
Appendix A Overview of quality control tools in
variant calling pipelines

Reads Alignment Duplicate Marking Variants Report

nf-core/sarek
FastQC
FastP

samtools stats
mosdepth

GATK4 Markduplicates
or

GATK4 EstimateLibraryComplexity

vcftools
bcftools

snpeff, vep
MultiQC

OvarFlow FastQC
samtools depth

covariate analysis
GATK4 Markduplicates snpeff -

Sequana VC -
samtools depth
sequana coverage

sambamba markdup snpeff MultiQC

TOSCA FastQC

samtools stats
mosdepth

BamStats04
GATK CallableLoci

GATK4 Markduplicates snpeff MultiQC

OTP FastQC

samtools flagstat
Sex estimation
GC correction
In-house scripts

sambamba
biobambam
or picard

In-house scripts -

Table S1: Variant calling pipelines typically use a set of quality control tools to allow introspection of
data quality and intermediate analysis steps. Here, the various tools used by the pipelines described in
Table 1 are shown. All pipelines report basic mapping, duplication metrices, and variant calling metrics.
nf-core/sarek, sequana VC, and TOSCA combine these into a MultiQC report.

Appendix B Table with detailed changes between
Sarek 2.5.2 and 3.1.1

Feature Sarek 2.5.2 Sarek 3.1.1

Pre-processing

uBAM conversion GATK4 SamToFastq SAMtools

FastQ splitting Nextflow SplitFastq() fastP

UMI support - fgbio

Trimming - fastP

Mapping BWA-MEM
BWA-MEM, BWA-MEM2,
Dragmap

Merging of mapped files SAMtools
GATK4 Markduplicates(Spark),
SAMtools

Duplicate marking GATK4 Markduplicates GATK4 Markduplicates(Spark)

Quality control FastQC, SAMtools, Qualimap
FastQC, fastP, SAMtools,
mosdepth, GATK4
EstimateLibraryComplexity

Variant calling

Germline
Haplotypecaller, Manta, Mpileup,
Strelka2, Tiddit

CNVKit, DeepVariant, FreeBayes,
Haplotypecaller (extended
single-sample filtering and
join-germline), Manta, Mpileup,
Strelka, Tiddit

Tumor-only Manta, Strelka, Tiddit
FreeBayes, Manta, Mutect2,
Strelka2, Tiddit

Paired
ASCAT, ControlFreec, FreeBayes,
Manta, Mutect2, Strelka2

ASCAT, CNVKit, ControlFreec,
FreeBayes, Manta, MsiSensorPro,
Mutect2, Strelka2, Tiddit

Merging Custom script with bcftools

Annotation VEP CADD plugin
VEP dbnsfp, Loftee, spliceAI,
spliceRegion plugin

Other Sentieon support yes planned for 3.3

Table S2: The updates since nf-core/sarek 2.5.2 are summarized in this table: most notably adapter
trimming and UMI support were added, and read splitting was optimized and enabled for large FastQ
files by using fastP. Merging of aligned BAM files across splits and lanes was incorporated into the
duplicate marking process. Furthermore, individual steps allow a wider tool selection, i.e. BWA-MEM2
and Dragmap for mapping and further tools for variant calling. Sentieon support for all steps will be
added with release 3.3.

Appendix C Intra-sample parallelization

Fig. S1: The figure depicts the processing of a single sample. While Nextflow runs the
analysis of each sample in parallel, intra-sample parallelization was implemented for
the mapping step by splitting the FastQ files beforehand, mapping each, and merging
all FastQ files belonging to one sample and duplicate marking them. Base quality
score recalibration and SNP/Indel calling are run across genomic intervals, which can
be either user-provided or GATK-provided interval files.

Appendix D Reducing storage requirements with
CRAM

Fig. S2: Resource usage of nf-core/sarek 3.1.1 when storing intermediate data in
BAM versus CRAM format for all pre-processing processes. A): Average realtime,
and maximum CPU and memory usage (peak rss) as reported by the Nextflow trace
file. For processes split within a sample (i.e. ApplyBQSR), the task with the highest
runtime per sample is shown as the process runtime. Resource usage was compared
using the paired Wilcoxon test (** p < 0.01, * p < 0.05). Seven of the eleven pro-
cesses are significantly faster when using the CRAM format. Five processes have a
significantly higher CPU hour usage, and three require more memory in comparison
to using BAMs. B): Storage was evaluated by calculating the total size of the work
directories of all tasks of the respective process. The storage usage between both is
identical, due to Nextflow accessing the input files via symlinks. Thus only the output
is measured here for each process, which is independent of input format. Each condi-
tion was repeated three times for samples of five tumor-normal paired patients.

