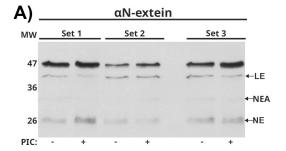
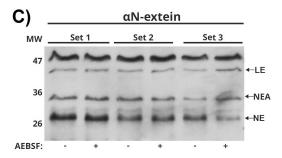
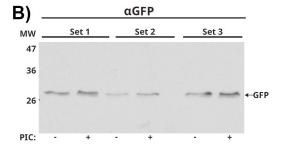
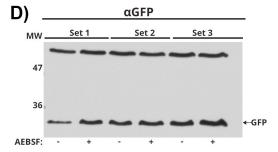

Supplemental Figure S1: RecA precursor was not detectable in other mycobacteria. M. tuberculosis $\Delta recA$ and M. smegmatis $\Delta recAX$ were complemented with intein-containing recA (NIC) or inteinless recA (NC) alleles driven by their native mycobacterial promoters. Cells were grown to mid-log and treated for 3 days with Mitomycin C to induce recA transcription and RecA production. Protein from cultures was harvested for western blotting against the N-extein, which detects ligated exteins (LE) and the N-extein (NE) as well as precursor (see Figure 1B). EP: expected size of precursor RecA, which was not detected.


Supplemental Figure S2: Schematic of experimental setup and analysis. Mtb auxotroph mc²6230 harboring a native *recA* allele and a *gfp* allele driven by the native Mtb *recA* promoters is grown to the desired phase and treated with conditions of interest (COI). If treatment induces *recA* production, RecA products and GFP will be made at a higher level compared to untreated. After treatment, total protein lysate is extracted and subjected to western blotting targeting the N-extein (left), GFP (right) or Intein (not shown). Western blots are quantitated by densitometry and the ratio of RecA product to GFP is calculated to normalize for changes in transcriptional expression.




Supplemental Figure S3: First-line therapeutics rifampicin and Isoniazid do not induce the *recA* transcription or RecA splicing. Mtb auxotrophic strain mc²6230 harboring our *recA* transcriptional reporter was grown to mid-log phase and then treated with rifampicin or isoniazid. (A) *recA* transcription in response to the two therapeutics as read by our GFP based transcriptional reporter system. (B) Western blot of RecA production in response to rifampicin or isoniazid. Error bars represent standard deviation of three biological repeats.



Supplemental Figure S4: Growth does not affect copper-induced splicing. Mtb was grown in the presence or absence of copper for seven days either standing or shaking in low oxygen conditions supplemented with carbon dioxide (LOC). A) Representative western blot with quantitative analysis of RecA ligated extein (LE) produced in response to copper in standing LOC. Error bars represent standard deviation of three biological repeats. B) Optical density of cultures grown in standing LOC conditions with copper absent (black circle) or present (open square). C) Optical densities of cultures grown in shaking LOC conditions with copper absent (black circle) or present (open square).

Supplemental Figure S5: Treatment with protease inhibitors does not affect levels of RecA or intein. Mtb mc²6230 harboring a native *recA* allele and a *gfp* allele driven by the native Mtb *recA* promoters was grown to (A, B) mid-log phase before treating with 1:1000 dilution of Sigma Aldrich's protease inhibitor cocktail for 24hrs in triplicate. (A) Western blot analysis targeting the N-extein. (B) Western blot analysis targeting GFP. (C-D) Mtb mc²6230 harboring a native *recA* allele and a GFP allele driven by the native *recA* promoters was grown to late-log phase and treated with AEBSF for 48hrs in triplicate. Western blot analysis targeted the N-extein (C) or GFP (D).

Supplemental Table S1: Strains and plasmids used in this study.

Strain	Description	Source
$mc^{2}6230$	Mtb H37Rv (∆panCD, ∆RD1)	Gift from Dr. Bill Jacobs ¹
mc²6230 <i>∆recA</i>	$recA$ knockout ($\Delta recA$, $\Delta panCD$, ΔRDI)	This Paper
Mycobacterium smegmatis mc ² 155	WT	Acquired from BEI ²
Mycobacterium smegmatis ArecAX	$mc^2 155 \ recAX \ knockout \ (\Delta recAX)$	Gift from Dr. Keith Derbyshire
E. coli BLR	△recA derivative of BL21	Novagen
E. coli BL21	For protein expression and purification	Novagen

Supplemental Table S2: Plasmids used in this study.

