
Supplemental Materials:
DenRAM: Neuromorphic Dendritic Architecture with RRAM for Efficient

Temporal Processing with Delays

Supplementary Note 1
We performed a thorough electrical characterization of a 16kbit RRAM array, with devices identical to the
ones found in DenRAM. Devices are initially in the Pristine State, exhibiting large resistance, on the order
of GΩ. With a Forming operation - application of a positive voltage (>3V) to the Bit Line while the Source
Line at ground - a conductive filament is formed in the device, programming the RRAM in the Low-Resistive
State (LRS). Note that once the devices is Formed, it won’t be possible for it to return in the Pristine State.
We performed an adaptive Forming operation, meaning that we applied sequentially higher voltage pulses of the
duration of 10ms until all the devices were formed. Most devices are Formed with a voltage pulse of about 4V.
With a Reset operation - Bit Line at ground, Source Line with a positive voltage (2.3V) the conductive filament
is broken, programming the RRAMs in the High-Resistive State (HRS). With a Set operation - Bit Line at a
positive voltage [1.8-2.3]V, Source Line at ground - the devices can be programmed at the LRS. Varying the
voltage applied on the Word Line [1.6-2.2]V during programming, different resistivity can be achieved, as shown
in Figure S1. We also tested the Retention of our devices, by programming a 16 kb RRAM array at different
resistive levels and periodically measuring the state of the array up to 24 h. Figure S2 reports the mean of the
distributions over the 24 h retention test. We show that the highest conductance levels tend to slightly decrease
in magnitude over time, while the lowest conductive levels are stable.

LRS HRS Pristine

Weights Delays
104 105 106

0.0

0.2

0.4

0.6

0.8

1.0

1010 1011

Figure S1: Characterization of the RRAM device and link to their role in DenRAM. Initially, RRAM devices
are in the Pristine State. With a Forming operation, they are programmed in the LRS. With a Reset operation,
they are programmed to the HRS. A Set operation programs the device back to the LRS. Delay RRAMs are
left in the Pristine state, to maximize delays. Weight RRAMs are programmed in LRS or HRS.

101 102 103 104 105

Time [s]

10

20

30

40

50

60

Co
nd

uc
ta

nc
e

[
S]

Figure S2: Retention measurements of the multi-level programming conditions. We plot the mean of the
distributions obtained from a 16kb RRAM array, programmed at different average conductances. Measurement
of the conductance level of the RRAM array is repeated over time, up to 24 h.

1

Supplementary Note 2
We introduced the dendritic circuit, the building block of the DenRAM architecture. An important component
in this circuit is the Thresholding block, highlighted in Figure S3a, featuring a Schmitt Trigger and a Fall-Edge-
Detector. The Schmitt Trigger circuit sets a threshold to the voltage at the Capacitor in the dendritic circuit,
which relaxes from ground back to Vref . The double threshold of the Schmitt Trigger allows for minimizing
static power consumption. At the detection of the threshold, corresponding to the delay time produced by the
Delay RRAM, the output of the Schmitt Trigger flips from high (1.2V) to low (0V). This triggers the Fall-Edge-
Detector, built by a chain of Inverters and an OR circuit. The Fall-Edge-Detector produces the spike that is
then fed to the output section of the dendritic circuit.
Another important element of DenRAM is the Leaky-Integrate-and-Fire neuron circuit (Fig. S3b). We design
a simple LIF neuron taking an input current, and accumulating it on a membrane capacitor, thus increasing
the membrane voltage Vmem. Transistor M1 is used to leak some of the current accumulated on the capacitor,
and its bias V lk can be tuned to control the leakage rate. An output section features a chain of inverters that
detect the overcoming of the threshold by the membrane voltage Vmem. Such threshold crossing is favored by
the positive feedback circuit involving transistor M3, which avoids the meta-stability of the membrane voltage.
Transistor M2 is activated when the threshold voltage of the 2 inverters is crossed, grounding the voltage at
the capacitor, and resetting the LIF neuron. Such a circuit is also assumed as the neuron model for the SRNNs
system-level simulations.

