Supplementary Material for
“How trustworthy is your tree? Bayesian phylogenetic effective
sample size through the lens of Monte Carlo error”

Visualizing convergence of a single chain

To explore the uncertainty of estimates from a single MCMC chain through time,
we employ a block-bootstrap approach in which we resample from the MCMC sample
[Politis, 2003, Suchard et al., 2003]. This approach requires a vector of subsample sizes,
ni,...,ns. For a given subsample length n;, we define the batch size to be b = |\/n;]
and the number of batches a = |n;/b]. The summary tree is computed for the first
ab samples of the real chain, and then for some number of bootstrap replicates r we
re-estimate the summary tree. We use block-bootstrapping to preserve autocorrelation
in the samples. Thus, for each of the r bootstrap replicates (at a given n;), we draw a
starting indices uniformly on 1,...,n — b+ 1, and concatenate the resulting a blocks
of length b into a bootstrap replicate chain. Then we compute the median RF distance
from the real-chain-subsample summary tree to the r bootstrap replicates, as well as the
5th and 95th percentiles. As the longer subsamples of the real chain include the shorter
subsamples (all real-chain subsamples start at the first sample), this procedure allows
us to track how the summary tree converges over the course of the MCMC run. We
can similarly track split or topology probabilities over the course of the run, in which
case we use the average standard deviation of split frequencies (ASDSF) [Lemey et al.,
2009] and the Euclidean distance, respectively, to compare the real chain estimates to
the bootstrap estimates.

In Figure S1, we explore the convergence behavior of chain 1 of the Paroedura dataset
using three summary measures. These measures are the ASDSF between bootstrap and
real-chain split probabilities, the Euclidean distance between bootstrap and real-chain
estimates of the vector of split probabilities, and the RF distance between bootstrap
and real-chain summary trees. While both the split probabilities and tree probabilities
appear to converge relatively well (the ASDSF quickly declines below the usual field-
standard for good convergence of 0.01), there is still considerable Monte Carlo variability
evident in summary trees. This pattern holds across all datasets and almost all chains,
indicating that classical ASDSF cutoffs for convergence of chains are not guarantees
of the convergence of summary trees from those chains. We note, however, that this
can only ever help determine whether estimates from a single run have stabilized. To
diagnose issues such as convergence to a local mode, practitioners must run multiple
chains. We note that this is suggested as standard practice [Lemey et al., 2009] and
is a widely available option, including in BEAST [Suchard et al., 2018] and RevBayes
[Hohna et al., 2016], and is the default in MrBayes [Ronquist et al., 2012].
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Figure S1: Monte Carlo error visualized over the length of one chain of the Paroedura dataset from
Scantlebury [2013]. The top and bottom rows are equivalent except that the z-axis is scaled to the
absolute number of MCMC samples (top), and the split-frequency ESS (bottom). The left column plots
the ASDSF between bootstrap replicate estimates of the split probabilities and the split probabilities
estimated from the first n; samples of the chain. The central column plots the Euclidean distance
between bootstrap replicate estimates of the (vector of) tree probabilities and the (vector of) tree
probabilities estimated from the first n; samples of the chain. The right column plots the RF distance
between bootstrap replicate estimates of consensus trees and the consensus trees estimated from the first
n; samples of the chain. The different colors show consensus trees constructed with different minimum
inclusion probabilities of splits, such that the purple curve shows the classical MRC tree, and the yellow
curve shows a consensus tree containing only splits with 95% probability. In all cases, the dark lines
are the median and the shaded region is the central 90% range.

More efficient simulated phylogenetic MCMC

Recall that our simulated phylogenetic MCMC is based on real-data phylogenetic
posterior distributions, potentially truncated. This consists of a vector of trees, T, and
an associated probability mass function, Pr(7) (we use the hat as a reminder that this
target is based, indirectly, on real data). We use NNIs to move between tree topologies,
by uniformly drawing a tree from the set of neighbors, N(¥). Then we accept or reject
according to the estimated topology probability 1/3}(111) (any tree not in the real-data
posterior has probability 0). If we redefine N(¥) to instead be the NNI neighbors of ¥
with positive probability (e.g. ¥ € 7, which also requires far less storage), we can instead
simulate the proposal in two steps. First, draw u ~ Uniform(0, 1), and if u < |N(¥)|/|N]|
(where |N| is the number of NNT neighbors of any tree in the posterior), we draw our
proposed tree U* uniformly at random from N(¥) and set A = min(1, Pr(¥*)/Pr(¥)).
Otherwise, we have drawn a tree outside the set of supported neighbors of ¥ (U* & 7)
and we do not need to specify which tree, as in this case it has probability 0 and so
A = 0 and we will always reject the proposal. Then we accept or reject the move
with probability A and proceed normally. This approach requires us only to know what
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trees in the support of the posterior are neighbors, which for real phylogenetic posterior
distributions is a much smaller set than the set of all NNI neighbors.

