WT and Mas1’- mice were challenged with APAP for
24 h. Representative liver immunoblots and quantification of CYP2E1 and

B-actin (n = 3 mice per group; two-sided Student’s t-test; P = 1.68x10"). B) WT



and Mas1”- mice were challenged with APAP for 24 h. Hepatic levels of GSH
(n =4 mice per group; two-sided Student’s t-test; P = 1.47x10"). C) Mice were
pre-treated with or without AVE0991 for 2 h before APAP challenge for 24 h.
Representative liver immunoblots and quantification of CYP2E1 and B-actin (n
= 3 mice per group; two-sided Student’s t-test; P = 2.36x10"). D) Mice were
pre-treated with or without AVE0991 for 2 h before APAP challenge for 24 h.
Hepatic levels of GSH (n = 4 mice per group; two-sided Student’s t-test; P =
5.60x10"). In E-K, mice were pre-treated with or without AVE0991 for 2 h
before APAP or saline challenge for 24 h (n = 4 mice per group). E-F)
Timelapse data of neutrophils (Ly6G) and monocytes (Ly6C) in the vessels
(WGA) of living mouse livers were captured by DAOSLIMIT. Representative
intravital images and the temporal traces of their number are shown. Scale bar:
50 um. G) Representative stainings of H&E and mIHC. Scale bar: 50 ym. H)
Quantification of necrotic area for H&E as shown in G (n = 4 mice per group;
One-way ANOVA with Tukey’s test, P = 1.70x10° and 9.90x107 from left to
right). Quantification of caspase3 positive area for mIHC as shown in G (n =4
mice per group; One-way ANOVA with Tukey's test, P = 2.47x10* and
8.34x107 from left to right). I) The UMAP plot of 33,612 single cells from liver
samples. J) Dot plot showing the expression levels of marker genes in each
cell type. K) The UMAP plot showing the differences of intrahepatic main cell
types between different groups. In all graphs data are presented as mean £ SD,
**P < 0.001, NS, not significant. APAP, acetaminophen; H&E,
hematoxylin-eosin; mIHC, multiplex immunohistochemistry; UMAP, uniform

manifold approximation and projection.
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Figure S2. The spatial features of intrahepatic main cell types and the
characteristics of the pro-inflammatory EC subgroup. A) ST-defined regions
including injured regions and normal regions. B) The Robust Cell Type
Decomposition (RCTD) algorithm in the spacexr package was used to resolve
cell types from a single spot containing a mixture of cell types. C) The UMAP
plot of 11,507 single cells from ECs. D) Violin plots showing marker genes of
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EC7 cluster. E) Histogram showing the proportion of each cluster between
different groups. F) Box plots showing the score of indicated pathway for EC
clusters. APAP, acetaminophen; UMAP, uniform manifold approximation and

projection; Exp, expression.
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Figure S3. Quantitative changes of the pro-inflammatory EC subgroup during
AILIL. A) WT and Mas7-- mice were challenged with APAP (400 mg kg™) for 24
h (n =4 mice per group). mIHC of CD31*MYC* ECs are shown. Scale bar: 50
pum. B) Quantification of CD31*MYC* ECs for mIHC as shown in A (n = 4 mice
per group; two-sided Student’s t-test, P = 6.00x10°). C) WT mice were



challenged with different dose of APAP (200 mg kg™', 300 mg kg™!, 400 mg kg™,
500 mg kg’ and 600 mg kg™') for 24 h (n = 4 mice per group). mIHC of
CD31*MYC* ECs are shown. Scale bar: 50 ym. Quantification of CD31*MYC*
ECs for mIHC are shown (n = 4 mice per group; One-way ANOVA with Tukey’s
test, P = 5.71x10°1, 2.94x10", 4.44x10% and 2.20x10°® from left to right). D)
Mas 17 mice were challenged with APAP for 24 h (n =4 mice per group). mIHC
of CD31*MYC*CD63" ECs are shown. Scale bar: 50 ym and 20 ym. E) WT
and Mas17/- mice were challenged with APAP for 24 h (n = 4 mice per group).
Representative flow cytometric plots of hepatic CD45CD11b"CD31* cells
showed the difference of CD63" fractions between groups. Quantification of
CD63* fractions are shown (n =4 mice per group; two-sided Student’s t-test, P
= 6.40x10%). F) Representative liver immunoblots and quantification of
CYP2E1 and B-actin (n = 3 mice per group; two-sided Student’s t-test, P =
7.65x102). G) Hepatic levels of GSH (n = 4 mice per group, two-sided
Student’s t-test, P = 5.79x10"). In all graphs data are presented as mean + SD,
NS, not significant; **P < 0.01; ***P < 0.001. APAP, acetaminophen; mIHC,

