
6 Supplementary Material: Data and Methods

6.1 SPECTRE details

6.1.1 Solution to the inverse EEG problem

Our method for solving the inverse EEG problem can be summarized as follows. Given a stan-

dard EEG dataset from N electrodes and a high-resolution anatomical (HRA) MRI dataset with

high contrast between gray matter (GM) and white matter (WM), the solution to the inverse EEG

problem can be formulated as an approximation for the volumetric distribution of electrostatic

potential inside the complex inhomogeneous and anisotropic tissues and complicated morphol-

ogy of the MRI domain (43). A general form of this approximation is based on Maxwell’s

equations in an anisotropic and inhomogeneous medium expressed as charge continuity. This is

used to derive the frequency dependent electrostatic field potential ϕ that is dependent upon the

electrical properties of the tissue permittivity, permeability, and conductivity. These parameters

can be estimated from the HRA data. In the Fourier (i.e., frequency) domain, the electrostatic

potential satisfies the equation

(
Σij − Iωεδij

)
∂i∂jϕω =

[
Iω(∂iε)δ

ij − (∂iΣ
ij)
]
∂jϕω + Fω, (1)

which is written in tensor form where a summation is assumed over repeated indices. This can

be expressed in the form L̂ϕω = R̂ϕω + F̂ω in terms of the operators L̂ ≡ ∂i∂i, a frequency

dependent source term F̂ω and the operator

R̂ ≡
σ + Iωε

σ2 + ω2ε2

[
Iω(∂iε)δ

ij − (∂iΣ
ij)−

(
Σij − σδij

)
∂i

]
∂j

where Σ = {Σij} is a local tissue conductivity tensor, σ = TrΣ/3 = Σi
i/3 is an isotropic

local conductivity. Terms in square brackets show that the parts of R̂ϕω can be interpreted

in terms of different tissue characteristics and may be important for understanding the origin

of sources of the electro-/magnetostatic signal detected by the EEG sensors. The first term
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(ω(∂iε)(∂iϕω)) corresponds to areas with sudden change in permittivity, e.g. the WM/GM in-

terface. The second term ((∂iΣ
ij)(∂jϕω)) corresponds to regions where the conductivity gra-

dient is the strongest, i.e. the GM/CSF (cerebral spinal fluid) boundary. Finally, the last term

(Σij∂i∂jϕω − σ∂i∂iϕω) includes areas with the strongest conductivity anisotropies, e.g. input

from major WM tracts. The frequency and position dependent internal sources F̂ω can be used

to incorporate various nonlinear processes including multiple frequency effects of the efficient

synchronization/desynchronization by brain waves or effects of their critical dynamics. This

term is ignored in the current paper.

The inverse problem can be solved by constructing an approximate solution for the potential

ϕ across an entire brain volume iteratively as L̂ϕ
(k)
ω = R̂ϕ

(k−1)
ω and ϕ̃

(K)
ω = αK

∑K

k=0 ϕ
(k)
ω

(43): where a single iteration forward solution is found using a Fourier-space pseudo-spectral

approach (44). Data from MRI can be used to define the complex brain tissue morphology

and constrain the tissue specific values of Σ and ε. This procedure of inverting the WETCOW

brain wave model constrained by MRI-defined tissue properties is called SPatially resolved

EEG Constrained with Tissue properties by Regularized Entropy (SPECTRE).

SPECTRE is flexible in its ability to incorporate relevant prior information from MRI data.

HRA data is useful for tissue segmentation and assignment of mean values for permittivity

and conductivity. Diffusion MRI (dMRI) data further allows construction of estimates of the

conductivity tensor anisotropy. In the present study, only HRA data were used for the estimation

procedure. One important practical point is that very often HRA data are not acquired for

participants in EEG studies. In this case it is sufficient to use HRA data from a standard atlas,

and spatially register the EEG data to the atlas. Indeed, this was case in the present paper,

where the standard 2mm, 1mm, and 0.7mm resolution T1-weighted anatomical MRI Montreal

Neurological Institute (MNI) (45) atlases were used, to which the EEG data were aligned using

our non-linear registration algorithm SYMREG (46).
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6.1.2 Mode reconstruction

The reconstructed volumetric time series of the estimated electrostatic potential field can be

thought of as similar to the EM equivalent of an fMRI dataset, containing a multitude of corre-

lated spatiotemporal patterns or “modes” of the system.