Explicit definitions and derivations of tree ESS measures

In the following sections, we present more thorough derivations of the frechetCorrelationESS
and approximateESS use in the main text, and derivations for 6 other potential tree ESS
measures. We have not presented these additional ESS measures in the main text as
their performance is at best no better than the performance of the methods presented
above, and in some cases is markedly worse (Figures S5-S7). The ten total methods
fall into the same three categories as the main text and are (using * to denote those
appearing in the main text):

e ESS measures based on Fréchet generalizations of Equation 5 to trees

+The Fréchet Correlation ESS (frechetCorrelationESS)
The split frequency ESS (splitFrequencyESS)

e ESS measures based on projecting the tree to a single dimension and computing
the ESS of that using standard univariate approaches

The folded rank-medoid ESS (foldedRankmedoidESS)
*The median pseudo-ESS (medianPseudoESS)

*The minimum pseudo-ESS (minPseudoESS)

The total distance ESS (totalDistanceESS)

The classical multidimensional scaling ESS (CMDSESS)

e Ad-hoc ESS measures

+The approximate ESS (splitFrequencyESS)
The unsmoothed bootstrap jump-distance ESS (jumpDistanceBootstrapUnsmoothedESS)
The (smoothed) bootstrap jump-distance ESS (jumpDistanceBootstrapESS)

Calculating the ESS by generalizing previous definitions

In this section, we provide more in-depth derivations of our two ESS approaches
that generalize Equation 5 using concepts borrowed from the notions of Fréchet mean
and Fréchet variance. For a continuous random variable X, the sample mean minimizes
the sum of squared deviations to all sampled points. The Fréchet mean generalizes this
concept to other metric spaces and higher dimensions by keeping the idea of minimizing
the sum of squared distances. The Fréchet mean of a set of samples is,

T = argmin, Z d(zi,y)?,

i=1
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where d(-,-) is a distance metric. Note that for the rest of this subsection on Fréchet
generalizations of univariate ESS approaches, we will use T to refer to the Fréchet
mean. The Fréchet mean may not be unique, in which case the collection of values
that minimize the sum of squared distances are known as Karcher means. Where the
variance is the average squared deviation from the mean, the Fréchet variance is the
average squared distance from the Fréchet mean. In the case where X is continuous and
one-dimensional and d(-,-) is the Euclidean distance, the Fréchet mean is the mean and
the Fréchet variance is the variance.

These definitions take some adaptation to the setting considered here. When using
RF distances between trees, one can think of an “RF space” where topologies are en-
coded as a binary vector. For a tree with ny.y, tips, there are 2™taxa — ny,. . possible
non-trivial splits. Thus we can represent a tree as a vector of length 2"taxa —ny, ... which
has a one entry exactly when the corresponding split is present in the tree. There are
Naxa — 3 non-trivial splits in a fully resolved tree, thus the sum of entries in such a
vector representation is niaxa — 3. The Hamming distance (or equivalently the Manhat-
tan distance) between two trees represented as coordinate vectors in RF space is the
classical RF distance. This also means that we only need to consider coordinates in RF
space which are non-zero in at least one tree in the set. As we use RF distances in this
paper, all this work can be seen to live in RF space.

The frechetCorrelationESS

In this section, we will explore how to generalize the sum-of-correlations ESS of Equa-
tion 8 to trees. To do so, we first review several key identities, including relationships
between pairwise distances and both covariance and variance. For two real-valued vari-
ables, X and Y, we can express the expected squared Euclidean distance as a function of
the variances, the difference in means, and the covariance. For convenience, we will write
A% = (X~ Y) Then, taking advantage of the fact that Cov(X,Y) = E[XY]|-E[X]E[Y],
we get,

E[A%] =E[(X ~Y)?]
= E[X?] - 2E[XY] + E[Y?]
(X) + E[X]? + Var(Y) + E[Y]? — 2(Cov(X,Y) + E[X]E[Y])
= Var(X) + Var(Y) — 2Cov(X,Y) + (E[X] — E[Y])?
(X) 4+ Var(Y) — 2Cov(X,Y)

Where the last line follows because (E[X] — E[Y])? > 0. The last two lines of this
equation block rearrange to:

1
Cov(X,Y) = 5 (Var(X) + Var(Y) - E[A?] + (E[X] — E[Y])?). (10)
If E[X] = E[Y], then we have the approximate equality,

Cov(X,Y) ~ %(Var(X) + Var(Y) — E[A?) (11)
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It is worth noting that the sum of pairwise distances for a sample of a random
variable can be used to estimate its variance.

