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This Supplementary Information is organized as follows. Supplementary Note 1 contains details about the quantum
and classical Hamiltonians of the squeeze-driven Kerr oscillator and a discussion about the experimental parameters.
Supplementary Note 2 compares two plots that present the excitation energies E′ as a function of the control parameter
ξ. In one plot both parities are included and in the other one, only one parity sector is considered. In addition, this
Supplementary Note includes a figure for the occupation number, which also detects the ESQPT. Supplementary
Notes 3 and 4 give the density of states (DOS) and the Lyapunov exponent, respectively. Supplementary Note 5
provides an equation for the integral of the square of the Husimi function and additional snapshots for the evolution
of the Husimi functions for the six initial coherent states studied in the main text. In Supplementary Note 6, we
discuss how to derive the time interval for the initial quadratic behavior in t of the survival probability, FOTOC, and
M2(t). Supplementary Note 7 shows the duration of the exponential growth of the FOTOC for the coherent state O
and the saturation values of the FOTOC for the six initial coherent states that we study.

Supplementary Note 1. QUANTUM AND CLASSICAL HAMILTONIANS

In the same way that an LC circuit is the electrical analog of a mechanical harmonic oscillator, the Josephson
junction is the electrical analog of a mechanical pendulum. The Hamiltonian of a single Josephson junction is [1, 2]

Ĥ =
1

2C
Q̂2 − EJ cos

(
2π

Φ0
Φ̂

)
,

where C is the circuit’s capacitance, EJ is the Josephson energy, Φ̂ is the phase circuit variable, and Q̂ its charge,
with [Φ̂, Q̂] = iℏ [2]. This is the canonical commutation relation that describes quantum circuits and is analogous to
the position-momentum relation in a mechanical system. The charge enters the Hamiltonian as a quadratic kinetic
energy and the circuit’s phase enters via the Josephson cosine potential and is analogous to the projection of a constant
gravitational field over the vertical as in a pendulum potential [3].

One defines the bosonic operators of the circuit as a convenient calculation tool. The annihilation operator for a
superconducting circuit takes the form

â =

√
1

2ℏZ

(
Φ̂ + iZQ̂

)
(1)

where Z is the impedance of the circuit and [â, â†] = 1. Alternatively, one can write

Φ̂ = Φzpf

(
â† + â

)
, Q̂ = iQzpf

(
â† − â

)
, (2)

where Φzpf =
√
ℏ/2ωC =

√
ℏZ/2 is the zero point spread of the phase variable, ω is the small oscillation frequency

of the oscillator, and ΦzpfQzpf = ℏ/2. Insisting on the parallel with the mechanical oscillator, Φzpf is the electrical
analog to the ground state position uncertainty and Qzpf corresponds to the ground state momentum uncertainty.
The capacitance C then plays the role of the particle’s mass.

In the case of the SNAIL transmon used in Ref. [4], the Hamiltonian of the driven circuit, which is built by an
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arrangement of a few Josephson junctions, reads

Ĥ(t)

ℏ
= ωâ†â+

∞∑
m=3

gm
m

(
â† + â

)m
− iΩd

(
â− â†

)
cos(ωdt).

(3)

This is Eq. (1) in Ref. [4], where the gn’s are the circuit nonlinearities and the drive is defined by its amplitude Ωd

and its frequency ωd, which is fixed at two times the small oscillation frequency of the oscillator to create resonant
squeezing. Since nonlinearity is sourced by an arrangement of Josephson junctions in the SNAIL, the gn coefficients
are of order Φn−2

zpf [5]. Additionally, the magnetic flux tuning of a SNAIL permits the tunability of the oscillator’s

nonlinearities [6]. In particular, one can tune the values of g3(ΦB) and g4(ΦB) rather accurately. For the sake of this
discussion, we will approximate the impedance of the circuit as independent from the magnetic flux.

