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1 Supplementary methods18

1.1 Testing for latent genetic interactions19

To review the regression model from the Results section, suppose Yjk depends on a biallelic locus20

with genotype Xj , an unobserved (or latent) environmental variable Mj , and a latent genotype-by-21

environment (GxE) interaction XjMj for j = 1, 2, . . . , n unrelated individuals with k = 1, 2, . . . r mea-22

surable traits. The regression model is expressed as23

Yjk = βkXj + ϕkMj + γkXjMj + ϵjk, (S1)24

The left side of the equation are the trait values which are observable random variables. The right side25

contains four components: the observable genotype Xj with effect size βk; an unobservable variable26

Mj with effect size ϕk; an unobservable interaction XjMj with effect size γk; and an unobservable27

random error ϵjk with mean zero and variance σ2
k. Without loss of generality, we assume that Mj is28

mean zero with unit variance. Our inference goal is it to test whether γk = 0 for k = 1, 2, . . . , r without29

having to observe the latent environmental variable Mj .30

The following sections are outlined as follows. We first show that a latent genetic interaction induces31

trait variance and covariance patterns under the above model assumptions. We then review the distri-32

butional theory behind the individual-level trait central cross moments. Using these results, we briefly33

show how latent interactive effects can be detected within a regression model framework.34

1.2 Latent interactions induce differential variance and covariance patterns35

We show in the main text that a latent interaction can be detected based on calculating the individual-36

specific trait variances (ITV) and covariances (ITC). To construct these quantities, let ejk = Yjk −37

βkXj denote the trait residuals after removing the additive genetic effect. For simplicity, assume the38

effect sizes are known. For the jth individual, given the genotype Xj , the r × r individual-specific trait39

covariance matrix is40

Σj | Xj =


E
[
e2j1

∣∣∣ Xj

]
E[ej1ej2 | Xj ] · · · E[ej1ejr | Xj ]

E[ej2ej1 | Xj ] E
[
e2j2

∣∣∣ Xj

]
· · · E[ej2ejr | Xj ]

...
...

. . .
...

E[ejrej1 | Xj ] E[ejrej2 | Xj ] · · · E
[
e2jr

∣∣∣ Xj

]

 ,41

where the ITV are the r diagonal elements and ITC are the s =
(
r
2

)
off-diagonal elements.42

The presence of a latent interaction shared by multiple traits induces differential ITV (vQTL) and43

ITC (covQTL) patterns as a function of genotype. More specifically, given our model assumptions, the44
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ITC between the kth and k′th trait is45

Cov
[
Yjk, Yjk′

∣∣ Xj

]
= E

[
ejkejk′

∣∣ Xj

]
= E

[
(ϕkMj + γkXjMj + ϵjk)(ϕk′Mj + γk′XjMj + ϵjk′)

∣∣ Xj

]
= E

[
ϕkϕk′M

2
j + (ϕk′γk + ϕkγk′)XjM

2
j + γk′γkX

2
jM

2
j

∣∣ Xj

]
+ E

[
ϕkMjϵjk′ + γkXjMjϵjk′ + ϕk′Mjϵjk + γk′XjMjϵjk + ϵjkϵjk′

∣∣ Xj

]
= E

[
ϕkϕk′M

2
j + (ϕk′γk + ϕkγk′)XjM

2
j + γk′γkX

2
jM

2
j

∣∣ Xj

]
=

(
ϕkϕk′ + (ϕk′γk + ϕkγk′)Xj + γk′γkX

2
j

)
E
[
M2

j

∣∣ Xj

]
= ãkk′ + b̃kk′Xj + c̃kk′X

2
j ,

(S2)46

where ãkk′ = ϕkϕk′ , b̃kk′ = ϕkγk′ + ϕk′γk, and c̃kk′ = γkγk′ . Note that the fourth line follows from47

our assumption that the random errors of each trait are independent of each other, the genotype, and48