V() = oy e -9 = ICEEOR (12

To show this, first we need that,
S @i—a)P =20 (¢ — )% (13)
i i

This can be shown as follows,

ZZ(% — ) = ZZ((% - 7) = (z; - 7))
j _ Zim —7)? = 2w — 7) (2 — 7) + (0 — )’
—anZ—x +nz —QZZ (z; — )
:2nZ( i — ) —222 : : f)
ZQnZ ; — ) _222@% ;7 — ;7 + T°)

=2n Z(xZ —-z)2-2(n 5B2 —n?z2% — n?z? + n?7?)

Having shown that Equation 13 is true, from it we can get,

K2

And Equation 12 results by noting that,
DD wi—w)? =2} (@i —ay)?
7 7 7>

(We note this relationship can also be derived analogously to Equation 10 by letting X
and Y be IID.) Letting d(-, -) be a distance measure, we can write a Fréchet generaliza-
tion of Equation 12 as,

Var( Py} Zd T, 15)? (15)

]>l

In the same way that mean and variance can be generalized using the Fréchet mean
and variance, Equation 10 allows us to generalize covariance to a Fréchet covariance.



6

This is accomplished by defining Var(X) and Var(Y") to be the Fréchet variances, E[X]
and E[Y] to be the Fréchet means, and redefining A? = d(X,Y)?. Note that E[A?] is
simply the average distance between X and Y,

1= %Zd(xivyi)Z- (16)

Thus, we can get a single-dimensional summary of the dependency of two random vari-
ables, and compute a single ESS measure for a high-dimensional object. Equation 11 is
particularly useful in this circumstance because it avoids the need to compute the topo-
logical mean of a set of trees, E[X] and E[Y], which may not be unique. Equations 15,
and 16 are also useful, and they allow us to compute everything we need for Equation 11
from the sample distance matrix.

To compute the ESS for trees using Equations 8 and 11, we specifically need to be
able to compute the Fréchet autocorrelation ps of the chain at time lag ¢, and thus
X and Y are actually X; and X;y,. If the chain is stationary, then the mean does
not change over time, and we should expect that E[X;] ~ E[X;;], and the use of
Equation 11 rather than Equation 10 is justified. If instead of trees we had a time
series of a Euclidean variable X, the estimated autocorrelation is the sample Pearson
correlation coefficient between samples at the given time lag,

- COV(Xt,Xt+6) (17)

\/Var Var Xt-’ré)

For trees, instead we use Fréchet variances and Equation 11 to get an approximation to
the Fréchet covariance, and plug this into Equation 17,

5, 3Var(ry) + Var(rey,) - BA%) (18)

VVar(ro) Var(res.)

Once we obtain our estimates ps, we use Equation 8 to estimate the ESS. We call this
approach the Fréchet correlation ESS, or frechetCorrelationESS. In this set up, we must
estimate Var(7;), Var(1;4), and E[A?], which we compute using Equations 15 and 16.
Let n be the total number of tree samples, T be the vector of tree samples, and let us
define T4, T¢ys to be the pair of vectors of trees separated by time lag s. Then, we can
compute the terms as,

n—s—1 n—s

Var(rt):(n_s)n_s_l SN dmT)?

=1 j=i+1

@(Tt+s) =

(n—s Z Z 7_277—] a

1=s+1 j=14+1

1 n—s
A2] = P ; d(Ti,TH_t)Q




Given that most distances will appear in several calculations, it is most efficient to
pre-compute the sample distance matrix D with D;; = d(7;, 75).

In practice, while the above definition could theoretically permit ESS > n, we enforce
frechetCorrelationESS < n.

The splitFrequencyESS

Our next generalization approach we term the split frequency ESS, or splitFrequencyESS.
This is a generalization of the univariate Vats and Knudson [2021] estimator of the ef-
fective sample size, which we will call the batch means ESS, which we will now review.
The batch means ESS is based on the relationship,

o -2

ESS =nor, (19)
/\2
L

where 5\% is an estimate of the limiting variance (02 ) and 62 is the estimate of the
posterior variance computed from the samples. Let X be the vector of MCMC samples,
B be a batch size (define a to be the according number of batches), and Y the vector of
batch means, with ¥; the mean in the ith batch (subset of the chain). Then, Vats and
Knudson [2021] define,

. B <« _

Ap =7 D (Yi— X)*

i=1

To use the batch means approach in practice, the batch size must scale with n. Following
Vats and Knudson [2021], we use a batch size b = |n'/2]. Then, the estimate of the
limiting variance from the batch-means approach is given by,

5‘2L = 25‘% - 5‘5/37

where S\g /3 is computed using a batch size [b/3] [Equation 5, Vats and Knudson, 2021].