The problem then becomes one of detecting the multiple modes in complex non-linear sys-

tems. We have addressed this problem previously in our development of the entropy field de-

composition (EFD) method, which is a probabilistic framework for estimating spatial-temporal

modes of complex non-linear systems containing multivariate interacting fields. It is formally

based on a field-theoretic mathematical formulation of Bayes’ Theorem that enables the hierar-

chy of multiple orders of field interactions including coupling between fields (12, 37). Its prac-

tical utility is enabled by incorporation of the theory of entropy spectrum pathways (ESP) (47),

which uses the space-time correlations in each individual dataset to automatically select the

very limited number of highly relevant field interactions. In short, it selects the configurations

with maximum path entropy, summarized in the equilibrium (i.e., long time) distribution µ∗.

Our terminology is as follows (see Section 6.1.3 details). The k’th EFD mode of the coupled

parameters α = {α1, . . . , αm} is denoted ψ
(k)
α (x, t) where k = 1, . . . , n for some user defined

n. While each of these modes provides unique information on coherent spatio-temporal activity,

for characterizing the total brain activity it is often most useful and efficient to sum these modes:

ψ̃n =
∑n

k ψ
(k)
α (x, t). In this study we utilize both individual modes and the summed modes, as

appropriate.

A strength of the EFD method is that it uses prior information contained in individual

datasets - there are no training datasets or averages across datasets - just the prior informa-

tion contained within the single dataset of interest. This method has shown utility in resting

state fMRI data (12) and in meteorology in the application to severe local storms, in particu-

lar tornadic supercells (48). The fact that this method uses prior information embedded within
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single datasets without the need for any ’training’ is of significance to clinical studies in which

important individual variations can be lost in the averaging process. It is also particularly im-

portant in the current paper where our validation necessitates comparison with single subject

studies.

6.1.3 Entropy Field Decomposition

The entropy field decomposition (EFD) is a general probabilistic method for the estimation

of spatial-temporal modes of complex non-linear, non-period, non-Gaussian multivariate data

(12, 37). The goal of EFD is to estimate the field ψ(x, t) that describes a continuous (in both

space x and time t) parameter space from which the signal sl are discrete samples of sl =
∫
ψ(ξ)δ(ξ − ξl)dξ. In general, this can be done by constructing the posterior distribution of

ψ(x, t) given the data d and any prior information I that is available, via Bayes’ Theorem

re-expressed in the language of field theory (49) as

p(ψ|s, I) =
e−H(s,ψ)

Z(s)
(2)

where Z(d) = p(d|I) =
∫
dψ e−H(s,ψ) is the partition function (considered a constant in this

application) and H(s, ψ) = − ln p(s, ψ|I) is the information Hamiltonian which takes the form

H(s, ψ) = H0 − j†ψ +
1

2
ψ†D−1ψ +Hi(s, ψ) (3)

where H0 is essentially a normalizing constant that can be ignored, j and D are the information

source and propagator, and † means the complex conjugate transpose. Hi is an interaction

term (49)

Hi =
∞∑

n=1

1

n!

∫
· · ·

∫
Λ(n)
s1···sn

ψ(s1) · · ·ψ(sn)ds1 · · · dsn (4)

where Λ
(n)
s1···sn terms describe the interaction strength. In highly complex non-linear systems, j,

D, and Λ
(n)
s1···sn are often unknown and too complex for deriving effective and accurate approxi-

mations. In this case the ESP method (47), based on the principal of maximum entropy (50,51),
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provides a general and effective way to introduce powerful prior information to find the most

significant contributions to H(d, ψ) by using coupling between different spatio-temporal points

that is available from the data itself. This is accomplished by constructing a coupling matrix

that characterizes the relation between locations i and j in the dataQij = e−γij where the γij are

Lagrange multipliers that describe the relations and depend on some function of the space-time

locations i and j. The eigenvalues λk and eigenvectors ϕ(k) of the coupling matrix Q

∑

j

Qijϕ
(k)
j = λkϕ

(k)
i (5)

then define the transition probability from location j to location i of the k’th mode as

pijk =
Qji

λk

ϕ
(k)
i

ϕ
(k)
j

(6)

For each transition matrix (6) there is a unique stationary distribution associated with each path

k:

µ(k) =
[
ϕ(k)
]2

where µ
(k)
i =

∑

j

µ
(k)
j pijk (7)

where µ(1), associated with the largest eigenvalue λ1, corresponds to the maximum entropy

stationary distribution. Note that (7) is written to emphasize that the squaring operation is

performed on a pixel-wise basis.

