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Supplementary Note 1. Construct artificial Ising spin and form of update current  

We first examine the SMTJ properties in our experiments. From the results in Figure. 

1b, we can summarize that the probability of P state of SMTJ follows a sigmoidal function with 

the input current 𝐼𝑘, which can be written as  

𝑝_𝑃 =
1

1+𝑒𝐼𝑘
                                               (1) 

where 𝐼𝑘 = 𝑎(𝐼𝑒𝑥𝑝 − 𝐼50_50), 𝑎 is a non-ideal coefficient varying among SMTJs, 𝐼𝑒𝑥𝑝 is the 

current injected to SMTJ, 𝐼50_50 is a bias current, 𝑎 > 0 (𝑎 < 0) indicates that positive (𝐼𝑒𝑥𝑝– 

𝐼50_50) favors the P (AP) state.  

We then consider the Boltzmann probability distribution of the Ising spin 𝑠𝑘 from the 

TSP model. For a fixed configuration of other spins than 𝑠𝑘, the probability of 𝑠𝑘 staying in the 

up-state is given by 

𝑝_↑ =
𝑒
−𝐸[𝑠𝑘↑,{𝑠𝑜𝑡ℎ𝑒𝑟𝑠}]/kT

𝑒
−𝐸[𝑠𝑘↑,{𝑠𝑜𝑡ℎ𝑒𝑟𝑠}]/kT+𝑒

−𝐸[𝑠𝑘↓,{𝑠𝑜𝑡ℎ𝑒𝑟𝑠}]/kT
                                 (2) 

where 𝐸[𝑠𝑘↑, {𝑠𝑜𝑡ℎ𝑒𝑟𝑠}] represents the system energy when 𝑠𝑘 is spin-up, and 𝐸[𝑠𝑘↓, {𝑠𝑜𝑡ℎ𝑒𝑟𝑠}] 

represents the system energy when 𝑠𝑘 is spin-down, and {𝑠𝑜𝑡ℎ𝑒𝑟𝑠} represents the configuration 

of other spins. Here other spins are regarded as a background. Here, k is the Boltzmann constant 

and T is the temperature. 

We define Λ =
𝜕𝐸

𝜕𝑠𝑘
, then have Λ =

𝐸[𝑠𝑘↑,{𝑠𝑜𝑡ℎ𝑒𝑟𝑠}]−𝐸[𝑠𝑘↓,{𝑠𝑜𝑡ℎ𝑒𝑟𝑠}]

2
 and derive the explicit 

form of Λ and the average energy of the system, 𝐸0 = 
𝐸[𝑠𝑘↑,{𝑠𝑜𝑡ℎ𝑒𝑟𝑠}]∓𝐸[𝑠𝑘↓,{𝑠𝑜𝑡ℎ𝑒𝑟𝑠}]

2
. Thus, the 

system energy, when 𝑠𝑘 is spin-up and spin-down, can be rewritten as, respectively 

𝐸[𝑠𝑘↑, {𝑠𝑜𝑡ℎ𝑒𝑟𝑠}] = 𝐸0 +  Λ                                              (3) 

𝐸[𝑠𝑘↓, {𝑠𝑜𝑡ℎ𝑒𝑟𝑠}] = 𝐸0 −  Λ.                                             (4) 

Comparing Supplementary Eq. (3) and Supplementary Eq. (4) with Supplementary Eq. (2), we 

have 
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𝑝_↑ =
𝑒(−Λ−𝐸0)/kT

𝑒(−Λ−𝐸0)/kT+𝑒(Λ−𝐸0)/kT
=

1

1+𝑒2Λ/kT
.                                  (5) 

If we want to emulate Ising spin 𝑠𝑘 with our SMTJ device, we only need to let the 

probability of up-state of 𝑠𝑘 and P state of SMTJ equals to each other, namely 𝑝_𝑃 = 𝑝_↑. Thus, 

the updating current of SMTJ can be derived as 

𝐼_𝑘 =
2Λ

𝑎kT
+ b =

𝑐

𝑎
(∑ 2𝑗 𝐽𝑘𝑗𝑠𝑗 + ℎ𝑘) + 𝑏                                      (6) 

where 𝑐 = 1/kT  is the inverse temperature, ℎ𝑘  is the local magnetic field, and 𝐽𝑘𝑗  is the 

coupling coefficient between 𝑠𝑘 and 𝑠𝑗. The spin current 𝐼𝑘 shares the same form where the 

current is determined by solving Fokker-Planck description1.  
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Supplementary Note 2. Ising computing PCB board 

To implement the connections and scale up to 80 spins with SMTJ (8 PEs, 10 SMTJ in 

each PE), we utilized the measurement-feedback scheme2,3. Based on the measurement-

feedback scheme, the requirement of hardware resource scales at 𝑂(𝑛)  and 𝑂(𝑛2)  for 

implementing the Ising bits (including the SMTJs for p-bit, digital to analog converters (DACs) 

for input, comparators for read-out) and the connections (for the computation in Supplementary 

Eq. (6)). Supplementary Figure 1 illustrates the photo of Ising computing PCB board and 

circuits. MCU reads 16 SMTJs in parallel from MUX and after 5 cycles all states of 80 SMTJs 

are achieved. Then MCU calculates update voltages (Vin) through matrix multiplication based 

on states of 80 SMTJs, weights (J) and calibration parameters. Instructions carrying update 

voltages are sent to DAC blocks (DA_ref and DA_data blocks in Supplementary Figure 1c) 

and the outputs of these DAC blocks are updated accordingly. Above two DA_ref blocks 

represent DAC modules, which generate reference voltages. DA_data blocks represent the 