Threshold Block

Vcap

Vcap

Vspk

Vspk
Vspk

Vspk

Vlk

Iin

Vmem

Fall-Edge Detector

Schmitt Trigger

a) b)

D

Inverter OR

LIF Neuron

Iin

M1

M2

M3

M4
M5

M1 M2

M3

Figure S3: Circuits blocks of the DenRAM architecture. a) The Threshold Blok in the Dendritic Circuit
features two sub-blocks: a Schmitt Trigger and a Fall-Edge-Detector. The schematics of the two sub-blocks
are shown below. b) Leaky-Integrate-Fire neuron circuit. The circuit features a Capacitor, a biased transistor
M1 controlling the leakage rate with the Vlk bias voltage, and an output section to produce the output spikes
(Vspk). Transistor M2 resets the membrane voltage Vmem after a spike, and M3 provides positive feedback to
avoid meta-stability when producing an output spike.

Supplementary Note 3
DenRAM architecture leverages spatio-temporal features of the inputs to perform computation, implementing
coincidence detection (CD) as illustrated in Fig. 3c. To perform CD, temporally coincident spikes are assigned
high weight, by setting the Weight RRAM to the LRS. However, it is also able to do the opposite: to set the
weight of the dendritic circuit in HRS, so that coincidence is not detected.

Figure S4 shows how two spikes arriving very close in time can be separated by modulating the weight of the
delays associated with the input of the two channels. Differently that in the experiment shown in Figure 3c, the
weight associated with spike D1 is set to HRS. In this way, the effect of the pair of coincident spikes D1, D2 on
the output membrane voltage is lower and it prevents the neuron from spiking and thus detecting coincidence.

This mechanism can be critical if a group of spikes has to be correlated with another one without considering
the influence of some previous spikes: in this case, CD and spike separation will be performed together by the
network shifting one channel in time.

We also show an extension of the experiment shown in Figure 3d. In Figure S4, we report the Coincidence
Detection window, i.e. the output activation of the post-synaptic neuron, as a function of the arrival time of
input 2 (IN2), for two different time constants. We show that the CD window increases as the time constant
of the post-synaptic neuron increases: note that in the case of τ = 15ms the CD remains active in a window

2

of about 17ms, while the window shrinks at 10ms for τ = 10ms. Notably, the CD window is centered at
58ms, corresponding to the delay D1. This is thanks to the unique delay functionality of the dendritic branches
of DenRAM. Such functionality is leveraged at the system level to perform heartbeat anomaly detection and
keyword spotting with unprecedented accuracy.

delay

A¹ B¹ C¹ D¹
A² B² C² D²

a)

b)
0 20 40 60 80 100 120

0.0

0.5

1.0

IN
P
U

T
V
o
lt
a
g
e
 [

V
]

IN1
IN2

0 20 40 60 80 100 120
0

20

D
E
L
A
Y

C
u
rr

e
n
t

[
A
]

OUT1
OUT2

0 20 40 60 80 100 120
Time [ms]

0.0

0.2

0.4

O
U

T
P
U

T
V
o
lt
a
g
e
 [

V
]

LIF Membrane Voltage
CD spike

0.0

0.5

1.0

45 50 55 60 65 70
IN2 arrival time [ms]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
a
x-

O
U

T
PU

T
Vo

lt
a
g
e
 [

V
]

= 5ms
= 10ms
= 15ms
= 20ms

Figure S4: a) The dendritic architecture can also be used to separate spikes by the network that are not
correlated but could lead to an output spike or change in the membrane voltage too significant; in this example,
two spikes coming in with a delay of 1µs have been separated thanks to delays, without they would have led to
an output spike. b) Coincidence Detection window measured in DenRAM, as a function of the output neuron’s
time constant. With the same setup described in Figure 3, main text, we have repeated the Coincidence Detector
experiment, changing the time constant of the output neuron.

