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NON-DIMENSIONALISATION 

We can scale the system of equations (1a) to (1d) in the main text as follows: 

𝑆𝐽, 𝑆𝐴, 𝐼𝐽, 𝐼𝐴, 𝑁 ~
1

𝑞
 (𝑆1𝑎) 

𝑡~
1

𝛾
 (𝑆1𝑏) 

𝑎, 𝛼, 𝑔, 𝑏𝐽, 𝑏𝐴~𝛾 (𝑆1𝑐) 

𝛽~𝑞𝛾 (𝑆1𝑑) 

which allows us to set 𝑞 = 1 and 𝛾 = 1 without loss of generality.  
 
Note that scaling by 𝛾 is not possible in the case when there is no recovery (𝛾 = 0). In this 
case, we only non-dimensionalise to set 𝑞 = 1.  
 
 

INVASION FITNESS 

The ecological dynamics for a rare parasite mutant with virulence 𝛼𝑚 are described by the 
following equations: 
 

𝑑

𝑑𝑡
(
𝐼𝐽
𝐼𝐴
) = (

𝛽0√𝛼𝑚𝑆𝐽
∗ − 𝑏𝐽 − 𝛾 − 𝑔 − 𝛼𝑚(1 − 𝜏𝐽) 𝛽0√𝛼𝑚𝑆𝐽

∗

𝑔 + 𝛽0√𝛼𝑚𝑆𝐴
∗ 𝛽0√𝛼𝑚𝑆𝐴

∗ − 𝑏𝐴 − 𝛾 − 𝛼𝑚(1 − 𝜏𝐴)
) (
𝐼𝐽
𝐼𝐴
) (𝑆2) 

 
The Jacobian matrix (given above) can be decomposed as: 
 

𝐽 = (
𝛽0√𝛼𝑚𝑆𝐽

∗ 𝛽0√𝛼𝑚𝑆𝐽
∗

𝛽0√𝛼𝑚𝑆𝐴
∗ 𝛽0√𝛼𝑚𝑆𝐴

∗
) − (

𝑏𝐽 + 𝛾 + 𝑔 + 𝛼𝑚(1 − 𝜏𝐽) 0

−𝑔 𝑏𝐴 + 𝛾 + 𝛼𝑚(1 − 𝜏𝐴)
) (𝑆3) 

 
Writing this decomposition as 𝐽 = 𝐹 − 𝑉, the next-generation matrix [1] is given by 𝑁𝐺 =
𝐹𝑉−1 and can be written as: 
 

𝑁𝐺 =
𝛽0√𝛼𝑚

(𝑏𝐽 + 𝑔 + 𝛼𝑚(1 − 𝜏𝐽) + 𝛾)(𝑏𝐴 + 𝛼𝑚(1 − 𝜏𝐴) + 𝛾)
(
𝑆𝐽
∗(𝑏𝐴 + 𝛾 + 𝑔 + 𝛼𝑚(1 − 𝜏𝐴)) 𝑆𝐽

∗ (𝑏𝐽 + 𝛾 + 𝑔 + 𝛼𝑚(1 − 𝜏𝐽))

𝑆𝐴
∗(𝑏𝐴 + 𝛾 + 𝑔 + 𝛼𝑚(1 − 𝜏𝐴)) 𝑆𝐴

∗ (𝑏𝐽 + 𝛾 + 𝑔 + 𝛼𝑚(1 − 𝜏𝐽))
) (𝑆4) 

 
The invasion fitness of a rare parasite mutant is one less than the spectral radius of 𝑁𝐺. This 
is given by: 
 

𝑤𝑃 =
𝛽0𝑆𝐽

∗√𝛼𝑚(𝑏𝐴 + 𝑔 + 𝛾 + 𝛼𝑚(1 − 𝜏𝐴)) + 𝛽0𝑆𝐴
∗√𝛼𝑚 (𝑏𝐽 + 𝑔 + 𝛾 + 𝛼𝑚(1 − 𝜏𝐽))