DAC modules, which generate update voltages.  
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Supplementary Figure 1. Photograph of Ising computing board and circuit of the system. 

a, Ising computing board integrated with 12-bit rail-to-rail DACs (AD5381) with 40 channels, 

comparators (AD8694), and multiplexers (FST16233). b, Zoom-in photograph and microscope 

image of SMTJ with bonding wires. The scale bar is 100 µm. c, Circuit of the system.
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Supplementary Note 3. Calibration of SMTJ computing units 

We calibrate 80 SMTJ computing units with two steps. 𝐼exp  represents the current 

injected to SMTJ. First, we calculate the resistance of R0 within each unit to adjust the centre 

input voltage with 50-50% of AP-P states according to Supplementary Eq. (7)  

𝑉𝐷𝐷2 = 𝐼50_50 × (
𝑅𝑃+𝑅𝐴𝑃

2
+ 𝑅0) + 𝑉𝑑𝑠 

𝑉𝑔𝑠 = 𝑉𝑔 − 𝑉𝑠 

𝑉𝑑𝑠 = 𝑉𝑑 − 𝑉𝑠 

𝑅0 =
𝑉𝑠

𝐼50_50
                                                                  (7) 

where 𝑉𝐷𝐷2 is set as 0.8 V and 𝑉𝑔50_50 is around 1.7 V. The results after R0-calibration are 

shown in Supplementary Figure 2b. Second, we fit the results in Supplementary Figure 2b by 

the sigmoidal equation with two parameters a’ and b’, 𝑝_𝐴𝑃 =
1

1+𝑒𝑎′×(𝑉𝑖𝑛−𝑏′)
, and obtain a 

standard sigmoidal curve in Supplementary Figure 2c. We can regard the term 𝑎′ × (𝑉𝑖𝑛 − 𝑏′) 

as the ideal input TSP current 𝐼_𝑇𝑆𝑃, and then we have 𝑝_𝐴𝑃 =
1

1+𝑒𝐼_𝑇𝑆𝑃
. Thus, in real Ising 

calculations such as GP and TSP in our work, we only need to calculate the ideal updating 

current 𝐼_𝑇𝑆𝑃  in each iteration from the Ising model, and then transform 𝐼_𝑇𝑆𝑃  to real 

updating voltages 𝑉𝑖𝑛 (Vg) for each SMTJ computing units by parameters a’ and b’ 

𝑉𝑖𝑛 =
2

𝑎′
× 𝐼_𝑇𝑆𝑃 + 𝑏′.                                                     (8) 

Note that these fitting parameters are determined for one time after choosing R0 and 

before Ising computing. For a large system calibration, applying different values of R0 in 

hardware can be replaced by applying the same value of R0 and fitting parameter b’ from the 

sigmoidal curve through software. The range of Vin applied to each SMTJ is not a problem as 

long as the NMOS still works in an effective region because SMTJ is individually programmed. 

Besides, the stochastic system is highly fault-tolerant and not sensitive to R0. For example, the 

resistance of SMTJ is quite large (10 ~ 20 kΩ), and thus the precision of R0 only needs to be ~ 
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kΩ. As for time consumption, SMTJs can be divided into several groups and calibrated in 

parallel.  

The resistance dispersion of the AP and P states should be also considered to achieve 

the correct electrical readout of the SMTJ states. Supplementary Figure 3a illustrates the actual 

resistance dispersion, from which we can observe there is a window between AP state and P 

state. Note that the resistance value we used in the calibration process already contained 

information on finite bias-dependent TMR reduction. In our case, the effective working current 

of SMTJ was very small, as shown in Supplementary Figure 2a, thus the reading voltage for 

SMTJ was small. Supplementary Figure 3b shows the typical R-V curve of an SMTJ, from 

which we can find that the effective working window defines a maximum reading voltage of 

0.15 V. Under this small reading voltage, the TMR ratio slightly reduced from 102.88% to 

92.66%, where the AP state and P state can still be distinguished easily. The value of reference 

voltage 𝑉ref  is set as  𝑉ref = 𝑉DD2 −
𝑅AP+𝑅P

2
× 𝐼exp , where 𝐼exp  can be calculate by 𝐼exp =

𝑎′×(𝑉𝑖𝑛−𝑏′)

𝑐′
+ 𝑑′. The parameters 𝑐′ and 𝑑′ is obtained by fitting the results in Supplementary 

Figure 2a as 𝑝_𝐴𝑃 =
1

1+𝑒𝑐′×(𝐼𝑒𝑥𝑝−𝑑′)
  before Ising computing. Supplementary Figure 4 shows the 

voltage-time trace of the comparator block with a typical computing unit of 𝑅AP =

 22.5 𝑘Ω, 𝑅P =  12.6 𝑘Ω, and 𝑅0 =  80 𝑘Ω. Note that 𝑉ref could also be fixed if SMTJ satisfies 

𝑅AP

𝑅P
>

𝐼exp_max

𝐼exp_min
, and then the value of  𝑉ref can be set as 𝑉ref = 𝑉DD2 −

𝐼exp_max×𝑅P+𝐼exp_min×𝑅AP

2
. 