Supplementary Note 4
We performed a thorough analysis of the ECG task, varying different parameters regarding the DenRAM
architecture. This study, for such a simple architecture, involves the variation of two parameters: the standard
deviation of the distribution used for sampling the delays and the number of delays per dendrites (i.e. the
number of synapses). Through simulations, we found that for both the tasks analyzed in this paper, i.e.
heartbeat arrhythmia detection (ECG) and spoken digit classification (SHD), the High Resistive Level was not
sufficient to achieve high classification accuracy. HRS has a resistance of about 100kΩ, which coupled with
the capacitor of 400fF , implemented in DenRAM, produces delays that are not long enough for the analyzed
tasks. This of course does not exclude the possibility that there might be other tasks that can be solved by
shorter delays, for which the HRS resistance is a good match. It is interesting to analyze the effect of varying
the distribution of the Delay RRAM (Rd) on the performance of DenRAM. Figure S5a shows the fit with a
lognormal distribution of the Delay RRAM data (σ = 0.5), as well as how such distribution would look if the
standard deviation would change. Based on these distributions, we performed system-level simulation on the
ECG task fixing the number of synapses per dendritic branch in DenRAM. In Figure. S5b, we sweep the mean
of the delay distribution with three standard deviation values, analyzing performance. Again, the green curve
(σ = 0.5) is calibrated on hardware data, but the plot shows that a standard deviation of 0.75 is more beneficial
when the mean of the delays is low. It is probably because of the long tail of the lognormal distribution with
σ = 0.75, guaranteeing long delays despite a low average. Nonetheless, RRAM-calibrated DenRAM shows high
accuracy (>95%) when the mean delay is higher than 20 ms.
Variability in the Weight RRAM [1] is also impacting the performance of DenRAM. As explained in the Method
section, we apply noise-resilient training by applying a Gaussian noise during learning [2]. We investigate the
performance of DenRAM and an SRNN performing at the same level (95%) with no variability in the weights.
The Standard Deviation of the noise added to the weight is normalized by the largest weight in the layer where
Gaussian noise is applied. Increasing the noise level in the DenRAM results in a modest decrease in performance,
that only noticeable when the noise standard deviation is larger than 15%. In the SRNN instead, noise begins to
decrease performance when the standard deviation is at 10%, meaning that DenRAM is more noise-resilient to
the variability of weights. We also investigate the impact of the number of hidden neurons on the performance
of the SRNN. Increasing the number of hidden neurons increases the memory footprint, but it also improves

3

classification accuracy and resilience to synaptic variability. In Figure S5d, we show the classification accuracy
of the SRNN with either a 0% noise (ideal weights) or 10% noise applied to the weights. An SRNN with 32
hidden neurons is required to solve the task and match the performance of the DenRAM architecture. This
network size is thus assumed for the Memory Footprint and Power Consumption comparisons in Figure 4b,c.

a) b)

c) d)

Figure S5: Ablation study on DenRAM applied on the ECG task. a) Lognormal distribution of the Delay
RRAM (Rd). We denote σ as the standard deviation of the underlying normal distribution of RRAMs. The
RRAM data are fit with σ = 0.5. b) Accuracy as a function of the mean of the Delay RRAM’s distribution, for
different distributions. Weights are subject to 10% noise. c) Accuracy of DenRAM and the SRNN as a function
of the noise added on the weights, representing the variability of the Weight RRAMs. d) Impact of the number
of hidden neurons on the performance of the SRNN, with and without RRAM-calibrated noise applied to the
weights. In each plot, error bars represent the standard deviation over 10 trials.

We carry out a similar analysis of the SHD task using two networks with different number of inputs and
different number of delays. (Fig. S6.). We first see that for low mean resistance, higher standard deviation
helps the network to reach higher accuracy. For high mean resistance, the standard deviation importance is
less clear. This behavior can be explained by the sampling of the log-normal, which is generated by sampling
a normal distribution and then taking the exponential of the sampled value. Thus increasing the mean of the
log-normal distribution while keeping the standard deviation of the underlying normal distribution will actually
yield a distribution with increased standard deviation. Finally we see that the accuracy increases with the mean
delay until 400 ms, past this value, the accuracy decreases, implying that there’s an optimal mean delay in the
range of 200 ms to 700ms.