The essence of the EFD approach (12,37) is to incorporate these coupling matrix priors into

the information Hamiltonian (3) by expanding the signal s(x, t) into a Fourier expansion using

{ϕ(k)} as the basis functions

si =
K∑

k

[
akϕ

(k)
i + a†kϕ

†,(k)
i

]
(8)

which allows expressing the information Hamiltonian (3) in this ESP basis as

H(d, ak) = −j†kak +
1

2
a†kΛak +

∞∑

n=1

1

n!

K∑

k1

· · ·

K∑

kn

Λ̃
(n)
k1···kn

ak1 · · · akn (9)
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where matrix Λ is the diagonal matrix Diag{λ1, ..., λK}, composed of the eigenvalues of the

coupling matrix, and jk =
∫
j ϕ(k)ds is the amplitude of kth mode in the expansion of the

source j and the new interaction terms Λ̃(n) are

Λ̃
(n)
k1···kn

=

∫
· · ·

∫
Λ(n)
s1···sn

ϕ(k1) · · ·ϕ(kn)ds1 · · · dsn (10)

from which can be derived (12, 37) a simple expression for the solution for the amplitudes ak

Λak =

(
jk −

∞∑

n=1

1

n!

K∑

k1

· · ·
K∑

kn

Λ̃
(n+1)
kk1···kn

ak1 · · · akn

)
(11)

through the eigenvalues and eigenvectors of coupling matrix.

The EFD methods can be extended to multiple modalities by incorporating coupling be-

tween different parameters, which we call Joint Estimation with Entropy Regularization (JESTER)

(52). For m = 1, ...,M different modalities d(m) with the coupling matrices Q(m) that all cor-

respond to the same unknown signal s, intermodality coupling matrix can be constructed as the

product of the coupling matrices for the individual modalities expressed in the ESP basis and

registered to a common reference frame, which we denote Q̃(m): That is, the joint coupling

matrix is Q
(m) =

∏
m Q̃

(m). More specifically, the joint coupling matrix Qij between any two

space-time locations (i, j) can be written in the general (equivalent) form as

lnQij =
M∑

m=1

β
(m)
ij ln Q̃

(m)
ij (12)

where the exponents β(m) can either be some constants or functions of data collected for dif-

ferent modalities β
(m)
ij ≡ β(m)(d̃i, d̃j), d̃i ≡ {d̃

(1)
i , ..., d̃

(M)
i } where d̃

(m)
i and Q̃

(m)
ij represent,

respectively, the data and the coupling matrix of the modality dataset m represented in the ESP

basis and evaluated at locations ri and rj of a common reference domain R:

d̃
(m)
i = d(m)

(
ψ(m)(ri)

)
, Q̃

(m)
ij = Q(m)

(
ψ(m)(ri), ψ

(m)(rj)
)

(13)

where ψ(m) : R → X denotes a diffeomorphic mapping of m-th modality from the reference

domain R to an acquisition space X .
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6.2 Comparison with functional MRI

Functional MRI (fMRI) has become the de facto neuroimaging method for spatial and temporal

localization of brain activity. The contrast mechanism that forms the basis of fMRI is the blood

oxygenation level dependent (BOLD) variations in the magnetic state of hemoglobin and its in-

fluence on the local MRI signal as a function of the local metabolism and hemodynamics (53).