(𝑏𝐽 + 𝑔 + 𝛾 + 𝛼𝑚(1 − 𝜏𝐽)) (𝑏𝐴 + 𝛾 + 𝛼𝑚(1 − 𝜏𝐴))
− 1 (𝑆5) 

 
The ecological dynamics of a rare host mutant with juvenile tolerance 𝜏𝐽𝑚 are described by 

the following equations (in the case where lifelong tolerance is evolving, simply replace 𝜏𝐽𝑚 

and 𝜏𝐴 by the mutant lifelong tolerance, 𝜏𝐿𝑚): 
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𝑑

𝑑𝑡
(

𝑆𝐽
𝑆𝐴
𝐼𝐽
𝐼𝐴

) =

(

 

−𝑏𝐽 − 𝑔 − 𝜆 𝑎(1 − 𝑞𝑁∗) 𝛾

𝑔 −𝑏𝐴 − 𝜆 0

𝜆
0

0
𝜆

−𝑏𝐽 − 𝑔 − 𝛼(1 − 𝜏𝐽𝑚) − 𝛾
𝑔

 

𝑎(1 − 𝑞𝑁∗)
𝛾
0

−𝑏𝐴 − 𝛼(1 − 𝜏𝐴) − 𝛾)

 (

𝑆𝐽
𝑆𝐴
𝐼𝐽
𝐼𝐴

) (𝑆6) 

 
 
This Jacobian matrix can be decomposed as: 
 

𝐽 = (

0 𝑎(1 − 𝑞𝑁∗)
0 0

0 𝑎(1 − 𝑞𝑁∗)
0 0

0           0          
0 0

0           0          
0 0

)−

(

 

𝑏𝐽 + 𝑔 + 𝜆 0 −𝛾

−𝑔 𝑏𝐴 + 𝜆 0

−𝜆
0

0
−𝜆

𝑏𝐽 +𝑔 + 𝛼(1 − 𝜏𝐽𝑚) + 𝛾
−𝑔

 

0
−𝛾
0

𝑏𝐴 + 𝛼(1 − 𝜏𝐴) + 𝛾)

  (𝑆7) 

 
We can then calculate the next-generation matrix and take one less than its spectral radius 
to give the invasion fitness of a rare host mutant: 
 

𝑤𝐻 =
𝑎(1 − 𝑞𝑁∗)𝑀1

𝐷
− 1 (𝑆8𝑎) 

 
where: 
 

𝑀1 = 𝑔𝑐𝐽𝑐𝐴 + 𝑔𝛾𝜆 + 𝑔𝜆𝑐𝐽 + 𝑔𝜆(𝑏𝐴 + 𝜆) (𝑆8𝑏) 

𝐷 = (𝑏𝐽 + 𝑔 + 𝜆)(𝑏𝐴 + 𝜆)𝑐𝐽𝑐𝐴 − 𝛾𝜆(𝑏𝐽 + 𝑔 + 𝜆)𝑐𝐽 − 𝛾𝜆(𝑏𝐴 + 𝜆)𝑐𝐴 + 𝛾
2𝜆2 (𝑆8𝑐) 

𝑐𝐽 = 𝑏𝐽 + 𝑔 + 𝛾 + 𝛼(1 − 𝜏𝐽𝑚) (𝑆8𝑑) 

𝑐𝐴 = 𝑏𝐴 + 𝛾 + 𝛼(1 − 𝜏𝐴) (𝑆8𝑒) 

 

DERIVATION OF 𝑹𝟎 

The disease-free equilibrium of the system is given by: 

�̂�𝐽 =
𝑏𝐴 (𝑎𝑔 − 𝑏𝐴(𝑏𝐽 + 𝑔))

𝑎𝑔𝑞(𝑏𝐴 + 𝑔)
 (𝑆9𝑎) 

�̂�𝐴  =
𝑎𝑔 − 𝑏𝐴(𝑏𝐽 + 𝑔)

𝑎𝑞(𝑏𝐴 + 𝑔)
 (𝑆9𝑏) 

 

This tells us that the host population is viable whenever 𝑎𝑔 − 𝑏𝐴(𝑏𝐽 + 𝑔) > 0.  