The static effective Hamiltonian describing the system in these conditions is given by

Ĥ

ℏ
= −Kâ†2â2 + ϵ2(â

†2 + â2), (4)

where, from the microscopic theory introduced in [6], we can write the Kerr constant as K = − 3g4
2 + 2

10g2
3

3ωd
and

ϵ2 = g3
4Ωd

3ωd
[4]. This Hamiltonian is the quantum optical analog of a double-well potential [7] and the number of levels

inside the wells is given by N = ξ/π [4], where ξ = ϵ2/K is the control parameter.
The Hamiltonian in Eq. (4) can be factorized to read

Ĥ = −K(â†2 − ϵ2/K)(â2 − ϵ2/K).

This means that the coherent states | ± α⟩, with (±α)2 =
√
ϵ2/K, are both degenerate with eigenenergy zero. Since

−Ĥ is positive semidefinite, then |+ α⟩ and | − α⟩ are degenerate ground states of the system and can be thought of
as the ground states of the double well. Note that the bonding and antibonding superpositions ∝ (|+α⟩± |−α⟩) are
exactly degenerate for all well-depths. This implies that there is no tunnel splitting between the well ground-states.
This is a peculiarity of our Hamiltonian that has important consequences for the dynamics [8, 9]. Beyond the ground
state, it is only in the classical limit ξ → ∞, that the degeneracy is total for the excited states. For finite values of ξ,
the excited state splitting is reduced exponentially with ξ.
We note that flux tuning a SNAIL circuit allows for a Kerr-free point [10], where the Kerr constant is null. We

express this condition by writing K = Φ2
zpfκ(ΦB), with κ(ΦB) a function crossing zero. In addition, the third-order

nonlinearity responsible for the generation of squeezing remains essentially constant in the vicinity of the Kerr-free
point, so we can write the scaling of the control parameter ξ as a function of the experimentally controllable variables,

ξ =
ϵ2
K

∝ Ωd

Φzpfκ(ΦB)
. (5)

With this expression, it is clear that the value of ξ can be increased in three different ways. One can (i) reduce the
impedance of the circuit, thus reducing Φzpf , (ii) increase the microwave power of the squeezing drive Ωd, or (iii)
approach the Kerr-free point by in situ magnetic flux tuning ΦB .

Supplementary Note 1.1. Classical limit

As we wrote in Methods, the experimental system admits an approximate classical description if it is initialized
in a coherent state and for as long as the Hamiltonian phase space surface produces only a linear force (a quadratic
Hamiltonian) over the spread of the evolving state [11]. This means that the dynamics will be generated by the Poisson
bracket, since the Moyal corrections can be neglected, and no phase space interference effects will develop. This can
be achieved by reducing the fluctuations of the coherent state (increasing its “mass”, Φzpf → 0), or by making a
comparatively large double-well system (Ωd/κ(ΦB) → ∞). Note that reducing Φzpf comes at the price of increasing
the spread in the momentum coordinate. In a Hamiltonian with quadratic kinetic energy, like Eq. (3), this comes at
a minimal cost, since no nonlinearity is experienced along the momentum (charge) axis, and the Moyal corrections
remain small. Note, however, that in the presence of a Kerr nonlinearity, the Hamiltonian has a nonlinear dependence
on the momentum coordinate and the classical correspondence needs to be treated carefully. This justifies taking the
classical limit as a system of increasing size, ξ ≫ 1, as in the main text, which can be achieved independently of the
value of zero point fluctuations.
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In the absence of dissipation, this classical Hamiltonian approximation breaks at sufficiently long times for most
initial conditions. In turn, small amounts of dissipation enforce the classical dynamics [4, 12, 13]. As in [12, 14],
the system discussed here is not chaotic, but since for a state initialized near the ESQPT, the evolution can be
approximated by a quadratic Hamiltonian (squeezing, ϵ2 ≫ K), the exponential instability is a property of both the
quantum and the classical models. The evolution can be approximated as classical until the phase space distribution
folds on the quartic energy wall and develops phase interferences, such as those seen in the last snapshop of the last
row of the Fig. 2e in the main text [15]. This quantum-classical divergence will be regularized in a timescale set
by dissipation. The possibility to experimentally explore the quantum-classical correspondence in the squeeze-driven
Kerr oscillator will be communicated elsewhere.

