
Supplementary Notes
Note 1: Setting of eligibility trace time constant. It is intuitively clear that the eligibility trace time constant T needs to be
set to match the timescales operating in the environment. This is because if the eligibility trace decays too quickly, there will be
no memory of past events, and if it decays too slowly, it will take a long time to correctly learn event rates in the environment.
Further, the asymptotic value of the baseline memory trace of event x, 𝑀←𝑥− for an event train at a constant rate 𝜆𝑥 with average
period 𝑡𝑥 is 𝑇 ∕𝑡𝑥 = 𝑇𝜆𝑥. This means that the neural representation of 𝑀←𝑥− will need to be very high if T is very high and very
low if T is very low. Since every known neural encoding scheme is non-linear at its limits with a floor and ceiling effect (e.g.,
firing rates can’t be below zero or be infinitely high), the limited neural resource in the linear regime should be used appropriately
for efficient coding. A linear regime of operation for 𝑀←𝑥− is especially important in ANCCR since the estimation of the
successor representation by Bayes’ rule depends on the ratio of 𝑀←𝑥− for different event types. Such a ratio will be highly biased
if the neural representation of 𝑀←𝑥− is in its non-linear range. Assuming without loss of generality that the optimal value of
𝑀←𝑥− is 𝑀𝑜𝑝𝑡 for efficient linear coding, we can define a simple optimality criterion for the eligibility trace time constant T.
Specifically, we postulate that the net sum of squared deviations of 𝑀←𝑥− from 𝑀𝑜𝑝𝑡 for all event types should be minimized at
the optimal T. The net sum of squared deviations, denoted by SS, can be written as

𝑆𝑆 =
∑

𝑥
(𝑀←𝑥−−𝑀𝑜𝑝𝑡)2 =

∑

𝑥
(𝑇𝜆𝑥−𝑀𝑜𝑝𝑡)2 (5)

Where the second equality assumes asymptotic values of 𝑀←𝑥−. The minimum of SS with respect to T will occur when 𝜕𝑆𝑆
𝜕𝑇 = 0

. It is easy to show that this means that the optimal T is:

𝑇𝑜𝑝𝑡 =𝑀𝑜𝑝𝑡

∑

𝑥𝜆𝑥
∑

𝑥𝜆2𝑥
(6)

For typical cue-reward experiments with each cue predicting reward at 100% probability, 𝜆𝑐𝑢𝑒= 𝜆𝑟𝑒𝑤𝑎𝑟𝑑 = 1
𝐼𝑅𝐼 . Substituting into

the above equation, we get:
𝑇𝑜𝑝𝑡 =𝑀𝑜𝑝𝑡.𝐼𝑅𝐼 (7)

Thus, in typical experiments with 100% reward probability, the eligibility trace time constant should be proportional to the IRI or
the total trial duration, which is determined by the ITI—the experimental proxy that we manipulate. Please do note, however,
that the above relationship is not strictly controlled by the ITI, but by the frequency of repeating events in the environment (i.e.,
environmental timescale).
Note 2: Higher cue-offset induced anticipatory licking with short ITI. We observed empirically that the animals showed
higher anticipatory licking following cue offset (i.e., 8 seconds after cue onset) during the short ITI condition compared to the
long ITI condition (Fig 1f) (though this is only weakly significant). We believe that this simply reflects the fact that the cue onset
is relatively much farther to reward delivery compared to the inter-cue interval during the short ITI condition compared to the
long ITI condition (ratio of 9s to 9+8s in short ITI vs 9s to 9+55s in the long ITI). Therefore, in the short ITI condition, the cue
offset provides a stronger signal indicating relative proximity to reward.
Note 3: The implications of assuming that internal states may serve the role of external cues in ANCCR. Some
readers will note that we have previously argued against the assumption of internal states serving the role of externally signaled
events in learning theories(46). It may therefore seem that our speculation that internal states can serve this role during timing
tasks is problematic. However, there is a critical difference between our earlier position and the current speculation. Our earlier
position was that assuming fixed internal states that pre-exist and provide a scaffold for learning, such as in temporal difference
learning, is problematic. This is because these pre-existing states would need to already incorporate information that can only
be acquired during the course of learning. Unlike this position, here we are merely speculating that after learning, an internal
progression of states can serve the function of externally signaled events. Similarly, we have previously postulated that such an
internal state exists during omission of a predicted reward, but only after learning of the cue-reward association.
Note 4: Some discrepancies between ANCCR simulations and experiments. We performed the ANCCR simulations
not to explicitly fit the experiments, but to motivate them. Accordingly, there are many details of the experimental conditions
that we did not include in the simulations. First, animals were trained initially using a long (Pavlovian) or medium ITI (VR),
thereby establishing that the cue onset is a meaningful event before switching to the short ITI. Second, animals are unlikely to
discriminate each change in tone frequency in the dynamic tone (80 Hz every 200 ms). Thus, we simplified the simulation and
used a 1 s interval between sensory cues under the assumption that 400 Hz would be discriminable. The potential sensory noise
in detection of frequency changes was not modeled in the simulation. Third, we did not explicitly model potential trial-by-trial
changes in eligibility trace time constant, sensory noise, or internal threshold. Fourth, we did not simulate any biophysical
mechanisms controlling dopamine release, or sensor dynamics. Thus, we did not expect to capture all experimental observations
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in the motivating simulation. One particular discrepancy is worth noting: the cue onset response in the short ITI condition is
small but positive in the experiment but negative in ANCCR. This may potentially reflect the fact that the cue onset was already
learned to be meaningful prior to the short ITI experiment.
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Supplementary Table 1: Statistical Details.