The retention time of SMTJ is determined from random telegraph noise (RTN) 

measurements using the setup in Supplementary Figure 5a. Supplementary Figure 5b shows an 

example of the histogram of the event determined from RTN measurements over 250 ms. The 

number of the event time N shows a typical exponential distribution 𝑁 =
1

𝜏
𝑒𝑥𝑝(−

𝑡𝑒𝑣𝑒𝑛𝑡

𝜏
), 

indicating the switching event follows a Poisson process. The expectation values of event time 

τ is determined by fitting an exponential function to the experimental result shown in the solid 



8 

 

lines in Supplementary Figure 5b. We define the average retention time 𝜏 = √𝜏𝐴𝑃 × 𝜏𝑃 ≈

 0.123 ms.  

0 5 10 15 20

0%

20%

40%

60%

80%

100%

P
ro

b
a

b
ili

ty
 o

f 
A

P
 s

ta
te

Iexp (mA)
1 1.2 1.4 1.6 1.8 2 2.2 2.4

0%

20%

40%

60%

80%

100%

P
ro

b
a
b
ili

ty
 o

f 
A

P
 s

ta
te

Vin (V)
-10 -5 0 5 10

0%

20%

40%

60%

80%

100%

I_TSP 

P
ro

b
a

b
ili

ty
 o

f 
A

P
 s

ta
te

 

Supplementary Figure 2. Calibration of SMTJ computing units. a, Original SMTJ data 

measured by data acquisition card (DAQ card). b, Calibration after choosing proper R0 for 

each SMTJ. c, Further calibration by the sigmoidal function with a and b parameters. 

                            

Supplementary Figure 3. Resistance dispersion and the bias-dependent TMR reduction 

of SMTJ. a, Resistance dispersion of P and AP states. b, Bias-dependent TMR reduction of an 

individual SMTJ. 

 

 

Supplementary Figure 4. Voltage-time trace of the comparator block under different Vin. 

a, Vin = 1.627 V. b, Vin = 1.718 V. c, Vin = 1.763 V. 
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Supplementary Figure 5. RTN measurements. a, Experimental setup. b, Histogram of the 

event time τ for P and AP states. 
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Supplementary Note 4. Flowchart of SA and SMTJ-based Ising computing system 

 

 

 

 

Randomly generate the initial 
solution 𝑥0 and compute the 

objective function 𝑓(𝑥0) 

∆𝑓 = 𝑓(𝑥𝑛𝑒𝑤) − 𝑓(𝑥0) 

Generate the new solution 𝑥𝑛𝑒𝑤, 
and compute the objective 

function 𝑓(𝑥𝑛𝑒𝑤) 

∆𝑓 ≤ 0 ? 

Accept new solution 
𝑥0 = 𝑥𝑛𝑒𝑤, 𝑓(𝑥0) = 𝑓(𝑥𝑛𝑒𝑤) 

Accept new solution 
according to 

Metropolis rule 

Number of iterations 
is reached? 

Whether temperature 
< set value? 

Decrease 
temperature 
slowly and 

reset the number 
of iterations 

Return the current 
solution 

Yes No 

No 

Yes 

Yes 

No 

Begin 

𝜀 ≤ 𝑒−
𝑓(𝑥𝑛𝑒𝑤)−𝑓(𝑥0)

𝑘𝑇  

Generate random 

number 𝜀 

Accept  

 

Yes 

No 
Reject  

a 



11 

 

 

 

Supplementary Figure 6. Flowcharts of standard SA and Ising computing process. a, 

Flowchart of SA4. The objective function is the total energy of the path. Steps in standard SA 

indicated by a blue box can be achieved by hardware in SMTJ-based Ising computing system. 

b, Flowchart of Ising computing system based on SMTJs. AD5381 is a DAC which converts 

the digital data to analog voltages.  
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Supplementary Note 5. Mapping rules of Ising Hamiltonian of TSP (circle path) 

We use 1 to represent spin-up and −1 to represent spin-down. Thus the constrain term 

of TSP is expressed by5 

𝐻𝐴 = 𝜆𝐴∑(∑𝑠𝑖𝑗 + (𝑁−2)

𝑗

)2

𝑖

+ 𝜆𝐴∑(∑𝑠𝑖𝑗 + (𝑁−2)

𝑖

)2

𝑗

 

= 𝜆𝐴∑(∑ 𝑠𝑖𝑗1𝑠𝑖𝑗2 + 2(𝑁−2)∑𝑠𝑖𝑗 + (𝑁−2)
2

𝑗𝑗1,𝑗2

)

𝑖

+ 𝜆𝐴∑(∑𝑠𝑖1𝑗𝑠𝑖2𝑗 + 2(𝑁−2)∑𝑠𝑖𝑗 + (𝑁−2)
2

𝑖𝑖1,𝑖2

)

𝑗

 

= 𝜆𝐴 ∑ 𝑠𝑖𝑗1𝑠𝑖𝑗2 +𝑖𝑗1𝑗2 𝜆𝐴∑ 𝑠𝑖1𝑗𝑠𝑖2𝑗 + 4(𝑁−2)𝑖1𝑖2𝑗 𝜆𝐴∑ 𝑠𝑖𝑗𝑖,𝑗 .                            (9) 

The first term is a constraint that represents a penalty for visiting multiple vertices as the j-th 

visit, which takes a minimum value of 0 when only one city is visited. The second term is also 

a constraint that represents one city is visited only one time.  