Consequently, the spatial and temporal characteristics of the fMRI signal are related to blood

flow and metabolic dynamics, rather than direct measures of electrical activity. In particular, the

signal variations will be spatially localized in vascular pathways and the temporal variations,

being related to blood flow effects, are very slow compared to electrical activity. In short, the

spatial-temporal dynamics measured by fMRI need not (and, in fact, will not) correspond ex-

actly to the spatial-temporal patterns of electrical activity. Numerous experimental realities also

make fMRI problematic as a gold standard. In particular, fMRI is facilitated by enhancing the

sensitivity of MRI to the BOLD contrast mechanism, which requires enhancing the sensitivity

to local magnetic field variations through the use of T2-weighted pulse sequences (54) which

lead to increased geometric distortions, compromising not only spatial resolution but confound-

ing the spatial localization of the activity in a complex, non-linear fashion. Gross distortions can

lead to significantly reduced signal-to-noise and even completely unrecoverable signal loss, par-

ticularly in regions near air/tissue interfaces, such as in the prefrontal cortex (PFC). Moreover,

the complex non-linear interactions between the magnetic fields and physiological variations

such as respiration and cardiac pulsations produce a variety of complex spatiotemporal signal

distortions (55). While mitigating these artifacts is an area of very active research, they remain

a serious problem for fMRI.

Nevertheless, certain very simple task-based fMRI experimental paradigms, such as finger

tapping or rapidly flickering checkerboard stimuli, repeated at periodic on/off intervals, have

been established as experiments that produce repeatable robust activations in known brain net-
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works, and are commonly used as basic testbeds for assessment of analysis algorithms. When

combined with simultaneous EEG acquisition, such experiments provide two different types of

data that can be compared as a form of validation, with the proviso that these two methods are

imaging different physical quantities.

6.3 Comparison with state-of-the-art Source Localization methods

There is a long history of attempts to spatially localize EEG activity and these are generally

called “source localization” methods (56–59). These methods are fundamentally different from

the SPECTRE approach as they involve numerous stringent assumptions about brain electrical

activity such as a fixed set of static dipole sources, an idealized geometric model of the head

reduced to a few (typically 3) shells, that spatially close points are more likely synchronized,

and the smoothness of the solution. (see (60) and references therein).

These methods all implicitly assume the “quasi-static” approximation to the EM field equa-

tion which entails ignoring the time dependent terms in Maxwell’s equations, which are depen-

dent on tissue conductivity properties which are themselves frequency dependent. The resulting

solutions are therefore static, have no frequency dependence, and are insensitive to the detailed

spatially variable electrical properties of the tissues. However, as discussed in detail in the de-

velopment of the WETCOW model (7–9), these assumptions are incompatible with the basic

physics of brain electrical activity. The SPECTRE approach is to employ the WETCOW model

and solve the actual physical problem of the complete Maxwell’s equations in an inhomoge-

neous and anisotropic medium. The WETCOW theory provides a comprehensive framework

for characterizing the propagation of EM fields through the complex brain tissue microstructure

and larger scale morphology (e.g., cortical folding), and provides the dynamic solution to the

electric potential field necessary to solve the EEG inverse problem.

The pseudo-spectral computational approach used in SPECTRE has some important ad-
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vantages over the finite/boundary element approaches typically used for electrostatic modeling

of brain activity (61–67). It does not use surface meshes and so does not require limiting the

location of sources to a small number of surfaces with fixed number of static dipole sources con-

strained to the surfaces. And the distribution of both electrostatic and geometric properties of

the media (conductivity, permittivity, anisotropy, inhomogeneity - derived from the MRI data)

are incorporated at every location throughout the volume. It is thus able to find a time dependent

spatial distribution of the electrostatic potential at every space-time location of a multidimen-

sional volume as a superposition of source inputs from every voxel of the same volume (43).

These traits allow it to model wave-like signal propagation inside the volume and can detect and

characterize significantly more complex dynamical behavior of the sources of the electrostatic

activity recorded at the sensor locations than traditional methods.