multiplex immunohistochemistry.
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Figure S4. Pseudotime trajectory of EC clusters in AILl. A-C) Monocle
analyses showing the development of ECs. D) Heatmap showing expression

of representative identified genes potentially associated with Glycolysis, TNF



signaling pathway and NF-kappa B signaling pathway. Color key from blue to
red indicates relative expression levels from low to high. E) Smoothed
expression curves of representative pathways over pseudotime. EC,

endothelial cell; APAP, acetaminophen; TNF, tumor necrosis factor; NF-kB,

nuclear factor kappa B.
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Figure S5. The characteristics of the pro-inflammatory My subgroup. A) mIHC
of CD31*MYC* ECs, My (F4/80%), neutrophil (Ly6G*) and T cells (CD3%).
Scale bar: 20 um. B) Violin plots showing the expression of marker genes for
My5. C) Box plots showing the score of indicated pathways for My clusters.

APAP, acetaminophen.
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Figure S6. Annotation of the pro-inflammatory My subgroup. A) Scatterplots
showing the M1 and M2 scores for each color-coded My subgroup. B) Violin
plots showing the marker genes of My polarization for My clusters. C)
Representative flow cytometric plots of hepatic CD45*CD11b*F4/80MshLy6Clow

cells showing CD86*CD206" fractions between groups (n = 4 mice per group;



two-sided Student’s t-test, P = 9.83x10-%). D) Violin plots showing the key
genes of proinflammatory factor and angiogenic factor for My clusters. In all
graphs data are presented as mean + SD, *P < 0.05. My, macrophages; Exp,

expression; APAP, acetaminophen.
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Smoothed expression curves of representative pathways over pseudotime. F)
Mas17 mice were administrated with or without KJ pyr9 2 h after APAP
challenge (n = 4 mice per group). mIHC of F4/80*‘MMP12* My and
quantification of F4/80*MMP12* My are shown (two-sided Student’s t-test, P =
2.41x103). Scale bar: 50 ym. In all graphs data are presented as mean + SD,

**P < 0.01. APAP, acetaminophen; mIHC, multiplex immunohistochemistry.
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Figure S9. EC-secreting lactate induces My glycolysis and polarization. A)
Glycolytic rate assay showing glycolytic function of mouse primary kupffer cells
treated with or without LSEC-CM for 24 h. (n = 5 or 6 samples per group;
two-sided Student’s t-test, P = 7.00x10® and 2.21x10- from left to right). B)



Multiplex fluorescence of F4/80*MMP12* kupffer cells and the markers of My
polarization (CD206 and CD86). Scale bar: 20 ym. The mouse primary kupffer
cells were treated with or without LSEC-CM for 24 h. C) Quantification of
F4/80*MMP12*CD86*CD206* kupffer cells for multiplex fluorescence as
shown in B (n =4 samples per group; two-sided Student’s t-test, P = 3.00x10).
D) Multiplex fluorescence of F4/80*MMP12* kupffer cells and key glycolytic
enzymes (PKM and PFKFB3). Scale bar: 50 ym. The mouse primary kupffer
cells were treated with or without Lactate (10 mM) for 24 h. E) Quantification of
F4/80*"MMP12*PFKFB3*PKM* kupffer cells for multiplex fluorescence as
shown in D (n =4 samples per group; two-sided Student’s t-test, P = 4.55x104).
F) Glycolytic rate assay showing glycolytic function of mouse primary kupffer
cells treated with or without lactate (10 mM) for 24 h. (n = 6 samples per group;
two-sided Student’s t-test, P = 2.03x103 and 2.00x10° from left to right). G)
Multiplex fluorescence of F4/80*MMP12* kupffer cells and the markers of My
polarization (CD206 and CD86). Scale bar: 20 ym. The mouse primary kupffer
cells were treated with or without lactate (10 mM) for 24 h. H) Quantification of
F4/80*"MMP12*CD86*CD206* kupffer cells for multiplex fluorescence as
shown in G (n = 4 samples per group; two-sided Student’s t-test, P =
2.42x104). 1) Multiplex fluorescence of F4/80*MMP12* kupffer cells and key
glycolytic enzymes (PKM and PFKFB3). Scale bar: 50 ym. The mouse primary
kupffer cells were treated with LSEC-CM for 24 h, with or without a-CHCA (5
mM) treatment. J) Quantification of F4/80*"MMP12*PFKFB3*PKM™* kupffer cells
for multiplex fluorescence as shown in | (n = 4 samples per group; two-sided
Student’s t-test, P = 1.16x103). K) Glycolytic rate assay showing glycolytic
function of mouse primary kupffer cells treated with LSEC-CM for 24 h, with or
without a-CHCA (5 mM) treatment. (n = 6 samples per group; two-sided
Student’s t-test, P = 6.79x103 and 2.29x103 from left to right). L) Multiplex
fluorescence of F4/80*MMP12* kupffer cells and the markers of My
polarization (CD206 and CD86). Scale bar: 20 ym. The mouse primary kupffer
cells were treated with LSEC-CM for 24 h, with or without a-CHCA (5 mM)