To apply the batch means ESS to trees, we represent trees as vectors of splits. We
now walk through this generalization. If the posterior distribution contains S non-trivial
splits, s1, ..., sg, then we transform the vector of trees into a matrix, where in each row
we represent that tree as its vector of coordinates in RF-space X. Namely,

1 ifs; €y,
X5 = _—
0 otherwise,

As our distance metric we take the Euclidean distance, so the Fréchet mean is the
arithmetic mean, X. We choose a batch size b that scales with n (we use |n'/?]). Again,
a = |n/b] is the number of batches, and Y the matrix of batch means, with Y; the
vector of means in the ith batch (subset of the chain). For a fixed split 7,

L
Yij = 3 Z Xj-

k=(i—1)b+1
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We use a Fréchet-based generalization for 5\5, namely,

a

M= b > d(Y, X)*.

i=1

Similarly, We use a Fréchet-based generalization for 62,

T

that all the batch means,Y’;, are in fact the split frequencies (or estimates split prob-
abilities) in those batches, and the global mean, X are the marginal split frequencies
across the entire posterior distribution. We thus call this the split frequency ESS, or
splitFrequencyESS.

Given these modified 5\5 and 62, we use Equation 19 to compute the ESS. We note

Approaches to calculating the ESS by projecting the tree to a single dimension

All dimension-reduction approaches entail first transforming the trees into a 1-D
representation, then taking the ESS of that. We use the The R package coda [Plummer
et al., 2006] implementation of the ESS, and before we discuss our approaches we first
outline how it works.

The ESS computation in coda

The R package coda [Plummer et al., 2006], commonly used for MCMC diagnostics,
fits an autoregressive model to the MCMC samples to estimate the ESS. Specifically,
the coda estimate of the ESS, which we will call the power spectrum ESS, is,

-2
ESS = no%, (20)
I'(0)

where F/(a) is an estimate of the power spectrum at frequency 0 [see Heidelberger and
Welch, 1981, for details], and 62 is the estimate of the posterior variance computed
from the samples. This follows from Equation 5 and the fact that the standard error of
the mean of a covariance-stationary process is I'(0)/n [Heidelberger and Welch, 1981].
The power spectrum at 0, I'(0), can be linked to the autoregressive parameters by,

2
e

1= ¢)°

g

I(0) =

where o2 is the error variance (the variance unexplained by the autoregressive model,
also called the noise variance), also called the noise variance [Von Storch and Zwiers,

2001]. In practice, coda estimates I'(0) using an autoregressive process of unknown order
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p. With an estimated order, p, a fitted set of autoregression coefficients ¢1, ..., ¢5, and
an estimated error variance 62, the estimate is,

— 52

ro=——=——s.
1=7 )

The foldedRankmedoidESS

Vehtari et al. introduce two new approaches for computing ESS measures, one of
which, the folded rank-transformed ESS, can be co-opted for phylogenies relatively
painlessly [Vehtari et al., 2021]. For a real-valued parameter z, this ESS is computed
for the transformed variable z, where there are a few layers of transformations:

¢ = |z — median(z)|,

r = rank((),

e 3/8 .

n—1/4

The first step is to “fold” the variable, and track the absolute deviations from the me-
dian. Then a rank transformation is applied, which stabilizes for any extreme deviations.
Lastly, a Normal inverse-CDF is applied (with an offset). Vehtari et al. [2021] then take
the folded rank-transformed ESS to be the ESS of z using Equation 8. In the case there

is not a unique medoid tree, we compute the ESS using all possible reference trees and
take the minimum.

To use this approach for trees, we make a few generalizations, and we call the re-
sulting ESS the foldedRankmedoidESS. First, we replace the sample median with the
medoid, which is a generalization of the median to higher dimensions. Specifically, the
medoid tree is the (sampled) tree with the minimum sum of distances to all other sam-
pled trees, medoid(7) = argmin ), d(¥, ;). Then, we replace the absolute divergence

ver

with the distance (in one dimension, these are equivalent). The foldedRankmedoidESS
is computed for the transformed variable z, where we obtain z through the following
transformations:

¢ = d(7, medoid(1)),

r = rank((),

= (F500)