the environmental variable, and so E
[
Mjϵjk′

∣∣ Xj

]
= E[Mjϵjk | Xj ] = E

[
ϵjkϵjk′

∣∣ Xj

]
= 0. The fifth49

line follows from the assumption that the environmental variable Mj is mean zero with unit variance50

and independent of the genotype, and so E[Mj | Xj ] = E[Mj ] = 0 implying that E
[
M2

j

∣∣∣ Xj

]
=51

Var[Mj | Xj ]+E[Mj | Xj ]
2 = Var[Mj | Xj ] = Var[Mj ] = 1. Following similar steps as above, the ITV52

is53

Var[Yjk | Xj ] = E
[
e2jk

∣∣ Xj

]
= ak + bkXj + ckX

2
j ,

(S3)54

where ak = ϕ2
k + σ2

k, bk = 2ϕkγk, and ck = γ2k . Thus, we have shown that a latent GxE interaction55

will create differential trait variance and covariance patterns that depend on genotype. In particular,56

a latent GxE interaction in trait k (γk ̸= 0) will induce a variance pattern that depends on genotype57

(Equation S3), and also induce a covariance pattern between traits k and k′ when there is a shared58

interaction (γk′ ̸= 0) or a shared interacting variable (ϕk′ ̸= 0; Equation S2).59

Even though we limit our discussion to a single latent environmental effect and genotype for sim-60

plicity, our results hold more generally under the polygenic trait model. Furthermore, while we consider61

a simple interaction effect, it is straightforward to show that other complex latent signals involving the62

genotype induce differential variance and covariance patterns. Although, the exact functional form may63

be more complicated than above.64

1.3 Distribution of the cross products65

Following the above discussion, we describe the distribution for the cross product of two random vari-66

ables that follow a Normal distribution. We then use this result to describe the sampling variability of67

the cross product and squared residual terms within a regression model framework in the next section.68
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To simplify notation, let Y1 ≡ Yj1 and Y2 ≡ Yj2 denote the first two traits of the jth individual. With-69

out loss of generality, suppose these traits are normally distributed with mean zero, unit variance, and70

correlation coefficient ρ. The cross product term is denoted by Z = Y1Y2.71

The relationship between traits can be expressed as72

Y2 = ρY1 +
√
1− ρ2U, (S4)73

where U ∼ N(0, 1). The cross product term is then74

Z = Y1(ρY1 +
√
1− ρ2U)

= ρY 2
1 +

√
1− ρ2Y1U,

(S5)75

where Y 2
1 ∼ χ2

1 and Y1U ∼ B0 where B0 is the modified Bessel distribution of the second kind of order76

zero. For perfectly correlated variables, Z is distributed as a Chi-squared distribution with one degree of77

freedom. Alternatively, for uncorrelated variables, Z follows a modified Bessel distribution of the second78

kind of order zero. See ref. [1,2] for the distribution of the product of two normal random variables.79

The first two moments are80

E[Z] = ρ

Var[Z] = 1 + ρ2,
(S6)81

and, more generally, for mean centered traits with variances (σ2
1, σ

2
2), the first two moments are82

E[Z] = σ1σ2ρ

Var[Z] = σ2
1σ

2
2(1 + ρ2).

(S7)83

We use this result in the next section to describe the heteroskedasticity in a regression model that treats84

the cross products or squared residuals as outcome variables.85

1.4 Regression model for the cross products and squared residuals86

Using the central moments result, we first describe the regression model for the cross product terms.87

Let P = {(1, 2), (1, 3), . . . , (2, 3), (2, 4), . . . , (r − 1, r)} denote the set of cross product pairs such that88

|P | = s. The first and second element of the qth cross product is Pq1 and Pq2, respectively, and the89

cross product between traits is ZCP
jq = ej,Pq1ej,Pq2 . The regression model is90

ZCP
jq | Xj = E

[
ZCP
jq

∣∣ Xj

]
+ ϵjq

ZCP
jq | Xj = ãq + b̃qXj + c̃qX

2
j + ϵjq,

(S8)91

where E
[
ZCP
jq

∣∣∣ Xj

]
= Cov[ej,Pq1 , ej,Pq2 | Xj ] is expressed in Equation S2. The results in Section 1.392

can be used to describe the random error in the model: The error term ϵjq is independent for j =93
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1, 2, . . . , n observations, but in general, is not normally distributed or identically distributed. Under the94

null hypothesis of no interactive effects, the errors are identically distributed.95