1



treatment. M) Quantification of F4/80*MMP12*CD86*CD206" kupffer cells for
multiplex fluorescence as shown in L (n = 4 samples per group; two-sided
Student’s t-test, P = 3.91x104). In all graphs data are presented as mean + SD,
*P < 0.01; ***P < 0.001. LSEC, liver sinusoidal endothelial cell; CM,

conditioned medium; a-CHCA, a-cyano-4-hydroxycinnamic acid.
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Figure S10. Inhibition of glycolysis alleviates AILI. A) The endothelial
cell-specific Pkm knockout (Cdh5¢¢Pkm™) mice were generated by crossing
Pkm"" with Cdh5°* mice. B) Quantification of necrotic area for H&E as shown
in Figure 2L (n = 4 mice per group; two-sided Student’s t-test, P = 3.56x104). C)
Serum ALT, a measure of hepatic injury (n = 4 mice per group; two-sided
Student’s t-test, P = 4.46x103). D) Quantification of CD31*MYC* ECs for mIHC
as shown in Figure 2L (n = 4 mice per group; two-sided Student’s t-test, P =
2.92x103). E) Representative liver immunoblots and quantification of CYP2E1

and B-actin (n = 3 mice per group; two-sided Student’s t-test, P = 1.64x10"). F)



Hepatic levels of GSH (n = 4 mice per group, two-sided Student’s t-test, P =
7.92x10"). G) Mas7”- mice were administrated with or without 3PO under
APAP challenge as indicated (n = 4 mice per group). H) Quantification of
necrotic area for H&E as shown in Figure 2M (n = 4 mice per group; two-sided
Student’s t-test, P = 2.00x10°7). ) Serum ALT, a measure of hepatic injury (n =
4 mice per group; two-sided Mann-Whitney U test, P = 2.86x1072). J)
Quantification of CD31*"MYC™* ECs for mIHC as shown in Figure 2M (n = 4
mice per group; two-sided Mann-Whitney U test, P = 2.86x1032). K)
Representative liver immunoblots and quantification of CYP2E1 and B-actin (n
= 3 mice per group; two-sided Student’s t-test, P = 1.46x10"). L) Hepatic levels
of GSH (n = 4 mice per group, two-sided Student’s t-test, P = 3.46x102). M)
Representative H&E staining. Scale bar: 100 ym. Mas7’- mice were
therapeutically administrated with or without 3PO 2 h after APAP challenge (n
= 4 mice per group). N) Quantification of necrotic area for H&E as shown in M
(n =4 mice per group; two-sided Student’s t-test, P = 9.00x10-%). O) Serum ALT,
a measure of hepatic injury (n =4 mice per group; two-sided Student’s t-test, P
= 1.09x1073). In all graphs data are presented as mean + SD, *P < 0.05; **P <
0.01; **P < 0.001, NS, not significant. APAP, acetaminophen; ALT,
alaninetransaminase; mIHC, multiplex immunohistochemistry; H&E,

hematoxylin-eosin.
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Figure S$11. The crosstalk between monocyte and CD31*MYC*CD63* EC
subgroup. A) CellPhoneDB analysis showing the cell-cell interactions for
scRNA-seq. B) CellPhoneDB analysis showing the cell-cell interactions for
scRNA-seq. C) CellPhoneDB analysis showing the cell—cell interactions for ST.
D) Schematic diagram indicating the intra-spots, inter-spots and distal-spots
for ST. Intra-spots, EC7-localized spots; Inter-spots, EC7-surrounded spots;

Distal-spots, other distant spots. Spatial feature plots showing the first cell type



in EC7 expansion units. E) CellPhoneDB analysis showing the cell—cell
interactions for scRNA-seq. F) mIHC of CD31*MYC* ECs, F4/80*MMP12* My
and CCR2" monocytes are shown. Scale bar: 50 ym and 20 ym. APAP,

acetaminophen; scRNA-seq, single-cell RNA sequencing; My, macrophages;