The totalDistanceESS

As an alternative to picking a specific reference tree, as in the foldedRankmedoidESS,
medianPseudoESS, or minPseudoESS, we also consider an ESS based on the sum of
distances between each tree and all the other trees. In this setup, we compute the ESS
of the transformed variable y, defined by y; = Z?Zl d(r;,7;). We call this the total
distance ESS, or totalDistanceESS.
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The CMDSESS

We also consider multidimensional scaling of the (squared) distance matrix D? to
compute an ESS. Specifically, we use classical multidimensional scaling. This approach
seeks to find a matrix Y which minimizes a loss function called the strain between
Y and the B, a doubly centered version of D. As our new variable we take the first
column of the new matrix, Y .; We call this the classical multidimensional scaling ESS,
or CMDSESS.

Ad-hoc approaches to computing the ESS

If we define sy to be the time lag at which samples from our MCMC become in-
dependent of each other, then we could somewhat conservatively estimate the ESS as
n/so. This approach can be seen as a naive implementation of the idea that the effective
sample size is the hypothetical number of independent samples contained within the n
MCMC samples. This is not tied to any mathematical definition of the ESS, and is not
without problems. For one, the approach is expected to be overly conservative, as it
effectively discards all samples in between an estimated autocorrelation time, whereas
classical ESS approaches keep fractions of all samples. Additionally, in this approach
ESS can take on only n distinct values because it is guaranteed that sg is an integer
between 1 and n (inclusive). The approximate ESS of Lanfear et al. [2016] can be seen
as one approach to overcoming these limitations, as it requires estimating sg then uses
identities about expected distances. In the following sections, we consider methods for
estimating sp and simply using this to estimate the ESS directly, ESS = n/5,.

The jumpDistanceBootstrapUnsmoothedESS and the jumpDistanceBootstrapESS

We now define two new approaches to computing the ESS based on estimating
so- In both approaches, we start with a similarity or dissimilarity measure for trees
at time lag s, g(s), which we then smooth into a monotonically increasing function
G(s). We do this by defining G(s) = max(g(s), g(t — 1)) for dissimilarity measures and
G(s) = max(—g(s),—g(t — 1)) for similarity measures. In essence, regardless of g(s),
G(s) is a distance or dissimilarity measure. We also consider a smoother version of
G(s), which we call G*(s), which we define below. We do not search for an asymptote
of either curve directly, as Lanfear et al. [2016] do for the approximate ESS. Rather, we
seek the point at which the dissimilarity of trees at time lag s is indistinguishable from
the dissimilarity of a pair of trees drawn independently from the posterior distribution.

Let Pr(G(1) | iid) be the distribution of G(1) given a set of iid samples from the
posterior. Given a probability «, we define a threshold e to be the (1 —«)th percentile of
Pr(G(1) | iid). We estimate € using bootstrap resampling of the posterior samples, which
breaks the autocorrelation but preserves the fact that the samples are from the posterior
distribution. Given a choice of o and an estimate €, sg is the first time lag s for which
G(s) > e. In this paper, we define G(s) to be the median RF distance between trees
at time lag s, and call the resulting estimate the unsmoothed jump-distance bootstrap
ESS, jumpDistanceBootstrapUnsmoothedESS, though we note that any choice of G(s)
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could rightfully be called a bootstrap ESS. In practice, we set a = 0.05, such that sy is
the time lag at which the tree-to-tree dissimilarity is at least as big as the 5th percentile
of the tree-to-tree dissimilarity for trees drawn identically and independently from the

posterior distribution.

To circumvent the fact that the jumpDistanceBootstrapUnsmoothedESS can only take
on values in n/1,n/2,n/3,...,n/(n —1),1, we also consider using smoothing. Specif-
ically, we use linear interpolation to smooth G(s) into G*(s). If s5*°P is the vector of
times at which G(s) changes, we can define a piecewise linear function G*(s) as,

step

* ste s —5; ste ste
G*(s) = G(s;"P) + W(G(Siif) — G(s7"P)), (21)
i+1 — %

where s is in the ith interval (s?tep < s < sjf{)) Defining sy to be the time s such

that G*(s) >= e allows us to assign fractional sy, and have a continuous estima-
tor. We call the resulting estimator the (smoothed) jump distance bootstrap ESS,
jumpDistanceBootstrapESS.

There are a few constraints that must be imposed to complete this approach. In the
pathological case where all trees are the same tree, we set ESS = 1, as clearly if we
have only sampled one topology we have an effective sample size of 1. The unsmoothed
approach would not have a defined answer, as there is s for which G(s) > ¢ = 0, and
the smoothed approach would yield ESS = n as G(1) = e = 0. It is also possible that
there is no observed s for which G*(s) = € and that G*(s) < € for all s, in which case we
enforce a minimum ESS of 1. Further, while g(0) is defined, and we could infer sy < 1,

we enforce a maximum ESS of n.