Fig. S3: Resource usage of all variant calling processes in nf-core/sarek 3.1.1 when
starting from BAM and CRAM format. A): Average realtime, and maximum CPU
and memory usage (peak rss) as reported by the Nextflow trace file. For processes
split within a sample, the task with the highest runtime per sample is shown as the
process runtime. Resource usage was compared using the paired Wilcoxon test (**
p < 0.01, * p < 0.05). Four of the 12 processes are significantly faster when using the
CRAM format. Six have a significantly higher CPU hour usage, and seven require more
memory in comparison to using BAMs. B): Storage was evaluated by calculating the
total size of the work directories of all tasks of the respective process. Six processes have
reduced storage requirements. Each condition was repeated three times for samples of
five tumor-normal paired patients.

Appendix E Sharding FastQ files reduces runtime

Fig. S4: Dividing the input FastQ files into increasing amounts of shards. A):
Resource usage of fastP during sharding of the input FastQ files. The tool was run
with a different count of CPUs corresponding to the desired number of shards. B):
Resource usage of BWA-MEM during mapping of each shard. C): Resource usage of
the duplicate marking process. Merging of sharded bam files and duplicate marking is
performed with GATK4 Markduplicates. CRAM conversion is done with SAMTools.
The violin plots show computations on tumor-normal paired samples of five patients.
The time was evaluated by summing up the highest realtime per task per sample as
reported by the Nextflow trace report. The work directory size and CPU hours are
the sums of all involved tasks.

Appendix F Splitting by intervals reduces runtime

Fig. S5: Parallel processing of interval groups reduces runtimeA): GATK4 BaseRecal-
ibrator runtime decreases with an increasing number of interval groups. Storage space
requirements increase, while CPU hours stay consistent. B): For GATK4 GatherBQS-
RReports all three metrics increase with an increasing number of interval groups. C):
For GATK4 ApplyBQSR the runtime decreases with an increasing number of interval
groups. Storage space requirements increase, while CPU hours stay consistent. D):
For SAMTools Merge all three metrics are consistent across the number of interval
groups. The violin plots show computations on tumor-normal paired samples of five
patients for each tool. The time was evaluated by summing up the highest realtime
per task per sample as reported by the Nextflow trace report. The work directory size
and CPU hours are the sums of all involved tasks.

DeepVariant FreeBayes HaplotypeCaller Strelka2

0

500

1000

1500

2000

ti
m

e
 (

m
in

)

0

100

200

300

400

w
o
rk

 d
ir
 (

G
B

)

1 10 21 40 78 124 1 10 21 40 78 124 1 10 21 40 78 124 1 10 21 40 78 124
0

50

100

150

200

#interval groups

C
P

U
h

Germline short variant caller

Fig. S6: Effect of parallelizing computations across interval groups on germline vari-
ant calling processes, which include the respective variant caller followed by GATK4
MergeVCFs. FreeBayes VCFs are sorted before merging. GATK4 HaplotypeCaller is
followed by GATK4 CNNSCoreVariants and GATK4 FilterVariantTranches. All vari-
ant callers speed up on parallel processing across 10 interval groups. DeepVariant and
HaplotypeCaller speed up further with fewer interval groups. Storage usage decreases
for DeepVariant for 10 interval groups and remains stable. FreeBayes and Strelka2
have similar storage usage across parallelization. For VCFs called by HaplotypeCaller
storage usage increases. CPU hours are similar across degrees of parallelization with
an increase measured for Strelka2. The violin plots show computations on normal sam-
ples of five patients. The time was evaluated by summing up the highest realtime per
task per sample as reported by the Nextflow trace report. The work directory size and
CPU hours are the sums of all involved tasks.

FreeBayes Mutect2 Strelka2

0

1000

2000

3000

4000

ti
m

e
 (

m
in

)

0

100

200

300

w
o
rk

 d
ir
 (

G
B

)

1 10 21 40 78 124 1 10 21 40 78 124 1 10 21 40 78 124

25

50

75

100

125

#interval groups

C
P

U
h

Somatic short variant caller

Fig. S7: Effect of parallelizing computations across interval groups on somatic vari-
ant calling processes, which include the respective variant caller followed by GATK4
MergeVCFs. FreeBayes VCFs are sorted before merging. All variant callers speed
up on parallel processing across 10 interval groups. FreeBayes and Mutect2 further
speed up with 21 interval groups. Storage usage increases for FreeBayes for 10 inter-
val groups and remains stable. For Mutect2 storage usage increases with increasing
interval groups. It remains stable for Strelka2. CPU hours are similar across degrees
of parallelization with a decrease measured for Strelka2. The violin plots show com-
putations on tumor-normal paired samples of five patients. The time was evaluated
by summing up the highest realtime per task per sample as reported by the Nextflow
trace report. The work directory size and CPU hours are the sums of all involved tasks.