The total energy of the path, which is the objective function (distance term) is expressed 

as 

𝐻𝐵 = 𝜆𝐵∑∑𝑑𝑖,𝑖′ (
𝑠𝑖,𝑗 + 1

2
)(
𝑠𝑖′,𝑗+1 + 1

2
)

𝑖,𝑖′𝑗

 

=
𝜆𝐵

4
∑ ∑ 𝑑𝑖,𝑖′(𝑠𝑖,𝑗 𝑠𝑖′,𝑗+1+𝑠𝑖,𝑗 +𝑠𝑖′,𝑗+1+1).                        𝑖,𝑖′𝑗 (10) 

Thus, the total Hamilton of TSP can be calculated as 𝐻 = 𝐻𝐴 +𝑊𝐻𝐵 where 𝑊 is a coefficient 

number, which is small enough that it is never favourable to violate the constrain terms of 𝐻𝐴. 

Finally, we obtain the total Hamiltonian for circle path TSP 

𝐻 = ∑ 𝑠𝑖𝑗1𝑠𝑖𝑗2
𝑖𝑗1𝑗2

+ ∑ 𝑠𝑖1,𝑗𝑠𝑖2,𝑗 +

𝑖1𝑖2𝑗

𝑤

4
∑ 𝑑𝑖,𝑖′𝑠𝑖,𝑗𝑠𝑖′,𝑗+1
𝑗,𝑖,𝑖′

+ 4(𝑁−2)𝜆𝐴∑𝑠𝑖,𝑗 +
𝑤

4
∑ 𝑠𝑖,𝑗𝑑𝑖,𝑖′ +

𝑤

4
∑ 𝑠𝑖′,𝑗+1𝑑𝑖,𝑖′

𝑗,𝑖′,𝑖

.

𝑗,𝑖,𝑖′𝑖,𝑗
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(11) 

If we compare it with the definition equation of Hamiltonian, 𝐻 = ∑ 𝐽𝑖𝑗,𝑖′𝑗′𝑠𝑖𝑗𝑠𝑖′𝑗′ +𝑖𝑗𝑖′𝑗′

∑ ℎ𝑖𝑗𝑠𝑖𝑗𝑖,𝑗 , we can deduce the form of correlation matrix 𝐽 and local magnetic field ℎ as 

follows.  

{
 

 𝐽𝑖𝑗,𝑖′𝑗′ = 𝛿𝑖,𝑖′ + 𝛿𝑗,𝑗′ +
𝑤

4
(𝛿𝑗,𝑗′−1 𝑑𝑖,𝑖′) = 𝛿𝑖,𝑖′ + 𝛿𝑗,𝑗′ +

𝑤

4
(
1

2
(𝛿𝑗,𝑗′−1 𝑑𝑖,𝑖′+𝛿𝑗,𝑗′+1 𝑑𝑖,𝑖′))

ℎ𝑖𝑗 = 4(𝑁−2)𝜆𝐴 +
𝑤

2
∑𝑑𝑖,𝑖′
𝑖′

 

(12)
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Supplementary Note 6. Mapping rules of Ising Hamiltonian of constrained TSP (CTSP)  

We first propose the algorithm for constrained TSP, i.e. to fix the sub visiting sequence 

of two or more cities during the path. For example, TSP with constraints of C&D means if the 

traveller is in city C, then one must visit city D next, or if one is in city D then one should visit 

city C next. 

In this case, we should add one more term in Hamiltonian as a constrain, 𝐻𝑐 =

∑ 𝑠𝐶,𝑗𝑠𝐷,𝑗+1 + 𝑠𝐷,𝑗𝑠𝐶,𝑗+1𝑗 , therefore the total Hamiltonian of this problem is 𝐻 = 𝐻𝐴 + 𝑤𝐻𝐵 −

𝜃𝐻𝑐. 

We choose 𝜃 ≈ 1 to guarantee constraints of HA and Hc, and then we can deduce the 

form of 𝐽 and ℎ. Comparing  

 𝐻 = ∑ 𝑠𝑖𝑗1𝑠𝑖𝑗2𝑖𝑗1𝑗2 + ∑ 𝑠𝑖1,𝑗𝑠𝑖2,𝑗 +𝑖1𝑖2𝑗
𝑤

4
∑ 𝑑𝑖,𝑖′𝑠𝑖,𝑗𝑠𝑖′,𝑗+1𝑗,𝑖,𝑖′ + 4(𝑁−2)𝜆𝐴∑ 𝑠𝑖,𝑗 +𝑖,𝑗

𝑤

4
∑ 𝑠𝑖,𝑗𝑑𝑖,𝑖′ +

𝑤

4
∑ 𝑠𝑖′,𝑗+1𝑑𝑖,𝑖′𝑗,𝑖′,𝑖𝑗,𝑖,𝑖′ − 𝜃∑ (𝑠𝐶,𝑗𝑠𝐷,𝑗+1 + 𝑠𝐷,𝑗𝑠𝐶,𝑗+1)𝑗                                   (13) 

with 𝐻 = ∑ 𝐽𝑖𝑗,𝑖′𝑗′𝑠𝑖𝑗𝑠𝑖′𝑗′ + ∑ ℎ𝑖𝑗𝑠𝑖𝑗𝑖,𝑗𝑖𝑗𝑖′𝑗′ , we have 

{
 
 

 
 𝐽𝑖𝑗,𝑖′𝑗′ = 𝛿𝑖,𝑖′ + 𝛿𝑗,𝑗′ +

𝑤

4
((
1

2
(𝛿𝑗,𝑗′−1 𝑑𝑖,𝑖′ +𝛿𝑗,𝑗′+1 𝑑𝑖,𝑖′))

