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Supplementary Fig. 1: Bat HIN2 replicates efficiently in turkey but not chicken
hatchlings. a Turkey hatchlings (n= 13) were oro-nasally inoculated with bat HON2 and viral
shedding was monitored by RT-qPCR analysis of oro-pharyngeal swab samples. Asterisk
indicates successful virus isolation from oral swab material from one turkey tested at 5 dpi.
Dashed line indicates detection limit. b Serum antibody titers of turkey hatchlings before and
after bat HON2 infection were determined by an IAV NP-specific ELISA. Dashed lines indicates
threshold between 45% and 50% inhibition. Mean antibody titers are indicated. ¢ Neutralizing
antibody titers against bat HON2. d A group of chicken hatchlings (n= 13) was oro-nasally
inoculated with bat HON2 and viral shedding was monitored by RT-gPCR analysis of oro-
pharyngeal swab samples. Dashed line indicates detection limit. e Serum antibody titers of
chicken hatchlings at 21 dpi with bat HON2 were determined by an IAV NP-specific ELISA.
Dashed lines indicate threshold area between 45% and 50% inhibition. Mean antibody titers
are indicated. f 15 ferrets were directly inoculated with bat HON2. At 1 dpi, three naive contact
ferrets were housed together with all donor animals in interconnected cage units to allow direct
exposure of all ferrets and to study bat HIN2 transmission. g Nasal swabs containing shed
infectious bat HIN2 virus taken from bat HON2-infected (n= 15) and contact (n= 3) ferrets at
the indicated time points were titrated by endpoint titration on MDCK cells. Dashed line

indicates the detection limit. Data are mean + SD.
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Supplementary Fig. 2: No cross-reactive antibodies to bat N2 among individuals
vaccinated against seasonal influenza. a Known MxA escape mutations in NP from the
1918 and the 2009 pdmH1N1 strains are highlighted in red and the resistance patch of the
Eurasian avian-like swine isolate Belzig is shown in blue. Note that the avian-adapted 1AV
KAN-1 and bat HIN2 do not harbor any of the known MxA-resistance amino acid residues.
The NP model was created with PyMol based on the available crystal structure (PDB code:
2Q06). b Reactivity of sera from 15 healthy adults taken before the 2022/23 seasonal influenza
vaccination to recombinant N2 from bat HON2. c¢,d Reactivity of the same sera against the
recombinant N2 of a recent seasonal H3N2 strain (c¢) and the recombinant NA of the Wuhan
spiny eel influenza virus (d). e Pre- and post- seasonal vaccination reactivity of sera from 15
healthy adults who received the 2022/23 seasonal influenza virus vaccine against recombinant
N2 from the bat HIN2 virus. Reactivity was quantified as area under the curve (AUC). A paired
t-test was used to determine statistical differences. For b, ¢ and d, mAb 1G01 was used as

positive control, an irrelevant human mAbs was used as negative control.
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