METTL17 is an Fe-S cluster checkpoint for mitochondrial translation
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Fig S1: OXPHOS, but not ISC machinery or the mito-proteome, is depleted in the absence of FXN.
Related to Figure 1.

A. Waterfall plots of protein fold change in FXN/Control cells, highlighting proteins in the core ISC
machinery. B. Analysis of MitoPathways depleted in FXN edited cells. Pathways in bold are independent.
In parentheses are the number of proteins enriched in each term. C-E. Waterfall plots of protein fold change
in FXN/Control cells, highlighting proteins in MitoCarta 3.0 (C) mtDNA maintenance proteins (D) and
mtRNA metabolism (E).
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Figs S2: mtDNA replication and transcription is not significantly altered in FXN depleted cells.
Related to Figure 2.

A. Ponceau S staining of the protein membrane found in Fig2A. B. Quantification of nascent mtDNA
translation products in sgFXN cells, normalized to sgCtrl (n=3 for all samples). C. gPCR for mtDNA copy
number in sgCtrl and sgFXN cells (n=6 for both samples). D. Mitostring assay examining the levels of
mtDNA encoded transcripts in sgCtrl, sgFXN and sgMTPAP cells (n=4 for all samples) E. Left-
Mitochondrial translation, as assessed by autoradiography after 35S-methionine/cysteine labeling, of cells
edited for ISCU, NFS1, FDX2 and LYRM4. All cells were treated with 200ug/mL emetine, and control
cells in the last lane were also treated with 50pg/ul chloramphenicol. Right- Ponceau S staining of the
protein membrane. F. Immunoblots examining ISCU, NFS1, FDX2, LYRM4 or the loading control HSP60
in cells edited for ISCU, NFS1, FDX2 and LYRM4. G. Histograms of the Z score of cutting controls, non-
expressed genes and essential genes as defined previously'!® in the genetic interaction screens performed
in sgCtrl or sgFXN cells. H. Scatterplot of Z scores showing knockouts growth in sgCtrl vs. sgFXN
backgrounds. All the mitochondrial ribosome assembly genes, as defined by MitoCarta 3.0, are highlighted
in blue. I. Relative growth rates of cells edited for control or MPV17L2 gene, on the background on sgCtrl
or sgFXN. Growth rates were normalized to the unedited growth rate for each strain (n=6 for all samples).
All bar plots show mean + SD. *=p < 0.05, **=p < 0.01, ***=p < 0.001, ****=p < 0.0001. Two-way
ANOVA with Bonferroni’s post-test.
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Fig S3: METTL17 is depleted in FXN edited cells and is linked to mitochondrial translation. Related
to Figure 3.

A. Quantification of METTL17/ACTIN protein levels from sgFXN K562 cells, normalized to sgCtrl edited
cells (n=3) B. Immunoblot for FXN, METTL17 and the loading control actin in 293T and A549 cells edited
with control or FXN guides. C. Cells edited for control, FXN, METTL17 and CDK5RAP1 genes were
grown for 24h in glucose media, and viability was assessed on each background (n=3 for all samples). D.
Protein-protein interactions identified for METTL17 in 293T cells® E. Ponceau S staining of the protein
membrane found in Fig3E. All bar plots show mean + SD. ***=p < (0.001, Two-tailed t test.
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Fig S4: METTL17 has characteristics of an Fe-S cluster blndlng protein. Related to Figure 4.

A. Immunoblot for METTL17 and the loading control actin in cells edited for control, ISC genes (ISCU
and NFS1) or a CIA gene (CIAO3). B. Cells edited for control or METTL17 genes and expressing WT or
mutant forms of METTL17 were grown for 24h in glucose media, and viability was assessed on each
background (n=4 for all samples). C. Ponceau S staining of the protein membrane found in FigdE. D.
Formaldehyde-linked RNA immunoprecipitation of the 16S to GFP, METTL17-FLAG, CYSMut-FLAG
or LYRMut-FLAG proteins. Results were normalized to input construct and 16S levels (n=2 for all
samples). Bar plot in fig S4B shows mean + SD. *=p < 0.05, Two-way ANOVA with Bonferroni’s post-

test.
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Fig S5: Cryo-EM image processing. Related to Figure 6.