−
𝜃

2
((𝛿𝑖,𝐶𝛿𝑖′,𝐷 + 𝛿𝑖,𝐷𝛿𝑖′,𝐶)𝛿𝑗,𝑗′−1 + (𝛿𝑖,𝐶𝛿𝑖′,𝐷 + 𝛿𝑖,𝐷𝛿𝑖′,𝐶)𝛿𝑗,𝑗′+1)

ℎ𝑖𝑗 = 4(𝑁−2)𝜆𝐴 +
𝑤

2
∑ 𝑑𝑖,𝑖′𝑖′

.                (14) 
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Supplementary Note 7. Evolution of 81 spins in 9-city TSP   

 
 
Supplementary Figure 7. Evolution of 81 spins in 9-city TSP problem. An offset is used 

in the y-axis to show states of each SMTJ clearly.   
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Supplementary Note 8. Discussion on inverse temperature c and parameter w 

We run 10 different random initial states each with 5000 iterations. The effective 

inverse temperature c increases to 0.5 and hold. All cases can obtain near-optimal solutions, as 

shown in Supplementary Figure 8. However, there is a probability that the system jumps out 

of the ground state because of the none-zero temperature. If we continue to observe the 

evolution in a large timescale, the system would move back to the global minimum state.   

 

Supplementary Figure 8. Total energy transition of 10 solutions with randomly-generated 

initial states. Inset: effective inverse temperature (c) during computing. Red dashed line 

represents the ground state. 

 

The parameter c which controls the global annealing should increase slowly. To 

evaluate the computation performance vs. time evolution of c, we test different time evolutions 

of c, as shown in Supplementary Figure 9. The initial value of c (c_initial) can be estimated as 

1

Δ𝐻
=

1

𝐻𝑚𝑎𝑥−𝐻𝑚𝑖𝑛
=

1

𝑤×𝑁×(�̅�−𝑑𝑚𝑖𝑛)
= 0.07 ≈ 0.1, where 𝑤 = 0.5, 𝑁 = 9 for a total of 9 cities, 

�̅� = 4 and 𝑑𝑚𝑖𝑛 = 0.8 for the average and shortest distance of each two cities, respectively in 

Fig 3c. Note that this is a rough but universal estimation of the energy scale of c_initial. The 

actual optimal annealing temperature should depend on model details, and could be larger or 

smaller. In our experiments, we found that c_initial = 0.2 is more efficient through multiple 

trials, even though c_initial = 0.1 also converges to the ground state. For an Ising problem 
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whose answer is unknown, we can estimate the lower bond of c_initial by setting 𝑤 = 1. It 

could be optimized further according to valid iterations and total time to solution. The final 

value of c (c_final) is set as the temperature under which all spins are “frozen”. The parameter 

c increases from the beginning to the end of computing. The total iterations should be much 

larger than the iteration of finding the optimal solution. The result shows that a rapid increase 

in c results in a poor probability of success.  

 

Supplementary Figure 9. Probability of success under different time evolutions of c. 

 

The parameter w determines the relative strength of the constrain term and distance 

term. If the w is too large, then the probabilities of violations, namely the invalid path, would 

increase, as shown in Supplementary Figure 10. If the w is too small, then the effects of the 

distance term is small, which would lead to slower convergence to the ground state. The value 

of w can be chosen considering the percentage of valid iterations as well as the probability of 

success. We run the simulation of 9-city TSP for 30 times and find that the top value of 

probability of success exists around w = 0.6 within 50000 iterations. In most of our experiments, 

we choose 0.5 < w < 0.7.  
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Supplementary Figure 10. Percentage of valid iterations and probability of success 

under different w.  
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Supplementary Note 9. Ising Hamiltonian of GP  

We convert the clustering problem equivalent to the graph partitioning problem by 

creating an auxiliary graph 𝐺𝐺𝑃(𝑉, 𝐸𝐺𝑃), where the binary edge is 1 if the corresponding edge 

in the original graph is below a threshold, otherwise, the edge is 0:  

𝐸𝐺𝑃,𝑖𝑗 = {
1,       𝑖𝑓 𝑑𝑖𝑗 < 𝑑𝑡ℎ
0,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                             (15) 

Typically, the threshold 𝑑𝑡ℎ depends on the diagonal length of the bounding box,  

𝑑th =
√(𝑥max−𝑥min)

2+(𝑦max−𝑦min)
2

4
                                       (16) 

The Hamiltonian for GP is 𝐻𝐺𝑃 = 𝐴(∑ 𝑠𝑖𝑖 )2 + 𝐵∑
1−𝑠𝑢𝑠𝑣

2𝐸𝐺𝑃,𝑢𝑣=1 . Here A and B are the weight 

constant for two terms, where the first term is the regularization term trying to ensure two sub-

graphs with an equal size, and the second term is corresponding to minimizing the connections 

between two sub-graphs. 

Particularly, in this 70-city TSP, partitioning into eight clusters is required since our 

Ising computer can handle a problem with no more than 80 nodes. As a result, we also need to 

partition the sub-graph until the size can meet the requirements.   
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Supplementary Note 10. Sliding window annealing based on CTSP  

We integrate 8 neighbouring groups to a whole path by opening nearest two edges 

according to 8-city TSP sequence, as shown in Supplementary Figure 11. The initial path is 

obviously not an optimal path. We further optimize the whole path along its spatial dimensions 

(width and height) by carrying out constrained TSP over an input window. The window is 

shifted by 10 along each dimension in this TSP70 example and the size of the window is 40 × 

40, as shown in Supplementary Figure 11. The path is cut to several sub paths by the window. 