Supplementary Note 2. CLUSTERING OF EIGENVALUES AND STATIC OBSERVABLE

Supplementary Figure 1a is identical to Fig. 1b in the main text. Supplementary Figure 1b is the same as Supple-
mentary Figure 1a, but displayed for a single parity sector with the purpose of making it evident that the clustering
of the eigenvalues at E′

ESQPT happens also in a single sector. The size N of the truncated Hilbert space here and
everywhere in this work is chosen to guarantee the convergence of the energy levels analyzed.

a b

Supplementary Figure 1. Spectral kissing and eigenvalues clustering. a Energy levels as a function of the control
parameter ξ for both parity sectors and b for the even parity only. In a: solid lines are for the energy levels in the even parity
sector and dashed lines for the odd parity. The bright solid line in both panels marks the energy of the ESQPT, as given in
Eq. (3) of the main text.

Supplementary Figure 2 shows the eigenstate expectation value of the number operator, ⟨n̂⟩ = ⟨ψ|â†â|ψ⟩, as a
function of the excitation energies. A dip is clearly seen at the ESQPT energy, E′ ∼ E′

ESQPT, which is caused by

the fact that the eigenstate at this energy is localized in the Fock state |0⟩. The figure is analogous to that of the
participation ratio in Figs. 1f-h of the main text.

a b c

Supplementary Figure 2. Occupation number detects the ESQPT. Eigenstate expectation value of the occupation
number as a function of the excitation energies for different values of the control parameter ξ, as indicated in the panels. An
abrupt dip happens at E′ ∼ E′

ESQPT.
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Supplementary Note 3. DENSITY OF STATES

We can use the lowest-order term of the Gutzwiller trace formula [16] to obtain a semiclassical approximation for
the DOS,

ν(E) =
1

2π

∫
dpdqδ(Hcl − E), (6)

where Hcl is given by

Hcl = −Kcl

4
(q2 + p2)2 +Kclξcl(q

2 − p2). (7)

This is Eq. (2) of the main text and, with the proper sign, it corresponds to Eq. (11) in Methods. To evaluate the
previous integral, we use the general property of the Dirac delta,∫

Rn

f(x)δ(g(x))dx =

∫
g−1(0)

f(x)

|∇g|
dσ(x), (8)

where the integral on the right is over g−1(0) and the (n − 1)-dimensional surface defined by g(x) = 0. Employing
the property of the Dirac delta in the Gutzwiller formula, we have

ν(E) = 1

2π

∫
q∈ΩE

dq

2
√
(2
√
Kcl u(E)− (λ+Kclq2))u(E)

, (9)

where u(E) = E − Emin + λq2, λ = 2Kclξcl, and ΩE is the set of values of q for which there is at least one solution of
the equation Hcl(q, p) = E .

Supplementary Note 4. LYAPUNOV EXPONENT

The linear analysis around the center and the hyperbolic points gives us information about the qualitative behavior
close to those points. In particular, for the Hamiltonian in Eq. (7), the linearized Hamilton equations around a critical
(stationary) point {qc, pc} satisfy(

q̇
ṗ

)
=

(
−2Kclqc pc −2Kclξcl−Kcl(q

2
c + 3p2c)

−2Kclξcl+Kcl(3q
2
c + p2c) 2Kclqc pc

)(
q−qc
p−qc

)
.

In the equation above, cl stands for “classical” and c for “critical”. The stability or instability around {qc, pc} is given
by the eigenvalues ai of the matrix constructed by the linear system. If the eigenvalues of the matrix are real, then
the Lyapunov exponent is equal to max(ai).