We note that the above regression model differs from typical regression models in two ways. First,96

the random error does not follow a Normal distribution, although for typical large GWAS sample sizes,97

this should not impact inference. Second, under the alternative hypothesis where interactions exists,98

heteroskedasticity arises in the model. To see why, using the results from the previous section, the99

variance of the error term can be expressed as100

Var[ϵjq | Xj ] = σ2
j,YPq1

|Xj
σ2
j,YPq2

|Xj
+ E

[
ZCP
jq

∣∣ Xj

]2
(S9)101

where σ2
Yj,Pq1

|Xj
= (ϕPq1 + γPq1Xj)

2 + σ2
Pq1

and σ2
Yj,Pq2

|Xj
= (ϕPq2 + γPq2Xj)

2 + σ2
Pq2

. Under the null102

hypothesis, if the heteroskedasticity is uncorrelated with the explanatory variables then there is type I103

error rate control. Therefore, controlling for sources of variation such as population structure and nearby104

SNPs with strong additive effects is important to avoid an inflated type I error rate. Finally, in addition to105

these sources of variation, an incorrect trait scaling will likely induce heteroskedasticity and also impact106

type I error rate control.107

We briefly state the regression model using the ITV. For the ITV, we are modeling the change in108

variance of trait k as a function of Xj :109

ZSQ
jk | Xj = E

[
ZSQ
jk

∣∣∣ Xj

]
+ ϵ′jk

ZSQ
jk | Xj = ak + bkXj + ckX

2
j + ϵ′jk,

(S10)110

where Var
[
ϵ′jk

∣∣∣ Xj

]
= 2σ4

Yjk|Xj
. The ITVs are a special case of the ITCs when ρ = 1.111

Thus far, we assumed that the effect sizes of the additive genetic term is known to simplify the112

theory. However, in practice, we use the residuals so the above theory does not exactly hold: while the113

studentized residuals are unbiased estimates, they follow a t-distribution and so the squared residuals114

follow an F -distribution (similar adjustments with the cross products). This nuance did not impact any115

inferences in our simulation study.116

There are a few important details with the above regression model approach. First, a test for117

differential ITV patterns is related to the Breusch-Pagan test [3]. In addition, a regression model on118

the correlation scale has been discussed elsewhere (see, e.g., [4]) and, more recently, is related to one119

studied by Lea et al. (2019) [5]. Second, the quadratic relationship between the cross products (or120

squared residuals) and genotypes only holds for simple interactions, and the underlying (and unknown)121

functional form is expected to be more complicated. Regardless, for GWAS data where interactions are122

difficult to detect, cq (or ck) is likely much smaller than bq (or bk) and so it is reasonable to assume that123

the linear term will dominate the signal compared to higher order terms.124
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2 Supplementary figures140
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Fig. S1: General strategy to detect latent genetic interactions when there are two unobserved environments

denoted by ‘A’ and ‘B.’ (a) The additive genetic effect is removed and any heteroskedasticity correlated with

genotype implies a latent genetic interaction. (b) When there are two traits measured, the pairwise products

between the residuals (cross products) can be used to test for latent genetic effects.
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Fig. S2: Revealing latent interactive effects using multiple traits. The first step is to remove the additive

genetic signal to ensure that the covariance between traits is not caused by the main (additive) effects of

the SNP. The individual-specific covariance matrix can then be estimated by calculating the corresponding

squared residuals (estimate of the diagonal elements) and the cross products (estimate of the off-diagonal

elements). These quantities can be used to infer latent interactive effects.
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Fig. S3: False positive rate of the LIT implementations under the null hypothesis of no interaction. Our

simulation study varied the number of traits (rows), baseline trait correlation (0.25 (green), 0.50 (blue), and