Figure Description Test Statistic p value Sample size
1g Anticipatory lick rate

across ITI (long, short)
and tone (fixed, dy-
namic)

Two-way
ANOVA

ITI: F(1) = 9.30
Tone: F(1) = 0.30
ITI x Tone: F(1) =
0.029

ITI: **p = 0.00457
Tone: p = 0.586
ITI x Tone: p = 0.865

n = 9 mice

1j Cue onset peak dLight
between conditions
(LD, SD)

Paired t-test t(8) = 6.31 ***p = 2.31×10−4 n = 9 mice

1l Slope between days
(LD condition last day,
SD condition first day)

One-sided (LD <
SD) paired t-test

t(8) = -2.07 *p = 0.0363 n = 9 mice

1l Slope between days
(SD condition last day,
SF condition first day)

One-sided (SD >
SF) paired t-test

t(8) = 2.35 *p = 0.0233 n = 9 mice

1m Slope across condi-
tions (LF, LD, SD, SF)

One-way
ANOVA

F(3) = 8.89 ***p = 1.98×10−4 n = 9 mice
1m Slope across condi-

tions (LF, LD, SD, SF)
Tukey HSD test
for multiple com-
parison of means

q = 3.83 LD vs LF: p = 0.762
LD vs SD: **p = 0.00266
LD vs SF: p = 0.952
LF vs SD: ***p = 1.70×10−4
LF vs SF: p = 0.445
SD vs SF: *p = 0.0107

n = 9 mice

2b Trial slope regression
β given previous ITI
(SD condition only)

One-sided (< 0)
one sample t-test

t(8) = -2.17 *p = 0.0308 n = 9 mice

2c Trial slope given previ-
ous ITI (SD condition
only)

Linear regression t(2671) = -4.13
R2 = 0.00634

***p = 3.77×10−5 n = 2672
trials

3e Change in velocity at
trial onset (long ITI
condition only)

One-sided (> 0)
one sample t-test

t(8) = 6.40 ***p = 1.05×10−4 n = 9 mice

3e Change in velocity at
trial onset (short ITI
condition only)

One-sided (> 0)
one sample t-test

t(8) = 7.93 ***p = 2.33×10−5 n = 9 mice

3e Change in velocity at
trial onset between
conditions (long,
short)

Paired t-test t(8) = 4.25 **p = 0.00281 n = 9 mice

3g Pre-reward velocity
between conditions
(long, short)

Paired t-test t(8) = 0.71 p = 0.497 n = 9 mice

3i Cue onset peak dLight
between conditions
(long, short)

Paired t-test t(8) = 7.59 ***p = 6.34×10−5 n = 9 mice

3l Session slope given
session IRI (both long
and short ITI condi-
tions)

Linear regression t(53) = -2.61
R2 = 0.116

*p = 0.0118 n = 54 ses-
sions

3m Slope between condi-
tions (long, short)

One-sided (long
< short) paired t-
test

t(8) = -2.09 *p = 0.0349 n = 9 mice
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Figure Description Test Statistic p value Sample size
Ext 2d Lick rate during ramp

window across condi-
tions (LF, LD, SD, SF)

One-way
ANOVA

F(3) = 0.81 p = 0.498 n = 9 mice

Ext 3b Trial slope regression
β given previous ITI
(LD condition only)

One-sided (< 0)
one sample t-test

t(8) = 0.36 p = 0.637 n = 9 mice

Ext 3c Trial slope given previ-
ous ITI (LD condition
only)

Linear regression t(1050) = 0.64
R2 = 3.85×10−4

p = 0.525 n = 1051
trials

Ext 4c Trial duration between
conditions (long,
short)

Paired t-test t(8) = 1.02 p = 0.336 n = 9 mice

Ext 4e Anticipatory lick rate
(long ITI condition
only)

One-sided (> 0)
one sample t-test

t(8) = 2.89 *p = 0.0101 n = 9 mice

Ext 4e Anticipatory lick rate
(short ITI condition
only)

One-sided (> 0)
one sample t-test

t(8) = 4.38 **p = 0.00118 n = 9 mice

Ext 4e Anticipatory lick rate
between conditions
(long, short)

Paired t-test t(8) = 1.08 p = 0.311 n = 9 mice

Ext 5b Trial slope regression
β given previous IRI
(short ITI condition
only)

One-sided (< 0)
one sample t-test

t(8) = -0.48 p = 0.321 n = 9 mice

Ext 5c Trial slope given pre-
vious IRI (short ITI
condition only)

Linear regression t(1301) = -2.11
R2 = 0.00339

*p = 0.0355 n = 1302
trials

Table 1. Statistical Details.
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