Designation	Description	Source
pMBC409	Single Copy, integrating (AttP) vector to express transcriptional reporters or <i>recA</i> complements; Kan ^R , Hyg ^R , Amp ^R	Described in Girardin et al ³
pMBC1809	mVenus-based <i>recA</i> transcriptional reporter; Kan ^R , Hyg ^R , Amp ^R	This Paper
pMBC2149	Full Mtb <i>recA</i> gene driven by native Mtb promoters; Kan ^R , Hyg ^R , Amp ^R	This Paper
pMBC2169	Inteinless Mtb <i>recA</i> gene driven by native Mtb promoters; Kan ^R , Hyg ^R , Amp ^R	This Paper
pMBC2290	Mtb N-extein driven by native Mtb promoters; Kan ^R , Hyg ^R , Amp ^R	This Paper
pMBC1650	pET28a+ expressing N-extein; Kan ^R	This Paper
pMBC1651	pET28A+ expressing intein; Kan ^R	This Paper
pMBC1652	pET28a+ expressing C-extein; Kan ^R	This paper

Supplemental Table S3: Primers used in this study.

Designation	Sequence	Description
KM4059	gggggatcctctagatttaagaaggagatatacatatggtga gcaagggcgaggagctg	mVenus forward
KM4138	gggaagctttgatcaccgcggccatg	mVenus reverse
KM4194	tgcagtggatcccgcaccgccagg	recA promoter forward
KM4195	cctagtggateccatggtgeeteteetgtg	recA promoter reverse
KM4345	agagatatacggcccggagt	recA qRT
KM4346	ccgagettettggcatagte	recA qRT
KM4290	acgtaaacggccacaagttc	GFPv qRT
KM4291	aagtcgtgctgcttcatgtg	GFPv qRT
KM3727	<u>gggaattc</u> acgcagaccccgatcgg	recA NE for protein purification fwd
KM3728	<u>ggaagett</u> teacttgttettgaegaeettgae	recA NE for protein purification rev
KM3729	gggaattctgcctcgcagagggc	recA intein for protein purification fwd
KM3730	ggaagetttcaacagttgtgcacgacaaccc	recA intein for protein purification rev
KM3731	gggaattctcgcccccttcaagca	recA CE for protein purification fwd
KM3732	gggagctctcagaagtcgacggggg	recA CE for protein purification rev
KM5105	gatatcgtgttgagcagatcgtcggtgatccgga	recA full complement fwd
KM5106	gcggccgctcagaagtcgacgggggggg	recA full complement rev
KM5584	gatategeetgetettegegeteagaag	recA inteinless complement NE fwd
KM5585	caaggtcgtcaagaacaagtgttcgcccccttcaagcagg	recA inteinless complement NE rev
KM5586	gaagggggggaacacttgttcttgacgaccttgacccgg g	recA inteinless complement CE fwd
KM5587	gatatcgacgccgaaaggtcagatccgg	recA inteinless complement CE rev
KM6016	aagettgageagategteggtgate	recA N-Extein only complement fwd
KM6017	aagettetaettgttettgaegaeettgae	recA N-Extein only complement rev

Supplemental References:

- 1. Sambandamurthy, V.K. *et al. Mycobacterium tuberculosis* DeltaRD1 DeltapanCD: a safe and limited replicating mutant strain that protects immunocompetent and immunocompromised mice against experimental tuberculosis. *Vaccine* **24**, 6309-6320 (2006).
- 2. Snapper, S.B., Melton, R.E., Mustafa, S., Kieser, T. & Jacobs, W.R., Jr. Isolation and characterization of efficient plasmid transformation mutants of *Mycobacterium smegmatis*. *Mol Microbiol* **4**, 1911-1919 (1990).
- 3. Girardin, R.C. & McDonough, K.A. Small RNA Mcr11 requires the transcription factor AbmR for stable expression and regulates genes involved in the central metabolism of *Mycobacterium tuberculosis*. *Mol Microbiol* **113**, 504-520 (2020).