Heterogeneity can not only manifest in DenRAM as the distribution of Delay-RRAM resistances but also
in the different sizes in the dendritic branches. In a software implementation context, the "length" of the
dendrites can be considered as the number of synapses per dendrite (which in our simulations is fixed). To
implement length heterogeneity we can prune a given proportion of synapses according to the absolute value of
the associated weights. This yields a network where the input channels are delayed a random number of times
(instead of a fixed common number of times). Figure. S7a, shows the accuracy of DenRAM on the heartbeat
anomaly detection task as a function of the proportion of removed synapses. In Fig. S7b, we show that we can
prune up to 40% of the synapses with the lowest absolute weights and get tolerable accuracy drops of around
2% for both architecture sizes utilized in the keyword spotting task. Fig. S7c shows the resulting distribution
of the number of synapses per dendritic branch with 10% (blue) and 20% (yellow) of the synapses pruned. The
resulting distribution shows heterogeneity in the number of synapses per branch, similar to biology. With 40%
of the synapses pruned, some branches have no synapses, which is equivalent to the case where inputs have
different numbers of branches.

We further examine the effect of faulty RRAM devices on the classification accuracy of DenRAM. RRAM
failure could occur by becoming stuck either in a High Resistive State (HRS) or a Low Resistive State (LRS). In

4

a) b)

Figure S6: Ablation study on two DenRAM architectures applied on the SHD task. a) Accuracy as a function of
the mean of the Delay RRAM’s distribution, for different distributions, using 256 inputs and 8 delays. b) Same
as a), using 700 inputs and 16 delays. In both plots, we denote σ as the standard deviation of the underlying
normal distribution of RRAMs. Weights are subject to 10% noise. Error bars represent the standard deviation
over 3 trials.

a)

c)

b)

Figure S7: Effect of heterogeneity in dendritic branch size. a) Removing the synapses with the smaller associ-
ated absolute weight for the ECG task. We sweep the percentage of synapses removed. Error bars represent
the standard deviation over 10 trials. b) Same as a) but on SHD task. Error bars represent the standard devi-
ation over 3 trials. c) Number of synapses per branch after removal for architecture D2, for different removal
proportions, denoted as premoval.

the following analysis, we assume the two failure types to have equal probability. We perform RRAM simulation
on the networks trained for Fig. 4 of the main text, artificially introducing failures in the Weight RRAMs. First,
we gauge the effect of faulty RRAMs on the classification accuracy, assuming that the model is trained without
any prior knowledge of the RRAM failure. The results are reported in Fig. S8 under PTS (Post Training Stuck).
We find that the larger network trained on the SHD task (Fig. S8b) is more resilient to PTS than the smaller
network that was used for the ECG task (Fig. S8a). We then analyze the performance of DenRAM when the
network is re-trained aware of the faulty devices. The results are reported in Fig. S8 under SAT (Stuck Aware
Training). We find that the accuracy on the ECG task is almost fully restored to the original case without
RRAM failures while accounting for up to 25% faulty devices. Similarly, DenRAM applied to the SHD task
shows little accuracy degradation for up to 30% of faulty RRAM devices. These results confirm that DenRAM
is not only energy-efficient and parameter-efficient but also resilient to faulty RRAM devices, especially if the
network is aware of the device yield.

5

a) b)

Figure S8: Effect of faulty weights in the ECG task and SHD tasks. PTS: post-training stuck, stuck devices are
acknowledged only during inference; SAT: stuck-aware training, stuck devices are acknowledged during training.
a) Analysis of network resilience on the ECG task. Error bars represent the standard deviation over 10 trials.
b) Same as a) but on the SHD task and for two different network sizes (D1 and D2). Error bars represent the
standard deviation over 3 trials.