Two longest paths are chosen and connected together as a circle path. Then we fix the visiting 

sequence of terminal points and ignore other sequences, and thus obtain a constrained TSP, as 

shown in Supplementary Figure 11a, where two green paths are fixed. After a new constrained 

TSP solving process, the path in the sliding windows is optimized as shown in Supplementary 

Figure 11b. Finally, we cut at green lines and reconnect to a whole path, as the blue lines and 

orange lines shown in Supplementary Figure 11b. 

 

Supplementary Figure 11. Sliding window annealing and constrained TSP. a, 8 cities from 

the initial path chosen by a sliding window. b, optimized path within the sliding window after 

CTSP.  

 

a 

) 

b 
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Note that we can change the size and step of the sliding window to achieve different 

accuracy at different annealing times. Supplementary Figure 12 shows the results of three times 

annealing. The result after the third time shows the near-optimal solution for 70-TSP. 

  

Supplementary Figure 12. Results of three times sliding window annealing. One annealing 

means optimization of the whole path for one time. Each annealing contains ~30 sliding 

windows (40 × 40, with a step of 10), and each window needs 4000~5000 iterations to solve 

CTSP. Thus, one annealing needs ~1.5×105 iterations. a, Initial path. b, Path after first 

annealing. c, Path after second annealing. d, Path after third annealing. 
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Supplementary Note 11. Quantitative analysis of scalability and implementation of 4 Kb 

SMTJ Ising computer  

We discuss the scalability of our Ising computer by analysing performance metrics when 

solving N-city TSP with M-SMTJs in the array. The number of cities (N) and SMTJs (M) is 

summarized in Supplementary Table 1. The stochastic behavior of SMTJ is simulated 

according to Supplementary Eq. (17): 

SMTJ=sign(2×rand()-1+tanh(I))                                         (17) 

where rand() is the function for generating random number from 0 to 1. I is the update current 

injected to SMTJ and sign() is the function for identifying the sign of the formula. The value 

of SMTJ (-1 or 1) represents its states (P or AP). The stochastic behavior of the SMTJ can be 

verified by randomly generating 100,000 states under different currents (I), according to 

Supplementary Eq. (17). The probability of state 1 (AP) is then counted and depicted in 

Supplementary Figure 13. The generated SMTJ states exhibit a probability distribution that 

closely aligns with the calibrated SMTJ behavior observed in our experimental results. 

Complete TSP task is performed in MATLAB, enabling the acquisition of performance metrics 

such as the solution quality, convergence speed, success rate and total number of iterations. All 

data during each iteration are recorded.   

We construct a 4 Kb SMTJ Ising computer to discuss the hardware scalability, as shown 

in Supplementary Figure 14a. This system is divided into 4 PEs, each PE contains 1024 SMTJs 

organized as a crossbar array. These SMTJs function as stochastic Ising spins, mirroring their 

counterparts in experimental setups. The primary distinction lies in the design of the write/read 

circuits and control mechanisms, as these SMTJs are configured in a crossbar architecture. The 

stochastic behavior for circuit simulation is described in Verilog A according to Supplementary 

Eq. (19), with the resistance of 10 kΩ (P state) and 20 kΩ (AP state). The bit line (BL) is 

designed as 8 columns (3-bit BL) and 16 columns (4-bit BL) per PE for different scenarios. 

Each column is assigned a read sense amplifier (RSA). One row of SMTJs of each PE is read 
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per clock cycle. All peripheral circuits and NMOS can be implemented by Application-Specific 

Integrated Circuit (ASIC). Supplementary Figure 14b shows the 4-bit BL system, which has 

64 columns (RSAs) in total, and needs 64 clock cycles to read all 4 Kb SMTJs.  

Here is how we use this 4 Kb array when solving an Ising problem with a simple sequential 

mapping: First, the problem is mapped to an Ising model, and the parameters <J, h> are 

calculated and stored. Second, one row of SMTJs of each PE is selected and corresponding Vin 

are sent to SMTJs by DAC. SMTJs will fluctuate under Vin for t >𝜏0 (𝜏0 is the retention time), 

and their states are readout (Vout = Vdd or 0 V) through RSA. After reading one row of SMTJ, 

matrix multiply calculates the partial sum of Vin for the next iteration according to 

Supplementary Eq. (6), as shown in Supplementary Figure 14c. After the first row has been 

retrieved, the same process for the second row of each PE can be started, so and so forth. After 

M SMTJs are written and read, one iteration is finished, and all the partial sums have been 

added up to the next Vin. Then DAC will prepare the next row of Vin to the RSAs parallelly 

each clock cycle. After accessing all rows of the 4 Kb array, the system starts from the first 

row again. After multiple iterations, the states of SMTJs can be observed as the solution to an 

Ising problem.  

Hardware simulations of the 4 Kb SMTJs Ising computer are carried out through Cadence 

Virtuoso software, using a commercial 40 nm 1P8M CMOS technology. The supply voltage 

of the system is 1.1 V. Simulation results verified the circuit design of the system. By carefully 

designing the size of transistors, a large range of linear current region of 1~15 µA flows through 

SMTJ is achieved, which exactly covers SMTJs in our experiments considering the variations, 

as shown in Supplementary Figure 14d. Transient simulations of the clock cycle of 0.1 ms are 

shown in Supplementary Figure 14e, which is limited by the retention time of SMTJ from our 

experiment (the longest retention time of SMTJ is 0.12 ms). The stochastic window in 

Supplementary Figure 14e demonstrates the stochastic transforming of an SMTJ from AP state 
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to P state. The main frequency of the SMTJ Ising computer could be further improved by using 

ultra-fast SMTJ with a smaller retention time, for example 8 ns, where the delay of read circuits 

would limit the system speed. Supplementary Figure 14f shows the delay of our current circuit 

design is around ~0.9 µs clock cycle, which could be further improved.  