EC, endothelial cell.
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Figure S12. Mas1 deficiency induces a pro-inflammatory response in
monocytes, and pro-inflammatory monocytes induce CD31*MYC*CD63" EC

subgroup proliferation. A) WT mice were pre-administrated with clodronate

liposomes for 24 h before APAP challenge (n 4 mice per group).
Representative stainings of H&E and mIHC are shown. Scale bar: 1000 ym
and 100 pym. B) Quantification of necrotic area for H&E as shown in Figure 3C
(n =4 mice per group; two-sided Student’s t-test, P = 6.43x10°7). C) Serum ALT,
a measure of hepatic injury (n =4 mice per group; two-sided Student’s t-test, P

2



= 1.00x10%). D) Quantification of CD31*MYC* ECs for mIHC as shown in
Figure 3C (n = 4 mice per group; two-sided Student’s t-test, P = 2.88x103). E)
Representative liver immunoblots of CYP2E1 and 3-actin. F) Quantification of
CYP2E1 and B-actin (two-sided Student’s t-test, P = 1.23x10"). G) Hepatic
levels of GSH (n =4 mice per group, two-sided Student’s t-test, P = 6.88x10").
H) Violin plots showing the indicated genes of EC clusters. I) mIHC of the
proliferative CD31*"MYC*Ki-67* ECs. Scale bar: 50 ym and 20 ym. J) WT mice
and Mas 1’ mice were administrated with APAP for 24 h (n = 4 mice per group).
mIHC of NF-kB p65*VEGFA*CCR2* monocytes. Scale bar: 50 um. K)
Quantification of CD31*MYC* ECs for mIHC as shown in Figure 3F (n =4 mice
per group; two-sided Student’s t-test, P = 9.30x107°). L) Representative liver
immunoblots and quantification of CYP2E1 and (-actin (n = 3 mice per group;
two-sided Student’s t-test, P = 4.48x10"). M) Hepatic levels of GSH (n = 4
mice per group, two-sided Student’s t-test, P = 1.34x10"). In all graphs data
are presented as mean + SD, **P < 0.01; ***P < 0.001; NS, not significant.
APAP, acetaminophen; H&E, hematoxylin-eosin; mIHC, multiplex

immunohistochemistry; ALT, alaninetransaminase; Exp, expression.
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Figure S13. Pseudotime trajectory of monocytes clusters in AlLl. A-C)
Monocle analyses showing the development of monocytes. D) Heatmap
showing expression of representative identified genes potentially associated
with TNF signaling pathway and NF-kappa B signaling pathway. Color key
from blue to red indicates relative expression levels from low to high. E)
Smoothed expression curves of representative pathways over pseudotime. F)
Multiplex fluorescence of CD31*MYC*ICAM1*VCAM1* LSECs. Scale bar: 50
um. The mouse primary LSECs were treated with or without TNF-a (20 ng mI)
for 24 h. Quantification of CD31*MYC*ICAM1*VCAM1* LSECs for multiplex
fluorescence are shown (n = 4 samples per group; two-sided Student’s t-test,
P = 9.39x10%). In all graphs data are presented as mean + SD, **P < 0.01.
TNF-a, tumor necrosis factor-a; APAP, acetaminophen; NF-kappa B, NF-kB,

nuclear factor kappa B.
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Figure S14. Myeloid Mas1 deficiency exacerbates AlLl. A) Quantification of
necrotic area for H&E as shown in Figure 4A (n = 6 mice per group; One-way
ANOVA with Tukey’s test, P = 6.61x10'2, 9.34x10"", 9.93x10", 8.93x10"" and