There is evidence that the curve-fitting approach of Lanfear et al. [2016] for underes-
timates sg. It is not completely clear how well these jump-distance bootstrap approaches
work to estimate sg, but it is possible that they may be useful in combination with the
approximate ESS, which requires estimating so. We leave this to future work.

Performance of the ESS measures below ESS = 500

As an alternative to binning ESS performance using a cutoff of 500, we also consider a
laxer cutoff of 250. From Figures S2 and 5S4 it is evident a cutoff of 250 is not sufficient. In
the 250 < ESS < 500 regime, it would appear most methods are generally conservative
and underestimate the ESS. However, there are splits and tree topologies where the error
in the estimated probability can be quite large compared to the ESS > 500 regime.
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Figure S2: The RMCE ((éEMCMC — §EMCESS)/§EMCMC) and ITMCE (@MCMC/@MCESS) for
split probabilities for all topological ESS measures and all 45 combinations of 9 datasets and 5 run
lengths. This figure uses an ESS cutoff of 250 instead of 500, but is otherwise the same as Figure 2.
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Figure S3: The RMCE ((éEMCMC — §EMCESS)/§EMCMC) and ITMCE (@MCMC/@MCESS) for
topology probabilities for all topological ESS measures and all 45 dataset by run length combinations.
This figure uses an ESS cutoff of 250 instead of 500, but is otherwise the same as Figure 3.
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Comparing the estimates of the effective sample size

In the main text, we focused on the performance of each ESS measure separately.
Here we examine how similar their estimates are, using the 4500 simulated analyses (9
datasets, 5 chain lengths, 100 replicates each). There is large-scale agreement, but there

are also clearly effects of different datasets and run lengths.
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Figure S4: Comparison of the estimated ESS for the main-text tree ESS measures on all 4500 simulated
analyses (9 datasets, 5 chain lengths, 100 replicates each). Below the diagonal, we simply plot the
estimated ESS for each pair of methods. However, there is clearly variability across the different datasets
and run lengths in concordance. We summarize this variability in the histograms above the diagonal.
These summarize the 45 correlation coefficients computed for all 100 replicates for each dataset and
run length combination. The dashed vertical line is the mean.
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Performance of all additional tree ESS measures

Across all 10 ESS methods (4 main text ESS methods and the 6 introduced in the
supplement), performance is mostly similar to the main-text results. The two ad-hoc
“jump distance” approaches that only use sy to estimate the ESS drastically underesti-
mate the ESS. The splitFrequencyESS performs about as well as the frechetCorrelationESS,
with slightly worse performance in the ESS < 500 regime and slightly better perfor-
mance in the ESS > 500 regime. The dimension-reduction approaches all perform rela-
tively similarly. The foldedRankmedoidESS generally performs equivalently to medianPseudoESS,
the CMDSESS is slightly more conservative, and the performance of the totalDistanceESS
is a bit more variable. In Figures S5-S7, we plot all 10 methods for all 3 MCMCSE mea-
sures. For simplicity, and since the results are similar, we present only the RMCE. Over-
all, a combination of the minPseudoESS and either the frechetCorrelationESS, splitFrequencyESS,
foldedRankmedoidESS, or medianPseudoESS should cover both the ESS < 500 and
ESS > 500 regimes in practice.

Scalability

Computing most of the tree ESS measures described requires computing the entire
n X n distance matrix, which is computationally costly and scales with the square of
the number of trees. Many of the described methods can be altered to accommodate
subsampling, and the RWTY implementation implements this for both the approximate
ESS and medianPseudoESS [Warren et al., 2017]. Future work will be needed to deter-
mine whether any methods perform adequately with subsampling, and which methods
provide an adequate runtime for either very large samples of trees or samples of very
large trees.
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Figure S5: The RMCE ((S/EMCMC_S/EMCESS)/S/EMCMC) for split probabilities for all topological ESS
measures and all 45 combinations of 9 datasets and 5 run lengths. This figure is a more comprehensive
version of Figure 2 including all ESS measures considered in the paper.
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Figure S6: The RMCE ((gEMCMC —S/EMCESS)/S/EMCMC) for topology probabilities for all topological
ESS measures and all 45 dataset by run length combinations. This figure is a more comprehensive
version of Figure 3 including all ESS measures considered in the paper.
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Figure S7: The RMCE ((@MCMC — @MCESS)/@MCMC) for the majority-rule consensus (MRC)
tree for all topological ESS measures and all 45 dataset by run length combinations. This figure is a
more comprehensive version of Figure 4 including all ESS measures considered in the paper.
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Additional empirical results