To understand intuitively why SPECTRE is capable of reconstructing EM activity through

the entire brain, including deep within subcortical structures, a simple idealized example is help-

ful. Consider two point current sources of different frequencies, one in the cortical layer close

to the scalp, the second deep within the subcortical structures of the brain. Consider a single

sensor placed on the scalp collinear with the two sources. Standard source localization methods

will not see the deep source, since there is no frequency dependence, and the signal falloff is

simply a function of the distance from the sensor. Therefore, the close source completely dom-

inates the signal model. Since all tomographic imaging methods (e.g., MRI, CT, etc.) depend

strongly on both the spatial and temporal sampling of the measured physical system, this effec-

tive invisibility of currents in the standard quasi-static model essentially precludes the solution

of the true inverse EEG problem and necessitates the artificial construction of assumed dipole

distribution on pre-chosen artificial internal structures. In contrast, in SPECTRE the sources

are not dipoles, but frequency sources that extend throughout the entire brain volume subject to

the boundary conditions imposed by both the tissues geometry and its spatially and frequency

37



dependent properties. The surface electrodes are assumed to be sensing EM waves emanating

from the entire brain across a broad frequency spectrum limited only by the sensors. Used

in conjunction with an HRA MRI data that provides the spatial distribution of the frequency-

dependent tissue electrical properties that constrain the possible solution, SPECTRE can invert

the wave equations to provide an estimate of the spatiotemporal distribution of the electric field

potential.

The problem of spatially localizating the EEG signal involves estimating the most prob-

able distribution of electric field amplitudes given an array of sensors. This is essentially a

problem of correctly modeling the physics of how electromagnetic waves propagate through

the complex environment of a the convoluted brain tissue morphology and the anisotropic and

inhomogeneous nature of brain tissue. The current state-of-the-art approach to this problem,

called ’source localization’ such as low resolution electromagnetic tomography or LORETA al-

gorithm with its many variations (56–59), also called ’EEG source imaging’ (68, 69)) involves

using a pre-defined brain atlas, arbitrarily placing dipole source on the surface, and calculat-

ing the contribution from these sources. Some methods propose using fMRI as a prior, which

has the disadvantage of requiring fMRI acquisitions (70–73). The current source localization

methods are based on a static model for the electric field caused by a fixed set of pre-defined

dipole sources. (see (2) for a review of current methods). This model is inherently limited

because in reality the brain’s electrical field variations are time dependent and generated by an

essentially continuous distribution of sources throught the entire brain. This description is the

essence of the WETCOW theory (7–9) which describes how highly coherent localized elec-

tric field phenomena, such as cortical wave loops and synchronized spiking, are produced by

the complex non-linear interactions of waves across multiple spatial and temporal scales. In a

typical application of the SPECTRE method, we use MNI volumetric grid with 2mm (902629

voxels), 1mm (7221032 voxels), or 0.73mm (11393280 voxels). All voxels in our models are
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considered sources of electromagnetic activity consistent with the local intravoxel tissue char-

acteristics (via (1)) rather than an assumed dipolar form. In an attempt to compare SPECTRE

with current state-of-the-art source localization method, we downloaded the currently available

LoretaKey1 software (59), which uses a set of 6239 fixed dipoles. In order to make a fair com-

parison, we tried to use LoretaKey1 with a number of dipoles comparable to our 2mm number

of voxels. We found that LoretaKey1 is not able to handle this size due to “out-of-memory”

crashes. We scaled down the number of dipoles in 2, 4 , 10 and 20 times. Only with around

45K dipoles were we able to make Loreta run. It ran for approximately 24 hours, but then again

crashed due to out-of-memory problems. Our processing with 2mm, requires around 650Mb

of memory. At this point it was decided that it was not possible for Loreta to provide a result

that would usefully inform the efficacy of the SPECTRE method. Our highest 0.73 resolution

processing can be completed on a modern workstation taking 16-20Gb of memory in a matter

of minutes.

6.4 Data

6.4.1 Attention paradigm data

Simultaneous EEG/fMRI acquisition: Functional and structural MRI images were acquired

on a Siemens 3T TIM-Trio scanner (NKI Center for Biomedical Imaging and Neuromodulation)

equipped with a 32-channel phased array head coil. Structural T1 and T2 scans were collected

using standard sequences. Whole-brain BOLD data was acquired with a gradient-echo EPI

sequence (TR=2000ms;TE=30ms;flip angle=80°). EEG data were acquired concurrently with

fMRI using an MR compatible EEG amplifier (BrainVision MR series, Brain Products, Munich,

Germany) and a 64-channel MR-compatible ring electrode cap with 10–20 International System

electrode placement cap. EEG data was sampled at a rate of 5 KHz EEG data were acquired at a

rate of 5 KHz using BrainVision Recorder software (Brain Products). Electrocardiographic data
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were captured from electrodes on the backs of subjects. The reference electrode was positioned

between Fz and Cz. Scanner and heartbeat artifacts were removed offline from the EEG signal

using an average template subtraction procedure (74) and the data was resampled to 250Hz.