2.70x10" from left to right). B) Quantification of caspase3 positive area for



mIHC as shown in Figure 4A (n = 6 mice per group; One-way ANOVA with
Tukey'’s test, P = 3.10x10°°, 2.87x102, 1.00, 9.38x10" and 7.26x10"! from left
to right). C) Serum ALT, a measure of hepatic injury (n = 6 mice per group;
One-way ANOVA with Tukey's test, P = 4.75x1073, 1.49x102, 9.95x10",
9.74x10" and 4.32x10" from left to right). D) Quantification of CD31*MYC*
ECs for mIHC as shown in Figure 4A (n = 6 mice per group; One-way ANOVA
with Tukey'’s test, P = 6.33x10-"", 1.00, 9.99x10-!, 9.69x10-" and 9.79x10"" from
left to right). E) Representative liver immunoblots and quantification of
CYP2E1 and B-actin (n = 3 mice per group; two-sided Student’s t-test, P =
6.49x10", 5.82x10"1, 7.20x10", 9.81x10"" and 7.79x10"" from left to right). F)
Hepatic levels of GSH (n = 4 mice per group; two-sided Student’s t-test, P =
8.80x10", 1.07x10, 4.86x101, 5.96x10°" and 2.98x10"" from left to right). G)
Timelapse data of neutrophils (Ly6G) and monocytes (Ly6C) in the vessels
(WGA) of living mouse livers were captured by DAOSLIMIT. Representative
intravital images and the temporal traces of their number are shown. Mas1%
and LysM°eMas 1" mice were challenged with APAP for 24 h. Scale bar: 50 ym.
In H-K, Mas1" and LysM°®Mas1" mice were administrated with APAP (600 mg
kg™") for 3 h or 6 h (n =4 mice per group). (H) Representative stainings of H&E
are shown. Scale bar: 100 um. (l) Quantification of H&E are shown (n = 4 mice
per group; two-sided Student’s t-test, P = 7.27x10-! and 2.28x10" from left to
right). (J) Serum ALT (n = 4 mice per group; two-sided Student’s t-test, P =
4.15x10" and 5.91x10°' from left to right). (K) Representative stainings of
CD31*MYC* ECs and F4/80*MMP12* My for mIHC (n = 4 mice per group).
Scale bar: 50 uym. In L-O, Mas1” and LysM°°eMas 1" mice were administrated
with APAP (600 mg kg™') for 24 h (n = 4 mice per group). (L) Representative
stainings and quantification of H&E are shown (n = 4 mice per group;
two-sided Student’s t-test, P = 2.80x103). Scale bar: 100 uym. (M) Serum ALT
(n = 4 mice per group; two-sided Student’s t-test, P = 1.31x102). (N)
Representative stainings and quantification of CD31*MYC* ECs for mIHC (n =
4 mice per group; two-sided Student’s t-test, P = 1.49x102). Scale bar: 50 ym.
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(O) Representative stainings and quantification of F4/80*MMP12* My for
mIHC (n = 4 mice per group; two-sided Student’s t-test, P = 2.29x103). Scale
bar: 50 um. In all graphs data are presented as mean + SD, *P < 0.05; **P <
0.01; ***P < 0.001; NS, non-significant. APAP, acetaminophen; mIHC,

multiplex immunohistochemistry; ALT, alaninetransaminase.
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Figure S15. Myeloid Mas? deficiency results in pro-inflammatory
microenvironment in AILI. A-B) mIHC of CD31*MYC* ECs, F4/80*MMP12* My
and CCR2* monocytes are shown. Scale bar: 50 ym and 20 um. Spatial
localization of CD31*MYC* ECs, CCR2" monocytes and F4/80*"MMP12* My

within injured region are shown. Scale bar: 200 ym. APAP, acetaminophen.
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Figure S$16. Myeloid Mas1 deficiency
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types. B) The UMAP plot showing the differences of intrahepatic main cell
types between different groups. C) The UMAP plot of 4,550 single cells from
ECs. D) Violin plots showing the marker genes of EC clusters. E) Correlation
analysis of the scRNA-seq. F) mIHC of the CD31*MYC* ECs. Scale bar: 50
um. G) LysMceMas 1% mice were challenged with APAP for 24 h (n = 4 mice
per group). mIHC of CD31*MYC*CD63* ECs are shown. Scale bar: 50 ym and
20 um. H) Mas 17 and LysMceMas 1" mice were challenged with APAP for 24 h
(n = 4 mice per group). Representative flow cytometric plots of hepatic
CD45CD11bCD31* cells showed CD63* fractions between groups.
Quantification of CD63" fractions are shown (n = 4 mice per group; two-sided

2.86x1072). 1) LysMceMas1” mice were

Mann-Whitney U test, P
administrated with or without KJ pyr9 2 h after APAP challenge (n = 4 mice per
group). mIHC of CD31*MYC* ECs and CCR2" monocytes are shown. Scale
bar: 50 ym. Quantification of the CD31*MYC* ECs for mIHC are shown (n =4
mice per group; two-sided Student’s t-test, P = 2.48x103). In all graphs data
are presented as mean £ SD, *P < 0.05; **P < 0.01. UMAP, uniform manifold
approximation and projection; Exp, expression; scRNA-seq, single-cell RNA

sequencing; EC, endothelial cell; APAP, acetaminophen.
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Figure S$17. Pro-inflammatory monocytes induce the CD31*MYC*CD63" EC

