

## Supporting Information

for Adv. Sci., DOI 10.1002/advs.202308637

Disruption of Super-Enhancers in Activated Pancreatic Stellate Cells Facilitates Chemotherapy and Immunotherapy in Pancreatic Cancer

Yazhou Wang, Kai Chen, Gang Liu, Chong Du, Zhaoxia Cheng, Dan Wei, Fenfen Li, Chen Li, Yinmo Yang\*, Ying Zhao\* and Guangjun Nie\*

Supplementary Information

## Disruption of Super-enhancers in Activated Pancreatic Stellate Cells Facilitates Chemotherapy and Immunotherapy in Pancreatic Cancer

Yazhou Wang et al.



**Figure S1. Biomarker analysis of PDAC.** (A) Quantitative analysis of FAP- $\alpha$  expression detected by IHC in normal and PDAC tissues, n = 62. (**B-D**) Kaplan-Meier curves of PDAC patients with low or high expression of *FAP-\alpha*, *COL1A2* and *COL1A4*.



**Figure S2. Characteristics of a-PSCs. (A)** A heatmap showing the top 5 marker genes for the cell clusters identified by single-cell sequencing. **(B)** Gene ontology analysis showing the representative cellular component terms enriched by the top 50 marker genes in a-PSCs. The colored bars represent the significance level of enrichment. **(C)** Correlations between the expression level of *FAP-a* with those of *COL4A1*, *COL4A2*, *FN1*, and *DCN* in PDAC tissues based on data from TCGA.



**Figure S3. Superen-hancer profile in a-PSCs. (A)** Signals for typical enhancers (TEs) and superenhancers (SEs) in a-PSCs. **(B)** A pie chart exhibiting the numbers of TEs and SEs in a-PSCs. **(C)** Whole-genome H3K27ac ChIP-seq and ATAC-seq profiles in a-PSCs visualized by IGV software.



**Figure S4. Superen-hancer profile in JQ1-treated a-PSCs.** (**A**) SEs in JQ1-treated a-PSCs identified according to H3K27Ac ChIP-seq signals. Enhancers above the inflection point of the curve (those in the dotted rectangle) were defined as SEs. (**B**) TE and SE signals in JQ1-treated a-PSCs. (**C**) A pie chart exhibiting the numbers of TEs and SEs in a-PSCs. (**D**) ATAC-Seq signals in a-PSCs with and without JQ1 treatment. The intensity of chromatin accessibility is indicated by the color. Peaks are grouped based on K-means clustering. (**E** and **F**) The top 10 GO terms enriched with genes located in open chromatin regions in a-PSCs and JQ1-treated a-PSCs.



**Figure S5.** H3K27Ac ChIP-seq, ATAC-seq and RNA-seq profiles for a-PSC-specific genes *ACTN1*, *ACTA2*, *COL1A1* and *COL4A1* visualized by IGV software.



**Figure S6. Mouse PSCs culturing.** (**A**) The morphology of mPSCs extracted from the pancreas of C57BL/6 mice imaged at days 1, 2, 3 and 5. (**B**) Representative immunofluorescence images for mPSCs and JQ-1-treated mPSCs stained with anti-FAP- $\alpha$ ,  $\alpha$ -SMA and collagen I antibodies. Scale bar, 20 µm.



Figure S7. Disruption of SEs promoted vascularization in the patient-derived xenograft (PDX) mouse pancreatic cancer model. (A) IHC staining against CD31 in PDAC tissues (data from the Human Protein Atlas database). (B) Representative immunofluorescence findings for CD31 in pancreatic cancer tumor slices obtained from PDX mice treated with saline or JQ1. Scale bar, 50  $\mu$ m. n = 3 for each group. (C) A picture exported form AngioTool showing CD31-positive areas in a PDX tumor slice. (D) Quantitative analysis of CD31-positive areas in PDX tumors obtained from saline-or JQ1-treated mice. Data are shown as mean  $\pm$  SD and p values were determined by a two-tailed unpaired t-test, \*\*\* p < 0.001 compared with the con or Saline groups.