We can now use equation (S5) to write the basic reproductive ratio of the parasite as: 

𝑅0 =
𝛽0√𝛼 (𝑎𝑔 − 𝑏𝐴(𝑏𝐽 + 𝑔))(𝑏𝐴(𝑏𝐴 + 𝑔 + 𝛾 + 𝛼(1 − 𝜏𝐴)) + 𝑔 (𝑏𝐽 + 𝑔 + 𝛾 + 𝛼(1 − 𝜏𝐽)))

𝑎𝑔𝑞(𝑏𝐴 + 𝑔) (𝑏𝐽 + 𝑔 + 𝛾 + 𝛼(1 − 𝜏𝐽)) (𝑏𝐴 + 𝛾 + 𝛼(1 − 𝜏𝐴))
 (𝑆10) 
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HOPF BIFURCATION 

The coevolution of host tolerance 𝜏𝑖 and parasite virulence 𝛼 is described by the system: 

𝑑𝜏𝑖
𝑑𝑡
= 𝜙𝐻𝑁

∗
𝜕𝑤𝐻
𝜕𝜏𝑖𝑚

|
𝜏𝑖𝑚=𝜏𝑖

 (𝑆11𝑎) 

𝑑𝛼

𝑑𝑡
= 𝜙𝑃𝐼

∗
𝜕𝑤𝑃
𝜕𝛼𝑚

|
𝛼𝑚=𝛼

 (𝑆11𝑏) 

where 𝜙𝐻 and 𝜙𝑃 are the host and parasite mutation rates respectively (and so 𝜙 =

𝜙𝑃/𝜙𝐻) and 𝑁∗ and 𝐼∗ are the endemic equilibrium host and parasite population densities.  

 

If we let (𝜏𝑖
∗, 𝛼∗) represent a co-singular strategy, then we can Taylor expand the fitness 

gradients above to get (neglecting quadratic and higher order terms): 

𝜕𝑤𝐻
𝜕𝜏𝑖𝑚

|𝜏𝑖𝑚=𝜏𝑖 = (
𝜕2𝑤𝐻

𝜕𝜏𝑖𝑚
2 +

𝜕2𝑤𝐻
𝜕𝜏𝑖𝑚𝜕𝜏𝑖

)|

𝜏𝑖
∗,𝛼∗

(𝜏𝑖 − 𝜏𝑖
∗) +

𝜕2𝑤𝐻
𝜕𝜏𝑖𝑚𝜕𝛼

|
𝜏𝑖
∗,𝛼∗

(𝛼 − 𝛼∗) (𝑆12𝑎) 

𝜕𝑤𝑃
𝜕𝛼𝑚

|𝛼𝑚=𝛼 = (
𝜕2𝑤𝑃

𝜕𝛼𝑚
2 +

𝜕2𝑤𝑃
𝜕𝛼𝑚𝜕𝛼

)|
𝜏𝑖
∗,𝛼∗

(𝛼 − 𝛼∗) +
𝜕2𝑤𝑃
𝜕𝛼𝑚𝜕𝜏𝑖

|
𝜏𝑖
∗,𝛼∗

(𝜏𝑖 − 𝜏𝑖
∗) (𝑆12𝑏) 

 

The full system can therefore be written as: 

𝑑

𝑑𝑡
(
𝜏𝑖 − 𝜏𝑖

∗

𝛼 − 𝛼∗
) =

(

 
 