Subgroup proliferation. In A-B, Mas1" and LysMceMas1” mice were



administrated with APAP for 24 h (n = 4 mice per group). A) mIHC of NF-kB
p65*'VEGFA*CCR2* monocytes. Scale bar: 50 pym. B) mIHC of
VEGFR2*CD31*MYC* ECs. Scale bar: 20 ym. In C-E, LysMceMas1"" mice
were pre-administrated with or without cediranib for 2 h before APAP challenge
(n = 4 mice per group). C) Representative stainings of H&E and mIHC are
shown. Scale bar: 50 um. D) Quantification of necrotic area for H&E as shown
in C (n = 4 mice per group; two-sided Student’s t-test, P = 7.10x10°). Serum
ALT, a measure of hepatic injury (n = 4 mice per group; two-sided Student’s
t-test, P = 2.16x107). Quantification of CD31*MYC* ECs for mIHC as shown in
C (n = 4 mice per group; two-sided Student’s t-test, P = 2.20x10-°). E) mIHC of
F4/80*"MMP12* My and CCR2" monocytes. Scale bar: 50 ym. In all graphs
data are presented as mean £ SD, ***P < 0.001. APAP, acetaminophen; NF-kB,
nuclear factor kappa B; H&E, hematoxylin-eosin; ALT, alaninetransaminase;

mIHC, multiplex immunohistochemistry.
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Figure S18. EC-secreting lactate induces My polarization. A) The UMAP plot

showing the subpopulations of My. B) The UMAP plot showing the differences

of My subpopulations between different groups. C) Correlation analysis of the

scRNA-seq. In D-F, LysMceMas 17" mice were administrated with APAP for 24 h

(n =4 mice per group). D) mIHC of the F4/80*"MMP12* My is shown. Scale bar:



50 ym. E) mIHC of the CD31*MYC* ECs and F4/80*MMP12* My. Scale bar:
20 pym. F) mIHC of the My polarization (F4/80*CD86*CD206* My). Scale bar:
50 ppm. G) Representative flow cytometric plots of hepatic
CD45*CD11b*F4/80MdrLy6Clov cells showed the CD86*CD206* fractions
between groups (n = 4 mice per group; two-sided Student’s t-test, P =
2.08x102). H) Representative intravital images of My polarization by
DAOSLIMIT. The white arrows represent the CD80*CD163* My. Scale bar: 50
pgm. In all graphs data are presented as mean = SD, *P < 0.05. UMAP, uniform
manifold approximation and projection; APAP, acetaminophen; scRNA-seq,

single-cell RNA sequencing; My, macrophages.
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Figure S$19. EC-secreting lactate induces My glycolysis. A) Pathway
enrichment analysis of highly expressed genes for EC clusters. KEGG gene
sets were used to perform the pathway enrichment analysis (Methods). B)
Pathway enrichment analysis of highly expressed genes for My clusters.
KEGG gene sets were used to perform the pathway enrichment analysis
(Methods). In all graphs data are presented as mean + SD. EC, endothelial cell;

My, macrophages.
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Figure S20. Myeloid Mas1 deficiency induces the emergence of
CD31*MYC*CD63* ECs in AlLI via NF-kB/TNF-a pathway. A) Representative
immunoblots with quantification (n = 6 samples per group; two-sided Student’s
t-test, P = 1.20x10%, 1.03x102 and 1.38x10* from left to right). WT and Mas1
BMDMs were stimulated with LPS (100 ng ml') for 12 h to drive
proinflammatory activation. B) mIHC of CD31*MYC*TNFR1* ECs and CCR2*
monocytes are shown. Scale bar: 50 ym and 20 ym. LysMceMas 17" mice were
challenged with APAP for 24 h (n =4 mice per group). C) mIHC of CD31*MYC*
ECs and CCR2*TNF-a* monocytes are shown. Scale bar: 20 um. Mas1" and



LysMeeMas 1" mice were challenged with APAP for 24 h (n =4 mice per group).
BMDM, bone marrow derived macrophages; TNF-a, tumor necrosis factor-q;

NF-kB, nuclear factor kappa B; APAP, acetaminophen.
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Figure S21. Activation of Mas could significantly inhibit NF-kB/TNF-a pathway.