Traditional EEG analysis: The single-trial EEG signal from each electrode was convolved

with a 3-cycle Morlet wavelet computed over a 3 second window centered at the onset of each

stimulus and averaged separately for each stimulus type. The averaged spectral amplitude at

each time point was then baseline corrected by subtracting the mean spectral amplitude over

the −200 to −50 pre-stimulus interval. Further details of post-processing and time-frequency

analyses methods are described in (75–77).

6.4.2 Reward circuit data

Task and Design Acquisition Participants completed a simple gambling task (36). On each

trial, they saw a black fixation cross for 500 ms, followed by two colored squares for 500 ms,

and then, the fixation cross turned gray (go cue) and participants were to select one of the two

squares (square locations—left, right—were randomized on each trial) within a 2,000 ms time

limit. They were then presented with a black fixation cross for 300 to 500 ms, and then, simple

feedback as to their performance (“WIN” for gain, “LOSE” for loss) for 1,000 ms in black

font. If the participants responded before the go cue they were instead delivered “TOO FAST”

feedback and if they did not respond before the 2,000 ms time limit, it would be considered

a loss. The goal of the participants was to accumulate wins by determining which of the two

squares would more often lead to gains (60% vs. 10%). In this task, participants accumulated

wins; however, were not paid money. They would see the same pair of colors for one block of

20 trials. They conducted six blocks of unique color pairs.

40



Participants Five hundred undergraduate students were included and were recruited via the

University of Victoria psychology participant pool (see (36) for details). The data was collected

until 500 participants became available that were not characterized by one of the following a

priori criteria: trial count after artifact rejection were less than 15 per condition, total artifact

rejection exceeded 40% of trials rejected, FCz (electrode of interest) specific artifact rejection

exceeded 40% of trials rejected, or independent component analysis based blink correction

failed. These criteria were extremely strict to ensure clean data in the analyses, and as such

a total of 637 participants were analyzed before reaching the goal of 500 clean participants.

All participants had normal or corrected-to-normal vision and volunteered to take part in the

experiment for extra course credit in a psychology course. All participants provided informed

consent approved by the University of Victoria’s Human Research Ethics Board.

Data Acquisition and Preprocessing EEG data were recorded from either a 64 or 32 elec-

trode (Ag/AgCl) EEG system (ActiCAP, Brain Products, GmbH, Munich, Germany) using

Brain Vision Recorder (Version 1.21.0004, Brain Products GmbH, Munich, Germany). During

recording, electrodes were referenced to a common ground, impedances were kept below 20

kΩ on average, data were sampled at 500 Hz, and an antialiasing low-pass filter of 245 Hz was

applied via an ActiCHamp amplifier (Revision 2, Brain Products GmbH, Munich, Germany).

Stimuli and EEG markers were temporally synced using a DataPixx stimulus synchronization

unit (VPixx, Vision Science Solutions, Quebec, Canada)

Data were re-referenced to an average mastoid reference and filtered using a 0.1 to 30 Hz

passband (Butterworth, order 4) and a 60 Hz notch filter. Correction for eye blinks was per-

formed using EEGLAB’s independent component analysis (ICA). Components reflective of

blinks were manually identified and removed via topographic maps and component loadings,

and data were reconstructed. Data were then segmented from −500 to 1, 500ms relative to
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feedback stimulus onset, baseline corrected using a −200 to 0ms window, and run through

artifact rejection with 10µV/ms gradient and 100µV maximum–minimum criteria. Data were

pre-processed to identify noisy or damaged electrodes using artifact rejection trial removal rates

for each electrode.

The 1 second of recorded sequence for each ”WIN” or ”LOSE” event were extracted from

recordings for each participants (with 22 ms of pre-event sample and 488 ms of post-event

sample) and combined together to form separate winning and loosing datasets. Each of those

datasets were processed using SPECTRE to construct the approximate inverse solution for the

potential ϕ across an entire 2 mm MNI brain volume.
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