𝜙𝐻𝑁

∗ (
𝜕2𝑤𝐻

𝜕𝜏𝑖𝑚
2 +

𝜕2𝑤𝐻
𝜕𝜏𝑖𝑚𝜕𝜏𝑖

) 𝜙𝐻𝑁
∗
𝜕2𝑤𝐻
𝜕𝜏𝑖𝑚𝜕𝛼

𝜙𝑃𝐼
∗
𝜕2𝑤𝑃
𝜕𝛼𝑚𝜕𝜏𝑖

𝜙𝑃𝐼
∗ (
𝜕2𝑤𝑃

𝜕𝛼𝑚
2 +

𝜕2𝑤𝑃
𝜕𝛼𝑚𝜕𝛼

)
)

 
 
(
𝜏𝑖 − 𝜏𝑖

∗

𝛼 − 𝛼∗
) (𝑆13) 

 

where all derivatives are evaluated at the co-singular strategy.  

 

A Hopf bifurcation occurs as a parameter is varied if, for some value of that parameter, the 

two eigenvalues of the Jacobian matrix above are purely imaginary and non-zero. In our 

model, a Hopf bifurcation can occur as lifespan varies (see Fig. S9).  
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Fig. S1: The effect of lifespan and relative parasite mutation rate on the incidence of cycling 

and bistability in the juvenile-only tolerance scenario. Blue indicates a co-CSS, orange 

indicates bistability, red indicates cycling (and bistability; the limit cycle is above a co-CSS) and 

white indicates that the parasite is not viable. Note that full tolerance and runaway selection 

for virulence never occurs. Parameters used are as in Table 1, except for 𝑐1 = 0.3 and (A) 

𝛽0 = 7, (B) 𝛽0 = 10 & (C) 𝛽0 = 20, with (i) 𝛾 = 0 & (ii) 𝛾 = 1.  
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Fig. S2: The effect of lifespan and the strength of the tolerance/reproduction trade-off on 

the incidence of cycling and bistability in the juvenile-only tolerance scenario. Blue indicates 

a co-CSS, orange indicates bistability, red indicates cycling (and bistability; the limit cycle is 

above a co-CSS) and white indicates that the parasite is not viable. Note that full tolerance 

and runaway selection for virulence never occurs. Parameters used are as in Table 1, except 

for 𝜙 = 32 and (A) 𝛽0 = 5, (B) 𝛽0 = 10 & (C) 𝛽0 = 20, with (i) 𝛾 = 0 & (ii) 𝛾 = 1.   
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Fig. S3: The effect of lifespan and the strength of the tolerance/reproduction trade-off on the 

incidence of bistability and the evolution of full tolerance in the lifelong tolerance scenario. 

Blue indicates a co-CSS, orange indicates bistability, yellow indicates the evolution of full 

tolerance and runaway selection for virulence and white indicates that the parasite is not 

viable. Note that cycling never occurs. Parameters used are as in Table 1, except for (A) 𝛽0 =

5, (B) 𝛽0 = 10 & (C) 𝛽0 = 20, with (i) 𝛾 = 0 & (ii) 𝛾 = 1. Results hold for all host and parasite 

mutation rates (all values of 𝜙). 
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Fig. S4: The effect of host lifespan on disease prevalence in (A) the lifelong tolerance scenario 

and (B) the juvenile-only tolerance scenario when both tolerance and virulence are 

evolutionarily static. Curves are shown for low (blue, 𝛼 = 1), medium (orange, 𝛼 = 3) and 

high (red, 𝛼 = 5) levels of pathogen virulence and for low (solid, (A) 𝜏𝐿 = 0.2, (B) 𝜏𝐽 = 0) and 

high (dashed, (A) 𝜏𝐿 = 0.7, (B) 𝜏𝐽 = 0.2) levels of host tolerance. Note that disease prevalence 

rises with host lifespan in the absence of evolution. Parameters used are as in Table 1, with 