In A-D, BMDMs from WT mice were pre-administrated with or without

AVE0991 (5 uM) for 2 h before stimulated with LPS (100 ng ml") for 12 h. A)

BMDMs were subjected to bulk RNA-seq (n = 3 samples per group). KEGG

3



pathway enrichment analysis show that activation of Mas could significantly
down-regulate TNF signaling pathway. B) The TNF-a of the culture medium
were tested (n = 4 samples per group; two-sided Student’s t-test, P =
3.91x102). C-D) Representative immunoblots with quantification (n = 6
samples per group; two-sided Student’s t-test and two-sided Mann-Whitney U
test, P = 4.33x103, 4.08x102 and 3.68x10* from left to right). In E-F,
monocytes (CD14* cells) isolated form human peripheral blood were
stimulated with LPS (100 ng ml") for pro-inflammatory activation with or
without AVE0991 (10 uM) administration and then subjected to bulk RNA-seq
(n = 3 samples per group). E) KEGG pathway enrichment analysis show that
activation of Mas could significantly down-regulate NF-kB and TNF signaling
pathway. F) Volcano plot showing the differentially expressed genes for TNF
signaling pathway and NF-kappa B signaling pathway. G) Quantification of
necrotic area for H&E as shown in Figure 5G (n = 4 mice per group; two-sided
Student’s t-test, P = 1.68x108). H) Serum ALT, a measure of hepatic injury (n =
4 mice per group; two-sided Student’s t-test, P = 1.24x10-8). I) Quantification of
CD31*MYC* ECs for mIHC as shown in Figure 5G (n = 4 mice per group;
two-sided Student’s t-test, P = 2.58x10-3). J) Representative liver immunoblots
and quantification of CYP2E1 and (-actin (n = 3 mice per group; two-sided
Student’s t-test, P = 2.00x10"). K) Hepatic levels of GSH (n =4 mice per group,
two-sided Student’s t-test, P = 7.79x10"). L) Quantification of necrotic area for
H&E as shown in Figure 5H (n = 4 mice per group; two-sided Student’s t-test,
P = 6.84x107). M) Serum ALT, a measure of hepatic injury (n = 4 mice per
group; two-sided Mann-Whitney U test, P = 2.86x10). N) Quantification of
CD31*MYC* ECs for mIHC as shown in Figure 5H (n = 4 mice per group;
two-sided Student’s t-test, P = 1.64x10*). O) Representative liver immunoblots
and quantification of CYP2E1 and B-actin (n = 3 mice per group; two-sided
Student’s t-test, P = 3.01x10™"). P) Hepatic levels of GSH (n = 4 mice per group,
two-sided Student’s t-test, P = 5.05x10"). In all graphs data are presented as
mean * SD, *P < 0.05; **P < 0.01; ***P < 0.001, NS, not significant. BMDM,

3



bone marrow derived macrophages; KEGG, kyoto encyclopedia of genes and
genomes; TNF-a, tumor necrosis factor-a; NF-kB, nuclear factor kappa B; FC,
fold change; ALT, alaninetransaminase; mIHC, multiplex

immunohistochemistry.
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Figure S22. Pro-inflammatory microenvironment were observed by hour-long
intravital 3D imaging in mice and enriched in advanced human DILI. A)
Timelapse data captured by DAOSLIMIT showing the interactions between
monocytes and CD63* ECs in LysM°eMas1"-APAP mouse. Scale bar: 50 ym.



B) mIHC of CD31*MYC* ECs, CD68*MMP12* My and key glycolytic enzymes
are shown. Scale bar: 50 pym and 20 um. C) mIHC of
CD31"MYC*NF-kB*TNFR1* ECs and CD14*NF-kB*TNFR1* monocytes are
shown. Scale bar: 20 ym. D) mIHC of CD31*MYC* ECs and CD14*TNFa*
monocytes are shown. Scale bar: 20 um. E) mlHC of
CD31*MYC*CD146*CD63* ECs are shown. Scale bar: 50 ym and 20 uym.
APAP, acetaminophen; mIHC, multiplex immunohistochemistry; HC, healthy
control; DILI, drug-induced liver injury; NF-kB, nuclear factor kappa B; TNF-a,

tumor necrosis factor-a.
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Figure S23. Pro-inflammatory microenvironment were enriched in advanced
human DILI. A) Microenvironmental cell frequency data of human DILI were
plotted in a three-dimensional space (n = 10 with CHB, 5 with ALD, 5 with AlH,
5 with PBC and 47 with DILI). B) The k-means algorithm was applied to
conduct an unsupervised clustering, and the prediction accuracy rate reached

83.33%. Detailed prediction model can be found in the Experimental Section.