The energy consumption of the peripheral circuit including reading M SMTJ states, 

operating Matrix-Multiply, sending instructions to DAC, converting digital input to analogue 

signals and other control logic is obtained from hardware simulations. For matrix multiply 

operation, 64×64 16-bit multipliers are included to match our 4-bit BL system. Together with 

the average total number of iterations obtained from MATLAB simulations (equivalent of 

reading 4 Kb Ising computer for ~8000 iterations), the total time to solution and average energy 

consumption for solving a complete 70-city TSP task with a near-optimal solution of 695 can 

be estimated in Table 1 and Supplementary Table 2. The energy consumption of matrix 

multiplication is estimated as follows: 1) Estimate the power consumption of N-city TSP based 

on the power consumption of multiplication array. 2) Multiply the power consumption with the 

corresponding latency and iterations, then the energy consumption of each N-city TSP is 

derived. 3) Multiply the energy consumption of N-city TSP and the total number of 

corresponding N-city TSP required to solve the 70-city TSP. 4) Sum up the energy 

consumption calculated in 3) to obtain the total energy consumption. Here we provide two 

types of SMTJ with different retention times for simulations. One is SMTJ from our experiment 

(option 1, retention time of 0.1 ms) and the other one is ultra-fast SMTJ6 (option 2, retention 

time of 8ns). The quality of the solution obtained from simulations using 4 Kb SMTJ Ising 

computer is better than the solution demonstrated in our experiment. The energy efficiency of 

option 1 is slightly higher than the experiment because of less power consumption of the cross-

bar architecture. In addition, if we use ultra-fast SMTJ, the power consumption remains the 

same, while the total energy consumption of the main compute kernel and time to solution per 
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task would decrease to 1.84×10-4 J and 0.64 s, respectively. Meanwhile, the energy 

consumption of DAC would be greatly reduced because of less hold on time.  

Each PE has 16×64 SMTJ array (Bit line BL [15:0], Word line WL [63:0]). If we 

implement this PE within 128 µm×11.2 µm, then the bit line/word line pitches are 1.6 µm/1 

µm, respectively. From the Calibre parasitic extraction (TSMC40nm 1P8M CMOS), the 

coupling capacitance (Cc) of two adjacent BLs (64 µm long) is 4.80×10-16 F; at 1.1 MHz, its 

impedance |Zc| = 3.31×108 Ω, which is high enough and capacitive cross talk is negligible. As 

the WL is even shorter (11.2 µm), its impedance capacitance is even higher and the capacitive 

coupling between WL is negligible as well.  As for the inductive cross talk, the parasitic 

inductive of bit line LC is 2.605×10-10 H and the mutual inductance between two adjacent BL 

cannot be extracted since it is even smaller than the threshold that the Caliber tool can extract; 

hence the mutual inductance is negligible as well. Additionally, its impedance (ZL) is too low 

to cause any bouncing/mismatch at 1.1 MHz. The cross talk would be even lower at a main 

frequency of 10 kHz. As for the coupling through a resistance change, the structure of SMTJ 

array shares more similarity with that of NOR flash memory than that of NAND flash memory. 

The word lines (WLs) are selected sequentially, with only one WL being activated and read at 

a time. Consequently, the coupling through the resistance change between SMTJs within a 

single bit line (BL) is naturally avoided. Although there might be resistance coupling within a 

WL, each SMTJ channel is independently controlled by the respective RSA (read sense 

amplifier) through Vin [0:7]. Additionally, the EQ (Equivalent circuit) resets the initial voltage 

in the RSA circuit during PH0. Therefore, the impact caused by resistance coupling between 

SMTJs can be considered negligible. 
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Supplementary Figure 13. Simulated stochastic behavior of SMTJ in MATLAB. 
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Supplementary Figure 14. Results of 4 Kb SMTJ Ising computer. a, Schematic of SMTJ 

system. b, 4 Kb SMTJ-based system with 128 rows and 8 columns (3-bit BL) per PE. c, 

Pipeline computing of update current (voltage). d, Simulated voltage of Q and QB point and 

current flow through SMTJ path when SMTJ is in the P state. e, Signals of the system frequency 

of 10 KHz. f, Signals of the system with a main frequency of 1.1 MHz. 
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Supplementary Table 1. Number of cities (N) of TSP and number of SMTJs (M) in the 

array in simulations 

Dataset from TSPLIB Number of cities (N) Number of SMTJs (M) in the array 

St70 70 81 256 512 

Eil101 101 81 256 512 

KroA200 200 81 256 512 

 

Supplementary Table 2. Energy consumption for solving 70-city TSP with a length of 695 

using 4 Kb SMTJ Ising computer (simulations) 

  

Technology 40 nm CMOS process 

Device 
SMTJ with retention time of 

(0.1 ms in option 1; 8 ns in option 2) 

Cell type 1T1SMTJ 

Capacity 4 Kb, 4-bit BL 

Supply voltage (V) 1.1 

Write/Read current (µA) 1~14 

 Option 1 Option 2 

Chip area (µm2) 12,288 12,288 

Energy to 

solution 

per task 

 