0.75 (orange)), and error distribution (columns). For each configuration, there are 50 replicates at a sample

size of 300,000. The empirical false positive rate at a type I error rate of 1× 10−3 (red dashed line).
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Fig. S4: Q-Q plot of the LIT implementations under the null hypothesis of no interaction. Similar to Figure S3,

our simulation study varied the number of traits (rows), baseline trait correlation (0.25 (green), 0.50 (blue),

and 0.75 (orange)), and error distribution (columns). At each configuration, we simulated 50 datasets of

10,000 SNPs and then combined the p-values for a total of 500,000 p-values per configuration.
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Fig. S5: False positive rate of the LIT implementations when applied to 5 SNPs.
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Fig. S6: The empirical power of the principal components (rows) for the squared residual and cross product

matrix at various baseline correlations (x-axis). In total, there was 10 traits simulated and the proportion of

traits with shared interaction effects (columns) was varied. Each point represents the average power across

500 simulations at a significance threshold of 5× 10−8.
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Fig. S7: A similar simulation setting to Figure 2 with the direction of the effect size for the interaction term is

opposite of the interacting environmental variable under (A) positive pleiotropy and (B) a mixture of positive

and negative pleiotropy.
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Fig. S8: Comparing Levene’s test to aLIT, Marginal (SQ/CP), and Marginal (SQ) using a similar simulation

setting to Figure 3.
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Fig. S9: Comparing Levene’s test to aLIT, Marginal (SQ/CP), and Marginal (SQ) using a similar simulation

setting to Figure S7.
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λ = 1.04 λ = 1.15 λ = 1.12 λ = 1.11

λuLIT = 1.14
λwLIT = 1.14

Fig. S10: Quantile-Quantile plot of the uLIT, wLIT, and aLIT p-values from the UK Biobank. (a) The unad-

justed p-values and (b) adjusted p-values using the genomic inflation factor. The figure removes significant

p-values and those in linkage disequilibrium.
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λ = 1.04 λ = 1.15 λ = 1.12 λ = 1.11

Fig. S11: Quantile-Quantile plot of the Marginal (SQ) p-values from the UK Biobank using the traits BFP, BMI,

HC and WC. The unadjusted (blue) and adjusted (black) p-values are shown. We removed the significant

p-values and those in linkage disequilibrium.
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Fig. S12: The observed SNP minor allele frequency (MAF) distribution in the UK Biobank was split into 5

equal parts (quintiles) where the genomic inflation factor (GIF) was calculated for uLIT, wLIT, and aLIT.
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Fig. S13: The double KS test procedure using the set of independent SNPs in Figure S10. (a) Quantile-

Quantile plot of aLIT, uLIT, and wLIT p-values from 100 permutations of the phenotype under the null hy-

pothesis of no latent genetic interactions. (b) Quantile-Quantile plot of the 100 KS test p-values for uLIT and

wLIT. The double KS test p-value is shown in the bottom right corner. The dashed line indicates the 95%

confidence band.
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Fig. S14: Comparison of the significance results using the marginal testing procedure and aLIT. The

genome-wide significance threshold is 5× 10−8.
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Fig. S15: Comparison of aLIT p-values after adjusting for additive genetic effects (y-axis) and domi-

nance/scaling effects (x-axis). The dark red points are SNPs that are above the genome-wide significance

threshold of 5× 10−8. The p-values are transformed to be on a logarithmic scale similar to Figure S14.
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Fig. S16: Implementing an approximate Gaussian kernel to LIT using a similar simulation setting to Figure

2. The ‘v1’ algorithm assumes a low-rank approximation equal to the number of SQ/CP terms while ‘v2’

assumes a low-rank approximation equal to three times the number of SQ/CP terms.
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Fig. S17: Implementing an approximate Gaussian kernel to LIT using a similar simulation setting to Fig-

ure S7. The ‘v1’ algorithm assumes a low-rank approximation equal to the number of SQ/CP terms while