Supplementary tables

Table S1. Detailed information of in vivo drug administrations.

Name

AVE0991

KJ Pyr9

3PO

Clodronate
liposomes

Cenicriviroc

Function

Mas
receptor
agonist

MYC
inhibitor

PFKFB3
inhibitor

Macroph
age
depletion

Dual
CCR2/C
CR5
antagoni
st

Dos Freque

e ncy
1.1 One
6 time
[nm

ol

9]

25 One
[mg time
kg™

]

50 Three
[mg times
kg™

]

8 One
[ml  time
kg™

]

100 One
[mg time
kg™

Tim Mode
e

poin

ta)

2 h Intraperito
befo neal

re

2 h Intraperito
after neal

(1) Intraperito
16 h neal
befo

re

2 2

h

after

®

10 h

after

24 h Intravenou
befo s

re

2 h Intragastri
befo c

re

Solve
nt

10%
DMS
O and
90%
corn
coil
DM
O:
Twee
n 80:
5%
dextro
se =
1:1:8
by
volum
e

DM
O:
PEG
300:
Twee
n 80:
Saline
=1: 4:
0.5:
4.5 by
volum
e

/

DM

O:
Twee
n 80:
5%
dextro

Control
group

Solvent

Solvent

Solvent

Control
liposo
mes

Solvent



Cediranib VEGFR

inhibitor

(Rac)-Benp TNF-a

yrine inhibitor

R-7050 TNFR
antagoni
st

6 Three
[mg times
kg™

]

30 Two
[mg times
kg™

]

10 One
[mg time
kg™

]

®

18 h
befo

re
@ 2
h
befo
re
® 5
h
after
@ 2
h
befo
re

2 4
h
after

2 h
befo
re

Intragastri
c

Intragastri
c

Intraperito
neal

a) APAP administration was used as reference.

se =
1:1:8
by
volum
e

DM
O:
Twee
n 80:
5%
dextro
se =
1:1: 8
by
volum
e

DM
O:
PEG
300:
Twee
n 80:
Saline
=1: 4:
0.5:
4.5 by
volum
e

DM
O:
PEG
300:
Twee
n 80:
Saline
=1: 4:
0.5:
4.5 by
volum
e

Solvent

Solvent

Solvent

Abbreviations: VEGFR, vascular endothelial growth factor receptor; TNFR,

tumor necrosis factor receptor; CCR, chemokine receptor.



Table S2. Demographic and clinical features of patients and HCs

providing liver samples.

DILI HBV ~ ALD NAFLD A PBC HC
(n=47) (n=10) (n=5) (n=5) (n=5) (n=5) (n=14)

Age 423+ 494+ 448+ 378+ 504+ 548+ 336+

[years] 15.4 94 10.8 4.0 9.2 7.0 5.0
Gender
23/24 1/9 5/0 2/3 4/1 4/1 9/5
[F/M]

ALT[U 3649+ 380+ 390+ 526+ 552+ 398+ 253+%
L] 461.1 40.1 22.8 29.5 72.6 25.5 15.7

AST[U 3810+ 534+ 422+ 358+ 980+ 688+ 18.0+%
L] 636.7 48.1 20.2 15.7 139.2 41.6 5.7

ALP[U 1224+ 1353+ 1686+ 766+ 850+ 2376+ 874+
L 95.4 70.5 71.2 9.4 37.0 169.5 28.1

y-GT[U 783+ 617+ 214+ 318+ 368+ 816+ 289+%

L] 110.5 52.9 4.5 19.3 21.0 65.7 454
TBIL
3765+ 983+ 2809+ 6.2+ 2210+ 1729+ 94+
[umol
1 2449 186.0 218.7 1.7 201.8 146.5 4.1
L]
DBIL
2468+ 564+ 1431+ 29+ 1229+ 1685+ 26+
[umol
1 162.3 124.3 155.7 14 119.6 115.0 1.3
L]
33.3+ 171+ 250+ 105+ 236+ 171+ 109+
PT [s]

32.5 4.5 24 0.6 8.8 2.6 0.5




28+ 1.6 24+ 09+ 22+ 1.6+ 09+
2.2 0.5 0.2 0.1 0.9 0.2 0.1

INR

Abbreviations: F/M, Female and Male; ALT, alanine transaminase; AST,
aspartate aminotransferase; ALP, alkaline phosphatase; y-GT, y-glutamyl

transferase; TBIL, total bilirubin; DBIL, direct bilirubin; PT, prothrombin time;

INR, international normalized ratio.