Main compute kernel 
SMTJ array 

(SMTJs and NMOS) 
14.56 mJ 0.184 mJ 

Peripheral circuit 

Row decoder 29.9 µJ 2.2 µJ 

RSA 0.045 J 0.00057 J 

DAC 0.322 J 0.004 J 

Matrix-multiply 96 µJ 

Others (control and 

storage) 
2.49 µJ 
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Supplementary Note 12. Best solutions to TSP St70, Eil101 and KroA200 

We show the best solutions we obtained when solving St70, Eil101 and KroA200 TSP. The 

best path from TSPLIB is 675, 642.3095 and 29368.  

  a   

St 70 optimal path 677.1963 (our work) 

 

  b   

Eil101 optimal path 640.9755 (our work) 

 

  c  

KroA200 Optimal path 29446.37(our work) 

 

Supplementary Figure 15. Best solutions to TSP in our work. a, Optimal path for St70 

problem. b, Optimal path for Eil101 problem, c, Optimal path for KroA200 problem. 
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Supplementary Note 13. Performance comparison with state-of-art Ising approaches 

We compare the time to solution of state of art Ising approaches for solving 70-city 

TSP. We normalize the time to solution by node numbers and cycle numbers and then estimate 

80-node Ising system to solve the complete TSP70 task with 40,000 cycles, simply assuming 

the time increases linearly with node and cycle numbers. These cycles include 2×104 iterations 

for dividing 70 cities into 8 groups using GP; 8×104 iterations for solving 9-city TSP within 8 

groups; and 3×105 iterations for CTSP annealing.  

For Quantum annealers7,8, the time to solution of N = 55 MaxCut problem is 104 s, 

therefore the time to solution of TSP70 would be larger than 104s. For 2000-node CIM9, the 

round-trip time is 5 µs in experiments, and thus the total solution time of TSP70 is estimated 

to be 5 µ𝑠/2000 × 80 × 400000 = 80 ms. Current CIM implementations are just proof of 

concept implementations and hence not yet optimized for energy efficiency. The mem-HNN 

approach runs at a main frequency of 1~10 MHz by using a 80-nm CMOS-memristor chip and 

estimates a main frequency of 500 MHz by using 16-nm CMOS technology10. Thus, the total 

solution time of TSP70 would be 1 µ𝑠/100 × 80 × 400000 = 320 𝑚s. In the phase-transition 

nano-oscillators approach, the delay is mainly due to the wire capacitance when the problem 

scale is large with all-to all connections. For an 8-spin system with 50%-connectivity (14-

connection) in Ref.11, the main frequency is 3.7 ms/250 cycles = 68 KHz. Therefore, we assume 

a 80-spin PTNO system (80 × 79/2=3160 connection) with a main frequency of 68 KHz×

14

3160
= 301 Hz, which would take 1.3×103 s (400000 cycles/301 Hz) to solve TSP70.  

The total energy consumption per task of SMTJ-based approach for solving 70-city 

TSP in our experiment is calculated as 𝐸 = 80 × 0.8 V × 10 µ𝐴 × 40𝑠 = 25.6 𝑚𝐽, including 

transistors ( 80 × 0.4 V × 10 µ𝐴 × 40𝑠 = 12.8 mJ ) and resistors ( 80 × 0.25 V × 10 µ𝐴 ×

40𝑠 = 8 mJ). Energy consumption of other components is listed in Supplementary Table 3. 

We obtain the average power of DAC and MCU from the manuals. 
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Supplementary Table 3. The energy consumption for solving complete 70-city TSP task 

(experiment)

 

  

Part name Energy consumption 

SMTJ (containing 

transistor and resistor) 
80 × 0.8 V × 10 uA × 40 𝑠 = 25.6 𝑚𝐽 

DAC 4 × 80 mW× 40 𝑠 = 12.8 𝐽 
MCU 8 mW× 40 𝑠 = 320 𝑚𝐽 
Others 260 𝑚𝐽 
Total 13.4 𝐽 

 



32 

 

Supplementary References 

1. Sutton, B., Camsari, K. Y., Behin-Aein, B. & Datta, S. Intrinsic optimization using stochastic 

nanomagnets. Sci Rep 7, 44370 (2017). 

2. Borders, W. A. et al. Integer factorization using stochastic magnetic tunnel junctions. Nature 573, 

390–393 (2019). 

3. McMahon, P. L. et al. A fully programmable 100-spin coherent Ising machine with all-to-all 

connections. Science 354, 614–617 (2016). 

4. Zhou, A.-H. et al. Traveling-Salesman-Problem Algorithm Based on Simulated Annealing and 

Gene-Expression Programming. Information 10, 7 (2018). 

5. Bounds, D. G. New optimization methods from physics and biology. Nature 329, 215–219 (1987). 

6. Hayakawa, K. et al. Nanosecond Random Telegraph Noise in In-Plane Magnetic Tunnel Junctions. 

Phys. Rev. Lett. 126, 117202 (2021). 

7. Johnson, M. W. et al. Quantum annealing with manufactured spins. Nature 473, 194–198 (2011). 

8. Hamerly, R. et al. Experimental investigation of performance differences between Coherent Ising 

Machines and a quantum annealer. Sci. Adv. 5, eaau0823 (2019). 

9. Inagaki, T. et al. A coherent Ising machine for 2000-node optimization problems. Science 354, 

603–606 (2016). 

10. Cai, F. et al. Power-efficient combinatorial optimization using intrinsic noise in memristor 

Hopfield neural networks. Nat Electron 3, 409–418 (2020). 

11. Dutta, S. et al. An Ising Hamiltonian solver based on coupled stochastic phase-transition nano-

oscillators. Nat Electron 4, 502–512 (2021). 

 