‘v2’ assumes a low-rank approximation equal to three times the number of SQ/CP terms.
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Fig. S18: The average computational time to run aLIT on a SNP as a function of sample size, number of

traits, and kernel function. The ‘Projection’ and ‘Linear’ plots show the computational time with the projection

and linear kernels, respectively. We also implemented a polynomial kernel for the SNP and an approximate

Gaussian kernel for the SQ/CP terms where ‘v1’ and ‘v2’ use a low-rank approximation equal to the number

of SQ/CP terms (‘v1’) and three times this values (‘v2’). Data were simulated the same way in the simula-

tion study and each point is the average time across 500 replicates. Note that a single core of a 3.2-GHz

Intel Xeon W-3245 processor is used. LIT can distribute across multiple cores to substantially reduce the

computational time, and that the relative computation will vary with the computing hardware used.
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3 Supplementary tables141

Chr. Gene Lead SNP MAF p-value (aLIT) p-value (SQ/CP)

16 FTO rs11642015 0.402 1.08× 10−46 2.73× 10−40

1 LYPLAL1 rs2820444 0.299 1.17× 10−13 2.64× 10−13

6 BTN2A1 rs13220495 0.111 2.65× 10−13 7.25× 10−13

18 MC4R rs6567160 0.234 5.12× 10−12 6.58× 10−12

6 SNRPC rs4472337 0.155 1.07× 10−9 1.99× 10−10

2 COBLL1 rs10195252 0.407 9.66× 10−14 7.64× 10−10

7 KLF14 rs35363532 0.494 5.75× 10−10 8.45× 10−10

3 TIPARP rs17451107 0.388 1.57× 10−7 1.33× 10−9

4 RP11-362I1.1 4:45165650_ATTC_A 0.430 5.54× 10−7 1.15× 10−8

2 SH3YL1 rs62104180 0.051 1.34× 10−7 1.20× 10−8

16 STX1B rs34845977 0.364 1.24× 10−7 1.36× 10−8

17 KANSL1 rs2732706 0.217 1.24× 10−7 1.36× 10−8

12 FAIM2 rs7132908 0.384 8.85× 10−9 4.22× 10−8

Table S1: Lead SNPs of significant findings from Marginal (SQ/CP) in the UK Biobank.

Chr. Gene Lead SNP age alcohol income sex smoking

16 FTO rs11642015 6.47× 10−3 6.54× 10−5 2.27× 10−1 1.9× 10−2 1.32× 10−3

2 COBLL1 rs5835988 1.74× 10−1 1.72× 10−1 2.33× 10−2 1.32× 10−51 2.46× 10−3

1 LYPLAL1 rs2820444 9.00× 10−1 4.90× 10−3 6.50× 10−1 7.22× 10−23 8.31× 10−3

6 PRSS16 rs13212921 8.64× 10−1 5.26× 10−1 6.06× 10−1 6.70× 10−1 2.23× 10−1

18 MC4R rs35614134 7.21× 10−2 8.43× 10−2 4.59× 10−1 6.18× 10−5 8.43× 10−2

1 ATP2B4 rs2821230 6.54× 10−1 1.82× 10−2 2.78× 10−1 1.48× 10−5 8.84× 10−1

7 KLF14 rs972284 1.20× 10−1 3.74× 10−1 9.80× 10−1 2.39× 10−14 1.83× 10−2

11 LIN7C rs11030066 2.56× 10−1 8.76× 10−1 2.59× 10−1 8.64× 10−1 2.13× 10−1

6 ILRUN rs9469860 5.40× 10−1 9.49× 10−2 8.73× 10−1 7.87× 10−5 1.61× 10−1

12 FAIM2 rs7132908 4.74× 10−2 4.47× 10−2 1.02× 10−1 3.99× 10−1 9.78× 10−3

5 MAP3K1 rs157845 2.11× 10−2 2.71× 10−1 1.73× 10−1 6.22× 10−2 2.12× 10−2

Table S2: Genotype-by-environment interaction results for lifestyle (alcohol and smoking) and socio-

demographic (age, sex, and income) environmental factors in the UK Biobank.
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