Supplementary Note 5
As explained in the main text, the DenRAM architecture delays each input channel with a population of ndelays,
randomly sampled from a fixed log-normal distribution which models the measurements shown in Fig. 2d. Here,
we are applying the inputs from the Spiking Heidelberg Digit (SHD) dataset to the DenRAM architecture.
Fig. S9a shows sub-sampled version of the digits “8”, “18”, and “17” of the SHD dataset, from 700 input channels
to 256 chanels. Each of the channels in these examples are delayed ndelays = 16 times in the case shown in
the figure. Consequently, the output neurons receive nin × ndelays spike trains (in this case 256 × 16 = 4096
delayed inputs, shown in Fig. S9b. After we train the network, it learns to weigh each of these 4096 channels in
order to classify the presented input. To analyze the weight-delay pair, we do a weighted average of the ndelays

delayed channels for each input channel, giving rise to an aggregate representation in Fig. S9c. We observe that
each input channel acquires a time-varying weight (illustrated in Fig. S9c) to solve the task. For instance in
digit “8”, channels 150 to 200 exhibit a dynamic pattern, initially showing inhibition, then strong excitation,
and finally returning to inhibition. Although digits “8” and “18” display similar patterns when delayed (see
Fig. S9c), the network distinguishes them by utilizing different input channels, a phenomenon we term ’spatial
segregation’. In the case of digit “17”, the selected input channels resemble those for digit “8”, yet the delays
cover a more extended time range, indicating ’temporal segregation’. This suggests that while certain input
channels are shared across different digits, the network differentiates them through the temporal distribution of
these channels’ activations.

This dual strategy of spatial and temporal segregation enables the network to effectively distinguish between
various inputs, even when they exhibit similar delayed signatures. In the illustration provided in Fig. S9d, the
dynamic behavior of the output membrane voltage for the selected digits substantiates our observations. In the
case of spatial segregation, it is evident that while the membrane voltage peaks for digits “8” and “18” occur
simultaneously, their magnitudes are influenced by the specific inputs, which helps with their segregation. For
example, in the case of digit “18” as the input, activation of channels 75 to 125 plays a key role to reduce
the potentiation of neuron “8”, whose corresponding weights are negative, while increasing the potentiation of
neuron “18”, whose correspoinding weights are positive. Therefore, the network correctly gives the maximum
membrane potential to output neuron “18”, classifying digit ‘18’.

In the case of temporal segregation, when digit “17” is fed as the input, the variation in weight dynamics
becomes a critical distinguishing factor. In this scenario, the response pattern for neuron “8” transitions from
inhibition to excitation and back to inhibition, whereas for neuron “17”, the pattern is consistently excitatory,
leading to a higher peak in its membrane potential, correctly classifying the input.

6

La
be

l ‘
18

’
La

be
l ‘

17
’

La
be

l ‘
8’

a) b) c) d)

Figure S9: Analysis of the weights and delays for the D2 network (DenRAM with 16 delays per channel,
using 256 input channels) . We focus on three classes from the SHD dataset: spoken digit “8”, “18” and “17”.
a) Raster plots representing individual training samples for three classes. These original samples comprise 256
channels sampled from the 700 input channels from the original dataset, and span 150 timesteps. b) Raster plots
illustrating time-delayed versions of the same samples after feeding into DenRAM. The DenRAM architecture
generates time-shifted replicas of the original inputs, expanding them to 4096 channels (256 channels × 16
delays per channel) and 350 timesteps. c) After learning, for each channel, the 16 delayed version are weighted
and summed, giving rise to an aggregated representation of weighted-delayed input for each channel, condensing
back the 4096 channels to 256. Red-shifted color represent positive weights, and blue-shifted colors represent
negative ones. The network learns to weight each aggregate-channel differently at different time steps. These
plots present the weighting of the average spike train across all samples from the respective classes. d) Evolution
of the output membrane potentials of the three classes when exposed to the respective inputs.

References

[1] Eduardo Esmanhotto, Tifenn Hirtzlin, Djohan Bonnet, Niccolo Castellani, Jean-Michel Portal, Damien
Querlioz, and Elisa Vianello. Experimental demonstration of multilevel resistive random access memory
programming for up to two months stable neural networks inference accuracy. Advanced Intelligent Systems,
4(11):2200145, 2022.

[2] Filippo Moro. Memristor-aware-training for resilient neural networks, 2023.

7