A. The data processing scheme. B. Overall maps, combined maps of the local-masked refinements
colored by local resolution are shown for SSU-METTL17 (top), SSU-mtIF3 (middle), and SSU (bottom).
C. Fourier Shell Correlation curves of the half maps and local-masked refinements. The 0.143 criterion is
shown as dashed lines.
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Fig S6: Cryo-EM structure of the yeast SSU, METTL17 and mtIF3. Related to Figure 6.

A-D. Improvements in the model of S. cerevisiae mitoribosome. Overview of the SSU model from the back
with improved proteins colored. The close-up views show modeled elements with their corresponding
density map, and equivalent regions from previous studies’ are shown for comparison. A. The
nucleotide density for mS29 in the SSU head. B. The density and corresponding models of uS2m, uS3m,
uS7m, mS35 that form a previously unsigned helix bundle between the head and body. C. Complete models
for bS1m and mS26 that form contacts at the mRNA channel exit. D. Remodeled and reannotated mS27
interacts with h44, which was previously partially built as poly-Ala and named mS44. E. Comparison
between the yeast cryo-EM model and human AlphaFold2% prediction of METTL17 shows that the



predicted conformations of the NTD (blue) and CTD (light blue) are highly similar, including the
coordination of the 4Fe-4S shown in the close-up view, and structural differences are observed only in the
terminal extensions. The Fe-S cluster in the human model was placed by superposing that of the yeast cryo-
EM structure. F. Comparison between yeast and human SSU (left) and METTL17 (right)
interfaces. Phylum-specific protein extensions have been removed for clarity. The residues involved in
interactions are shown in sticks for RNA and spheres for protein. G. Comparison between yeast and
human’’ SSU-IF3 complex with close-up views showing that the binding of the mtIF3 CTD (orange) is
conserved. Thus, human mtIF3 has similar structural characteristics and would also clash with METTL17
on the SSU. The NTD of mtIF3 is not resolved in our map, and thus hasn’t been modelled. On the other
hand, the C-terminal extensions (CTE) forming a helix have different orientations. The CTE in yeast keeps
contacting the rRNA in the body, whereas that of human is exposed.
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Fig S7: METTL17 overexpression restores the faulty mitochondrial bioenergetics of FXN depleted
cells. Related to Figure 7.

A. Immunoblot of ISCU, FLAG tagged METTL17 construct or the loading control HSP60 on cells edited
with control or ISCU guides. B. Control or ISCU edited cells expressing GFP or METTL17-FLAG
constructs were grown for 24h in glucose (left) or galactose (right), following which their viability was
assessed (n=6 for all samples) C. Oxygen consumption rate of Control (top) or FXN (bottom) edited cells
expressing GFP, METTL17-FLAG, CYSMut-FLAG or LYRMut-FLAG. Cells were sequentially treated



with oligomycin, Bam15 and Piericidin A+ Antimycin A. D. Basal (left) and maximal (right) OCR of
Control or FXN edited cells expressing GFP or METTL17-FLAG (n=7 for all samples). F. Immunoblots
examining POLDI1 or the loading control HSP60 in Control or FXN edited cells expressing GFP,
METTL17-FLAG, CYSM“FLAG or LYRM'“FLAG constructs. G. Immunoblots examining LIAS, FXN
or the loading control ACTIN in Control or FXN edited cells expressing GFP, METTL17-FLAG, CYSMut-
FLAG or LYRM"-FLAG constructs. All bar plots show mean + SD. **=p < 0.01, ****=p < (0.0001. Two-
way ANOVA with Bonferroni’s post-test.
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Table S1. Data collection, processing, model refinement and validation statistics. Related to Figure

6.