For completeness, we now present split-split plots with confidence intervals for the
other 5 datasets of Scantlebury [2013]. The confidence intervals for split probabilities
here are computed using the Jeffreys interval [Brown et al., 2001], while the confidence
intervals for the difference in split probabilities are computed here using the approach
of Agresti and Caffo [Agresti and Caffo, 2000]. These approaches appear to work well
in practice, though in treess we implement alternatives to both. We also present an
aggregation across all these plots comparing the confidence interval approach to more
standard approaches based on the average and maximum standard deviations of split
frequencies (ASDSF and MSDSF). This aggregation highlights the fact that similar
ASDSF or MSDSF can correspond to a range of numbers of splits whose probabilities
disagree across runs (and vice-versa).
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Figure S8: Split probabilities computed for all chains of the Cophyline dataset of Scantlebury [2013],
plotted against the probabilities computed for all other chains, with confidence intervals. Comparisons
above the diagonal use the frechetCorrelationESS to compute confidence intervals, while comparisons
below the diagonal use the minPseudoESS, which is generally smaller and thus leads to larger confidence
intervals. Each confidence interval is colored by whether or not the 95% CI for the difference in split
probability between chains ¢ and j includes 0 (green for including 0, red for excluding 0). CIs for
differences in probability that exclude 0 (or non-overlapping confidence intervals) are more likely to
be indicative of convergence issues between chains. Narrower confidence intervals from larger tree
ESS estimates will flag more splits as problematic (as in chains 1 and 4). Dashed grey lines indicate
posterior probabilities of 0.5 (threshold for inclusion in the MRC tree), 0.75 (moderate support for a
split), and 0.95 (strong support for a split). For comparison, we include the average standard deviation
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Figure S11: Split probabilities computed for all chains of the Phelsuma dataset of Scantlebury [2013],
plotted against the probabilities computed for all other chains, with confidence intervals. For more
explanation, see Figure S8 caption.



24

ASDSF = 0.003
B ®

ASDSF = 0.003
B o

ASDSF = 0.003
- 9|

2
= © o © » © y .
-% o " o ‘0 5] :
S chain1l | | |
= < ¥ < ¥ < ‘¢
2 ° + ° ¥ ° P
= 1.4 1 —,."
o o o =}
0 O_I'IIIIId_I’IIIIId_LrIIIII
0.0 0.4 0.8 . 0.4 . 0.0 0.4 0.8
MSDSF = 0.018 ASDSF = 0.003 ASDSF = 0.005
2 7 ' ] - .
52+ * N SN y
= * . i # i #
o
Sl # chain2 < | # 3{ &
= &+ 4 1,
o o o
"’d_|'||||| d_l'llllld_llllll
0.0 0.4 0.8 0.0 0.4 0.8 . 0.4 .8
- MSDSF = 0.022 MSDSF = 0.023 ASDSF = 0.004
2 A ] B P - e
= e} e}
> | > > o
-% o ¢¢ =] ¢0 =] *‘
S <] chain3 -]
oo f o 7 ## o 7] ‘¢
=2 4 & 1 ¢ . .‘o‘"
Qo o o
wo_l’lllllo_l’lllll S T T T T
0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8
- MSDSF = 0.038 MSDSF = 0.037 MSDSF = 0.031
2 A 7 B K B e
= _| ¥ o _| ¥ o &
Eo ] _: S ] ¢ o ] # h -
o
S3 £+ 3 *$ o ; chain 4
= 1, 1,
o o o
@S F—r—T77 © T 7T 7T S T T T

00 04 08, 00 04 08,
split probability split probability

00, 04 08,
split probability

split probability
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plotted against the probabilities computed for all other chains, with confidence intervals. For more

explanation, see Figure S8 caption.
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Comparing split confidence intervals and the ASDSF

Here we consider how the ASDSF (and MSDSF) compare to our confidence-interval-
based approach to comparing splits.