For the specific case of the hyperbolic point {qc, pc} = {0, 0}, the linear system is given by(
q̇
ṗ

)
=

(
0 −2Kclξcl

−2Kclξcl 0

)(
q
p

)
(10)

and the Lyapunov exponent is

λ = 2Kclξcl. (11)

At the vicinity of the hyperbolic point, the dynamics is dominated by the squeezing part of the Hamiltonian, Hcl ≈
Kclξcl(q̂

2 − p̂2), and the solution of Eq. (10) gives(
q
p

)
= c1

(
1
1

)
eλt + c2

(
−1
1

)
e−λt, (12)

where c1 and c2 are constants. Two directions of evolution control the dynamics in the phase space, the direction(
1
1

)
is affected by the positive exponential, as a repellor, and

(
−1
1

)
is affected by the negative exponential, as an

attractor. The hyperbolic (saddle) point at the origin of phase space is both a repellor and an attractor. A trajectory
in the vicinity of this point moves towards and away from it. The quantum counterpart of this behavior is observed
with the evolution of the Husimi function for the initial coherent state centered at O={0,0}, which spreads rapidly at
short times, but eventually folds back towards the initial distribution. This behavior is shown in Fig. 2e of the main
text and is made yet more evident with the additional snapshots presented in the Supplementary Figure 3.
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States A, B, and C State O

State D State E

Supplementary Figure 3. Spread in phase space captured by the evolution of Husimi functions. Snapshots of
the Husimi functions for the 6 initial coherent states investigated, as indicated in the titles; ξ = ξcl = 180. On the top left, the
snapshots in the first row of panels are for state A, in the second row they are for B, and the third row for C.

Supplementary Note 5. QUANTUM DYNAMICS

The 6 initial coherent states that we consider are those listed in Eq. (14) of the Methods in the main text.

Supplementary Note 5.1. Integral of the square of the Husimi function

One can quantify how an initial coherent state spreads in the phase space by computing the integral of the square
of the Husimi function,

M
Ψ(t)
2 =

1

2π

∫
dq dp [QΨ(t)(q, p)]2, (13)

where Neff = 1 and

QΨ(t)(q, p)=
1

2π

∣∣∣∣∣
N∑

n=0

Cn(t)e
− (q2+p2)

4
(q − ip)n√

2nn!

∣∣∣∣∣
2

. (14)
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By writing the evolved state in the Fock basis, |Ψ(t)⟩ =
∑

n Cn(t)|n⟩, one can solve the integrals exactly and obtain

M
Ψ(t)
2 =

1

π

∑
n1,n2,m1,m2

Cn1(t)C
∗
n2
(t)Cm1(t)C

∗
m2

(t)
√
n1!n2!m1!m2!

∫
d2α e−2|α|2α∗n1+m1αn2+m2

=
∑

n1,n2,m1,m2

Cn1(t)C
∗
n2
(t)Cm1(t)C

∗
m2

(t)
√
n1!n2!m1!m2!

(n1 +m1)!

2n1+m1+1
δn1+m1,n2+m2

. (15)

Supplementary Note 5.2. Snapshots of the evolution of the Husimi functions

Here, we present various snapshots of the evolution of the Husimi functions for the 6 initial coherent states inves-
tigated. The main features are summarized below.

The three rows of panels on the top left of Supplementary Figure 3 present snapshots of the Husimi functions for
four instants of time for the initial coherent states |ΨA(0)⟩ (first row), |ΨB(0)⟩ (second row), and |ΨC(0)⟩ (third row).
State A has very low energy and thus exhibits a very limited spreading around its initial region in the phase space.
At Kt = 0.02, 0.13, the distribution gets mostly out of the green ellipse that determines the initial state, so the value

of S
(A)
p (t) should become very small.

In contrast to |ΨA(t)⟩, the Husimi distributions for |ΨB(t)⟩ and |ΨC(t)⟩ get squeezed, but do not fully leave the
green ellipse. These two states present evolutions similar to the coherent state |ΨO(t)⟩, since the two also start close
to the hyperbolic point at the origin of the phase space. As mentioned in the main text, the fact that |ΨB(t)⟩ evolves
towards the region with negative values of q is a quantum effect. The classical point B has a positive value of q and
is inside the separatrix, so classically, its orbit never reaches values of q < 0.

The various snapshots of the Husimi functions for |ΨO(t)⟩ (top right), |ΨD(t)⟩ (bottom left), and |ΨE(t)⟩ (bottom
right) complement those displayed in the main text. The panels for |ΨO(t)⟩ make evident the fast spread of this state,
and also the subsequent alternating spread and contraction of its Husimi function.