Figure S8. Correlation between stroma abundance and the level of CD8<sup>+</sup> T cell infiltration in PDAC tissues. (A-B) Abundances of a-PSCs and tumor-infiltrating CD8<sup>+</sup> T cells, which were respectively reflected by the expression levels of  $\alpha$ -SMA and CD8, were detected by IHC in two representative PDAC tissues. The IHC images were analyzed by Image J software. (C) The correlation between the expression levels of CD8 and  $\alpha$ -SMA in PDAC tissues. (D) Stromal scores and immune cell compositions in PDAC tissues exhibited opposite changing trends. Data from TCGA database.

| Target  | Application | Manufacturer | Cat. No  | Dilution folds       |
|---------|-------------|--------------|----------|----------------------|
| protein |             |              |          |                      |
| FAP-α   | IHC/WB/IF   | Abcam        | ab207178 | 1:500/1:1000/1:500   |
| α-SMA   | IHC/WB/IF   | Abcam        | ab7817   | 1:1000/1:2000/1:1000 |

**Table S1. Antibody information** 

| Fibronectin | IHC/IF    | Abcam       | ab2413     | 1:1000/1:500        |
|-------------|-----------|-------------|------------|---------------------|
| Collagen I  | IHC/WB/IF | Abcam       | ab138492   | 1:1000/1:2000/1:500 |
| IL6         | IF        | Abcam       | ab233706   | 1:100               |
| BRD4        | WB        | Abcam       | ab243862   | 1:1000              |
| CD31        | IF        | Abcam       | ab76533    | 1:100               |
| PCNA        | IHC       | Proteintech | 10205-2-AP | 1:500               |
| CD3         | FCM       | Biolegend   | 100204     | 1:100               |
| CD8         | FCM       | Biolegend   | 100712     | 1:100               |
| CD8         | IHC/IF    | Abcam       | ab237709   | 1:1000/1:200        |
| Foxp3       | FCM       | Biolegend   | 126404     | 1:50                |
| CD49b       | FCM       | Biolegend   | 103515     | 1:50                |

| Table S2. | Target sequences of small | guide RNAs used | for CRISPR-Ca | as9 genome |
|-----------|---------------------------|-----------------|---------------|------------|
| editing   |                           |                 |               |            |

| Name      | Target sequence      |
|-----------|----------------------|
| FAP-α-SE1 | TAAATGGTGAGTAGATCCAC |
| FAP-a-SE2 | TCCGTTACTAGTATTGCAAA |
| IL6-SE1   | TTCAGAACACAGAGACGTCA |
| IL6-SE2   | GGGAGAGTTAGGATGTGCGC |
| IL6-SE3   | TTTACAAACTTCTTACGACT |

## Table S3. Primer sequences used for qRT-PCR

| Gene name | Amplification | Sequence                 |
|-----------|---------------|--------------------------|
|           | direction     |                          |
| h-FAP-α   | Forward       | TGGTATAGCAGTGGCTCCAGTCTC |
|           | Reverse       | ATCTGCTGTTCCGTGGATGAGAAG |
| h-ACTA2   | Forward       | TCGTGCTGGACTCTGGAGATGG   |
|           | Reverse       | CCACGCTCAGTCAGGATCTTCATG |
| h-COL1A1  | Forward       | AAAGATGGACTCAACGGTCTC    |
|           | Reverse       | AAAGATGGACTCAACGGTCTC    |
| h-IL6     | Forward       | CACTGGTCTTTTGGAGTTTGAG   |
|           | Reverse       | GGACTTTTGTACTCATCTGCAC   |
| m-Fap-α   | Forward       | TTGTTTCGACACCAGCTTTTAG   |
|           | Reverse       | CCACTTGCCACTTGTAATTTGA   |
| m-Acta2   | Forward       | GCGTGGCTATTCCTTCGTGACTAC |

|          | Reverse | CGTCAGGCAGTTCGTAGCTCTTC |
|----------|---------|-------------------------|
| m-Collal | Forward | TGAACGTGGTGTACAAGGTC    |
|          | Reverse | CCATCTTTACCAGGAGAACCAT  |
| m-Il6    | Forward | CTCCCAACAGACCTGTCTATAC  |
|          | Reverse | CCATTGCACAACTCTTTTCTCA  |

## Table S4. Sequences of primers targeting *FAP-α* and *IL6*-associated SEs used for BRD4-ChIP-qPCR

| Gene name | Amplification | Sequence                 |
|-----------|---------------|--------------------------|
|           | direction     |                          |
| FAP-a-SE  | Forward       | AGAGGTTGTGAGACTTTGCTGTG  |
|           | Reverse       | ACCCTCCAGCATAACCTCTCTG   |
| IL6-SE    | Forward       | CACGGCATTCTACCCTGCACTG   |
|           | Reverse       | AGGCAGGTCACAGGAGACTCTATG |