Let us first take the Gephyromantis and Phelsuma datasets together as a case study.
The ESS is low for both (Figure 6), with an average frechetCorrelationESS of 26 for the
Gephyromantis dataset and 129 for the Phelsuma dataset. The MSDSF is large for
many pairwise chain comparisons, and visual inspection of split-split probability plots
shows notable discrepancies. Clearly the analyses of these datasets encountered MCMC
difficulties. What do we learn from the various comparisons available to us? The MSDSF
clearly indicates that there are between-chain convergence problems in both datasets,
at which point we might plot the split probabilities to see what is going on. We would
clearly see that chain 4 is distinct in both datasets, and that chain 1 also appears
discordant in the Gephyromantis dataset. The confidence intervals provide additional
information and suggest different failure modes between the chains. That many splits
(roughly a dozen) disagree for the Phelsuma dataset suggests the possibility that the
fourth chain has converged to a different local mode than the others. In this case, running
the chains longer should solve the problem. Without accounting for the effective sample
size, we might think that the Gephyromantis dataset experienced similar problems. But
accounting for the low ESS, we see that the pattern is being driven by only 2-4 splits.
When considered with the fact that there appear to be 3 clusters of chains, 1, 243, and
4, we may begin to suspect that a peculiarity of the treespace which is causing difficulty
mixing. In this case, longer runs alone may not easily solve the problem and we may
wish to consider alternatives like Metropolis-coupling.

We also consider a coarser comparison of the confidence interval approach with the
ASDSF and MSDSF. In Figure S13, we plot the number of splits which appear to be
distinctly different using the confidence interval approach (those colored red) against
the ASDSF and MSDSF. While the measures are correlated, we can see that for a
given ASDSF or MSDSF, there is a notable range of numbers of splits which differ, and
vice-versa.
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Figure S13: An aggregated comparison of our confidence interval approach to comparing split prob-
abilities and previously-existing approaches. For all 24 pairwise comparisons of chains in the Malagasy
analyses, we compute the average standard deviation of split frequencies (ASDSF) and maximum stan-
dard deviation of split frequencies (MSDSF). We also count the number of splits for which the 95% CI
for the difference in split probability between chains excludes 0, which we term the number of distinctly
different splits. We us the frechetCorrelationESS to compute the CIs. While this number is correlated
with the ASDSF and MSDSF, there is notable variation. Similar ASDSF and MSDSF can correspond
to a range of numbers of failing splits, and vice-versa.

Comparing ESS-based measures of Monte Carlo error to
multiple-chain-based measures

For splits in the consensus tree, MrBayes reports the standard deviation (across runs)
of the split freqencies (the SDSF). This is a direct approach to quantifying the Monte
Carlo error in split probabilities. To determine how well this approach can capture
Monte Carlo error, we perform an additional experiment. For each of our 45 dataset
x run length combinations, we take a small number of the independent MCMC runs
(2, 4, 10, and 20) and use them to estimate the Monte Carlo error. These runs are a
subset of the 100 runs used to compute the S/I\EMCMC. We compare the performance
to the main-text ESS measures for split probabilities (Figure S14), tree probabilities
(Figure S15), and the MRC tree (Figure S16). We find that using 2 or 4 chains fails to
capture the Monte Carlo error well for any of these three quantities, performing notably
worse than the logPosteriorESS and fixedN approaches. Using 10 chains can capture the
Monte Carlo error for the MRC tree adequately, but not for split or tree probabilities.
Using 20 chains can capture the Monte Carlo error in the MRC tree about as well as the
tree ESS measures. For split and tree probabilities, the performance using 20 chains falls
between the logPosteriorESS and fixedN approaches and using the tree ESS measures
considered in this paper.
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Figure S14: The RMCE ((@MCMC — @MCESS)/@MCMC) for split probabilities for all topological
ESS measures and all 45 combinations of 9 datasets and 5 run lengths. This figure reproduces Figure
3 and adds four approaches to directly estimating the Monte Carlo error. We use 2, 4, 10, or 20
independent MCMC runs (nRuns2 to nRuns20) and the same brute-force approach employed to obtain

@MCMC- These brute-force approaches do not use an ESS to estimate the Monte Carlo error. Given
the performance differential between < 10 and > 10 runs, we place the results from 2 and 4 chains in
the ESS < 500 column and the results from 10 and 20 chains in the ESS > 500 columns.
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Figure S15: The RMCE ((gEMCMC — S/EMCESS)/S/EMCMC) for topology probabilities for all topo-
logical ESS measures and all 45 dataset by run length combinations. This figure reproduces Figure 4
and adds four approaches to directly estimating the Monte Carlo error as in Figure S14.
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Figure S16: The RMCE ((S/EMCMC - S/EMCESS)/@MCMC) for the majority-rule consensus (MRC)
tree for all topological ESS measures and all 45 dataset by run length combinations. This figure repro-
duces Figure 5 and adds four approaches to directly estimating the Monte Carlo error as in Figure S14.
As these brute-force approaches do not use an ESS to estimate the Monte Carlo error, we arbitrarily
color the points for the nRuns approaches as if they had ESS 1000.
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