State E also spreads fast, because it is placed on the separatrix, although far from the origin. Just as for B and
C, its exponential behavior is a quantum effect. Part of the quantum evolution of the coherent state E happens
inside the separatrix and part of it is outside, creating two spreading fronts, as visible from the snapshots at Kt =
0.027, 0.037, 0.04, and 0.05. These different paths generate a complicated pattern of interferences, as shown for
Kt = 0.13 and 0.14.

Quantum interferences also appear for the initial coherent state |ΨD(0)⟩. This state has a high energy that is equal
to that of state E, but since |ΨD(0)⟩ starts far from the separatrix, it does not spread as fast as |ΨE(0)⟩; compare
their Husimi functions, for example, at Kt = 0.037, 0.04, 0.05.

Supplementary Note 6. QUADRATIC BEHAVIOR IN TIME

At very short times, the survival probability, FOTOC, and M2(t) present a quadratic behavior in time. The time

interval for this behavior is derived by doing a Taylor expansion of the propagator U(t) = e−iĤt, as discussed next.

Supplementary Note 6.1. Survival probability

At short times, the survival probability, can be written as [17]

Sp(t) =
∣∣∣⟨Ψ(0)|e−iĤt|Ψ(0)⟩

∣∣∣2
≈

∣∣∣∣∣
〈
Ψ(0)

∣∣∣∣∣1− iĤt− Ĥ2t2

2

∣∣∣∣∣Ψ(0)

〉∣∣∣∣∣
2

= 1− t2
[
⟨Ψ(0)|Ĥ2|Ψ(0)⟩ − ⟨Ψ(0)|Ĥ|Ψ(0)⟩2

]
= 1− Γ2t2,
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where Γ2 is the variance of the energy distribution of the initial state written in the energy eigenbasis, that is

Γ2 =
∑
k

|C(0)
k |2(E2

k − E0)
2,

where Ĥ|Ek⟩ = Ek|Ek⟩, E0 = ⟨Ψ(0)|Ĥ|Ψ(0)⟩, and

C
(0)
k = ⟨Ek|Ψ(0)⟩.

Using the Fock basis |n⟩ to write Γ2
O for the initial coherent state O, we have that

Γ2
O =

∑
n

⟨0|Ĥ|n⟩⟨n|Ĥ|0⟩ − ⟨0|Ĥ|0⟩2

=
∑
n ̸=0

∣∣∣⟨n|Ĥ|0⟩
∣∣∣2 ,

therefore,

SO
p (t) ≈ 1− 2ξ2K2t2. (16)

This implies that the survival probability for the state O decays quadratically for

Kt <
1√
2ξ
. (17)

30000 60000
E/(h

_ 
K)

0

0.2

0.4

|C
k|2

30000 60000
E/(h

_ 
K)

0

0.03

0.06

30000 60000
E/(h

_ 
K)

0

0.01

0.02

O D E

Supplementary Figure 4. Energy distribution of initial coherent states. The coherent states are centered at point
O, D, and E, as indicated in the panels; ξ = 180, ℏ = 1.

The derivation of Γ2 for the other coherent states is analogous. As evident from the slowest decay of the survival
probability for the initial coherent state |ΨO(0)⟩ in Fig. 2d of the main text, this state has the smallest variance Γ2

O.
This happens because the corresponding classical point O is a stationary point. The gradient and Laplacian of the
Hamitonian vanish at O, so the initial diffusion constant for the Glauber coherent state |ΨO(0)⟩ is the smallest one.

In the Supplementary Figure 4, we show the energy distributions of the coherent states |ΨO(0)⟩, |ΨD(0)⟩, and
|ΨE(0)⟩. The width of the distribution for |ΨO(0)⟩ is significantly narrower than for the other two states, as anticipated
in the paragraph above.

Another feature observed in the Supplementary Figure 4 is the difference in the widths of the energy distributions
for coherent states |ΨD(0)⟩, and |ΨE(0)⟩. Even though both initial states have the same energy, coherent state |ΨE(0)⟩
is more spread out than |ΨD(0)⟩, which explains why the survival probability SE

p (t) decays faster than SD
p (t), as seen

in the Fig. 2d of the main text.