𝛾 = 0, except for 𝑎0 = 2, 𝑐1 = 1 and 𝑐2 = 4.  
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Fig. S5: The effect of lifespan on (i) tolerance and (ii) virulence in the case of evolving lifelong 

tolerance (solid blue curves) and evolving juvenile tolerance (solid red curves). The black, 

dashed line shows the lifespan below which the parasite goes extinct. The blue and red 

dashed lines show the disease prevalence at the co-singular strategy in the lifelong and 

juvenile-only tolerance scenarios respectively. In (A), 𝛽0 is held fixed throughout, whereas in 

(B), a different value of 𝛽0 is chosen for each value of lifespan to ensure that the disease 

prevalence is fixed. Parameters used are as in Table 1, with 𝛾 = 1 (so lifespan is measured in 

multiples of the average duration of infection), except for 𝑎0 = 1, 𝑐2 = 4 and 𝑐1 = 1 (full 

tolerance causes full sterility in the host). Results hold for all host and parasite mutation rates 

(all values of 𝜙).  
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Fig. S6: Phase planes showing coevolution for different relative mutation rates. The host 
tolerance nullcline is shown in black and the parasite virulence nullcline is shown in grey. 
Arrows show the directions of the fitness gradients (in the case where 𝜙 = 1). Trajectories 
(initiated at different points in (A) and (B), as indicated by the orange circles) are shown in 
blue (when the host and parasite have equal mutation rates; 𝜙 = 1) and in red (when the 
host mutates ten times faster than the host; 𝜙 = 10). Parameters used are as in Table 1, with 
𝛾 = 0. 
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Fig. S7: The effect of pathogen mortality virulence on the proportional reduction in disease 
prevalence (relative to the value of disease prevalence at a baseline value of 𝛼 = 𝑏 = 0.2) 
when both tolerance and virulence are evolutionarily static. Curves are shown for low (solid, 
𝜏𝑖 = 0.2), medium (dashed, 𝜏𝑖 = 0.5) and high (dotted, 𝜏𝑖 = 0.7) levels of host tolerance 
(which is held fixed), in the lifelong tolerance scenario (blue) and the juvenile-only tolerance 
scenario (red). Note that the relative reduction in disease prevalence is always greater in the 
juvenile-only tolerance scenario. Parameters used are as in Table 1, with 𝛾 = 0. 
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Fig. S8: Bifurcation diagrams showing the effect of lifespan on cycling in the host juvenile 

tolerance (A) and parasite virulence (B). Blue curves show the co-CSS when cycling does not 

occur; red and orange curves show the upper and lower limits of cycles when cycling does 

occur. Phase planes show the host and parasite nullclines (black and grey respectively), 

directions of fitness gradients (arrows) and a trajectory (red), in the cases of short (C), 

intermediate (D) and long (E) lifespans. Parameters used are as in Table 1, with 𝛾 = 0, except 

for 𝑐1 = 0.275. Lifespans are 1/𝑏 = 4.5 in panel (C), 1/𝑏 = 6.5 in panel (D) and 1/𝑏 = 8.5 in 

panel (E). All trajectories are initiated at 𝜏𝐽 = 0.95 and 𝛼 = 5.5. Arrows and trajectories all 

reflect a relative parasite mutation rate of 𝜙 = 20 (the parasite mutates 20 times faster than 

the host).  
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Fig. S9: Argand diagram showing the eigenvalues of the Jacobian matrix of the full 

coevolutionary system as lifespan varies. A Hopf bifurcation can be seen as lifespan increases 

(the eigenvalues cross the imaginary axis away from the origin). Lifespan (1/𝑏) increases from 

4 to 7 as eigenvalues move left-to-right across the plane. Parameters used are as in Table 1, 

with 𝛾 = 0, except for 𝑐1 = 0.275.  
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Fig. S10: The effect of lifespan and the strength of the tolerance/reproduction trade-off on 
the incidence of cycling in the juvenile-only tolerance scenario. Orange indicates bistability 
and red indicates cycling (and bistability; the limit cycle is above a co-CSS). Parameters used 
are as in Table 1, with 𝛾 = 0.  
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