Appendix G Benchmarking against truth datasets

HG004

HG002 HG003

0.95 0.96 0.97 0.98 0.99

0.95 0.96 0.97 0.98 0.99 0.96 0.97 0.98 0.99

0.980

0.985

0.990

0.995

0.98

0.99

0.98

0.99

Recall

P
re

c
is

io
n

bwa
BwaMem2
Dragmap

DeepVariant
FreeBayes
HaplotypeCaller
HaplotypeCaller (filtered)
Strelka2_BP

A

0.00

0.25

0.50

0.75

1.00

bwa BwaMem2 Dragmap

F
1
−

S
c
o
re

B

NV

EA FD

0.75 0.80 0.85 0.90 0.95

0.7 0.8 0.9 0.55 0.60 0.65 0.70 0.75 0.80 0.85
0.0

0.1

0.2

0.0

0.1

0.2

0.3

0.0

0.2

0.4

0.6

Recall

P
re

c
is

io
n

bwa
BwaMem2
Dragmap

FreeBayes
Mutect2
Mutect2 (filtered)
Strelka2_BP

C

0.00

0.25

0.50

0.75

1.00

bwa BwaMem2 Dragmap

F
1
−

S
c
o
re

D

Fig. S8: Germline and somatic variant calling evaluation of high-confidence calls using
ground-truth benchmarking data with respect to Indels. A,B: The germline track of
the pipeline was evaluated using 3 WGS GiaB datasets (HG002-HG004). The average
precision, recall and F1-score values across all the samples are plotted respectively.
C,D: The paired calling track was evaluated using three tumor-normal WES pairs
(EA, FD, NV) from SEQ2C.

40x 50x

20x 30x

0.985 0.990 0.985 0.990

0.970 0.975 0.980 0.985 0.990 0.978 0.982 0.986 0.990

0.980

0.985

0.990

0.995

0.985

0.990

0.995

1.000

0.96

0.97

0.98

0.99

0.985

0.990

0.995

Recall

P
re

c
is

io
n

DeepVariant FreeBayes HaplotypeCaller (filtered) Strelka2

BGI MGI

SNPs

Fig. S9: Germline variant calling evaluation of high-confidence calls using ground-
truth benchmarking data with respect to SNPs. Samples from MGISeq and BGISeq500
were mapped with BWA-MEM. Different coverages were used as input. For all inves-
tigated coverage values FreeBayes and DeepVariant have the highest recall. Strelka2
and DeepVariant show the highest precision values for all samples.

40x 50x

20x 30x

0.96 0.97 0.98 0.99 0.96 0.97 0.98 0.99

0.94 0.96 0.98 0.95 0.96 0.97 0.98 0.99

0.97

0.98

0.99

0.98

0.99

1.00

0.96

0.97

0.98

0.99

0.97

0.98

0.99

Recall

P
re

c
is

io
n

DeepVariant FreeBayes HaplotypeCaller (filtered) Strelka2

BGI MGI

Indels

Fig. S10: Germline variant calling evaluation of high-confidence calls using ground-
truth benchmarking data with respect to Indels. Samples from MGISeq and
BGISeq500 were mapped with BWA-MEM. Different coverages were used as input.
For all investigated coverage values HaplotypeCaller and DeepVariant have the highest
recall, followed by Strelka2. MGI samples analyzed with DeepVariant had the highest
precision values.

Appendix H Comparison of CNV calls against
PCAWG samples

Fig. S11: Comparison of copy number calls obtained with nf-core/sarek using ASCAT,
Control-FREEC, and CNVKit to the ones from the PCAWG study downloaded from
the ICGC portal. For the latter, there are two results files available for each patient
respectively, one called with the OTP pipeline, one called with the Sanger pipeline.
The PCAWG calls agree for 3 patients. For DO44890 all calls across all pipelines and
tools agree. For DO44930 and DO44888, the nf-core/sarek ASCAT calls are similar to
both the OTP and Sanger pipeline based calls, the CNVKit and Control-FREEC calls
differ, but are similar towards each other. For DO44889 the nf-core/sarek and Sanger
pipeline calls overlap, as well as the OTP calls and nf-core/sarek Control-FREEC and
CNVKit calls. Lastly, for DO44919, all nf-core/sarek calls overlap with the Sanger
pipeline results, the OTP pipeline results differ.

	Overview of quality control tools in variant calling pipelines
	Table with detailed changes between Sarek 2.5.2 and 3.1.1
	Intra-sample parallelization
	Reducing storage requirements with CRAM
	Sharding FastQ files reduces runtime
	Splitting by intervals reduces runtime
	Benchmarking against truth datasets
	Comparison of CNV calls against PCAWG samples