Supplementary Note 6.2. FOTOC

The same expansion of the propagator U(t) = e−iĤt can be extended to the analysis of the short-time evolution of
the FOTOC, where one now needs to compute〈

Ψ(0)

∣∣∣∣∣
[
1 + iĤt− Ĥ2t2

2

]
Ŵ

[
1− iĤt− Ĥ2t2

2

]∣∣∣∣∣Ψ(0)

〉
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ba

Supplementary Figure 5. Lyapunov time and long-time behavior of the FOTOC. a Lyapunov time T corresponding
to the time when the FOTOC for the coherent state |ΨO(0)⟩ first reaches its maximum value as a function of ξ. Symbols are for
the numerical results and the solid line corresponds to the expression in Eq. (21). b Evolution of the FOTOC up to long times
for the 6 initial coherent states considered in this work. The highest saturation value is reached by the two initial coherent
states with the highest energies, |ΨD(0)⟩ and |ΨE(0)⟩.

up to O(t2) for Ŵ = p̂, Ŵ = p̂2, Ŵ = q̂, and Ŵ = q̂2.
For the coherent state O, we find that

F
(O)
otoc ≈ 1 + 8ξ2K2t2, (18)

so its quadratic behavior holds for

Kt <
1√
8ξ
. (19)

Supplementary Note 6.3. Short-time behavior of M2(t)

To determine the duration of the quadratic behavior of M2(t), one needs to do the Taylor expansion for each
component Cn(t) in Eq. (15), which becomes a tedious exercise even for the coherent state O. This timescale should
again be dependent on the value of the control parameter, and we verify numerically that

Kt <
1

ξ
. (20)

is an upper bound.

Supplementary Note 7. EXPONENTIAL GROWTH AND INFINITE-TIME AVERAGE OF THE FOTOC

The exponential growth of the FOTOC for the coherent state |ΨO(0)⟩ holds up to the Ehrenfest time T [18], which
in our case is given by

KT ∼ −0.0027 + ln(ξ)/(2ξ). (21)

In the Supplementary Figure 5a, we show numerical results forKT as a function of ξ, and we find very good agreement

with the expression in Eq. (21). Numerically, the Ehrenfest time is estimated as the point where F
(O)
otoc(t) first reaches

its highest value.
In the Supplementary Figure 5b, we show results for the FOTOC for the same states shown in Fig. 2b of the main

text, but up to longer times. We observe that F
(A)
otoc(t) saturates at the smallest value, because |ΨA(0)⟩ has the lowest

energy. F
(O)
otoc(t), F

(B)
otoc(t), and F

(C)
otoc(t) saturate at an intermediate and very similar value, since the states |ΨO(0)⟩,

|ΨB(0)⟩, and |ΨC(0)⟩ have similar intermediate energies. Among these three states, F
(O)
otoc(t) fluctuates the most. The

infinite-time averages for F
(D)
otoc(t) and F

(E)
otoc(t) are equal and the highest among the six states, because |ΨD(0)⟩ and

|ΨE(0)⟩ have an equal energy that is higher than that of the other six states. The temporal fluctuations of F
(D)
otoc(t)

and F
(E)
otoc(t) are also much smaller than those for F

(O),(B),(C)
otoc (t).
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The results in the Supplementary Figure 5b indicate that, despite exhibiting the longest exponential growth and the
highest degree of scrambling up to the Ehrenfest time, the initial coherent state |ΨO(0)⟩ centered at the hyperbolic

point does not maintain the largest degree of spreading at long times. After the Ehrenfest time, F
(O)
otoc(t) is surpassed

not only by the FOTOC of the state |ΨE(0)⟩, which has an overlap with the separatrix, but even by the FOTOC of
|ΨD(0)⟩, which is away from the separatrix, but has higher energy than |ΨO(0)⟩. This raises the question of how to
define the notion of “scrambling” and how it depends on the timescales.
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