THE LANCET Global Health

Supplementary appendix 3

This appendix formed part of the original submission and has been peer reviewed. We post it as supplied by the authors.

Supplement to: Gupta-Wright A, Ha H, Abdulgadar S, et al. Evaluation of the Xpert MTB Host Response assay for the triage of patients with presumed pulmonary tuberculosis: a prospective diagnostic accuracy study in Viet Nam, India, the Philippines, Uganda, and South Africa. *Lancet Glob Health* 2024; **12:** e226–34.

<u>Appendix</u>

Details of additional contributors from the R2D2 TB Network	2
Supplementary methods Table S1. R2D2 TB Network study enrolment sites and ethics committees Table S2. Procedure summary during participant enrolment and follow up Reasons for South Africa using capillary blood Details of reference standards	5 6 8 8
Supplementary results	.10
Supplementary results Table S3: Demographical and clinical characteristics overall and by Microbiological Reference Standard (MRS) result Figure S1. Histogram of Xpert HR TB Score and its components. Figure S2. Xpert TB HR Receiver Operating Characteristic (ROC) curve using previou calculation against microbiologic reference standard. Table S4: Univariable regression between TB Score and other variables Table S5: Area Under the Receiver Operating Characteristic (ROC) curve, overall and by subgroups. Table S6: Diagnostic accuracy of Xpert-HR by blood sampling method, stratified by HIV-status Figure S3: Positive and negative predictive values for the Xpert-HR and WHO minimum Target Product Profile accuracy for a range of TB prevalence Figure S4: Numbers needing sputum testing based on a hypothetical cohort of 1000 patients with presumed TB and 10% TB prevalence Table S9: Diagnostic Accuracy for the Xpert-HR based on Microbiological Reference	11 12 13 13 14 14 14 15 .16
Standard overall and by subgroup	18
Figure S5: Decision Curve Analysis stratified by HIV status	.19
Table S8: Demographical and clinical characteristics overall and by country for secondary analysis using Sputum Xpert Reference Standard Table S9: Diagnostic Accuracy for the Xpert-HR based on Sputum Xpert Reference Standard overall and by subgroup Figure S5. Xpert TB HR Receiver Operating Characteristic (ROC) curve analysis against sputum Xpert reference standard.	.20 .21
STARD checklist	23
	20

Details of additional contributors from the R2D2 TB Network

First name	Surname	Affiliation
India		
Balamugesh	Thangakunam	Christian Medical College, Vellore
Deepa	Shankar	Christian Medical College, Vellore
Vinita	Ernest	Christian Medical College, Vellore
Flavita	John	Christian Medical College, Vellore
Bharath	Karthikevan	Christian Medical College, Vellore
Reena	Sekar	Christian Medical College, Vellore
Divva	Mangal	Christian Medical College, Vellore
Sai	Vijavasree	Christian Medical College, Vellore
Swetha	Sankar	Christian Medical College, Vellore
Mary	Shibiya	Christian Medical College, Vellore
Privadarshini	Gaiendran	Christian Medical College, Vellore
Shanmuqasu	Elango	Christian Medical College, Vellore
ndaram	Liange	
Rajasekar	Sekar	Christian Medical College, Vellore
Philippines		
Jared	Almonte	De La Salle Medical and Health Sciences Institute
Ramon	Basilio	National TB Reference Laboratory, Research Institute for
r cannon i	Baomo	Tropical Medicine. Department of Health
Asella	Cariaga	De La Salle Medical and Health Sciences Institute
Ruviiean	Canaga	
Raul	Destura	National Institutes of Health. University of the Philippines
		Manila
Victoria	Dalav	De La Salle Medical and Health Sciences Institute
Karlo	Davawon	De La Salle Medical and Health Sciences Institute
Darecil	Gelina	De La Salle Medical and Health Sciences Institute
Joseph	Goleña	De La Salle Medical and Health Sciences Institute
Aldwin		
Maria Marissa	Golla	De La Salle Medical and Health Sciences Institute
Gidalthi	Ilagan	De La Salle Medical and Health Sciences Institute
Jonathan		
Dodge	Lim	National TB Reference Laboratory, Research Institute for
Ŭ		Tropical Medicine, Department of Health
Angelita	Pabruada	De La Salle Medical and Health Sciences Institute
Annalyn	Reyes	De La Salle Medical and Health Sciences Institute
Roeus	Reyes	National TB Reference Laboratory, Research Institute for
Vincent Arjay		Tropical Medicine, Department of Health
G.		
Maricef	Tonquin	De La Salle Medical and Health Sciences Institute
South Africa		
Brigitta	Derendinger	Stellenbosch University
Megan	Hendrikse	Stellenbosch University
Anna	Okunola	Stellenbosch University
Zaida	Palmer	Stellenbosch University
Uganda		
Alfred	Andama	Makerere University College of Health Sciences,
		Department of Medicine
		Kampala, Uganda
Esther	Kisakye	World Alliance for Lung and Intensive Care Medicine in
		Uganda (WALIMU)
Job	Mukwatamundu	World Alliance for Lung and Intensive Care Medicine in
		Uganda (WALIMU)

First name	Surname	Affiliation
Sandra	Mwebe	World Alliance for Lung and Intensive Care Medicine in
		Uganda (WALIMU)
Martha	Nakave	World Alliance for Lung and Intensive Care Medicine in
		Uganda (WALIMU)
William	Worodria	Makerere University College of Health Sciences.
		Department of Medicine
		Kampala, Uganda
Justine	Nyawere	World Alliance for Lung and Intensive Care Medicine in
		Uganda (WALIMU)
Alice	Bukirwa	World Alliance for Lung and Intensive Care Medicine in
		Uganda (WALIMU)
Wilson	Mangeni	World Alliance for Lung and Intensive Care Medicine in
	Ŭ	Uganda (WALIMU)
John Baptist	Ssonko	World Alliance for Lung and Intensive Care Medicine in
		Uganda (WALIMU)
Annet	Nakaweesa	World Alliance for Lung and Intensive Care Medicine in
		Uganda (WALIMU)
Irene	Nassuna	World Alliance for Lung and Intensive Care Medicine in
		Uganda (WALIMU)
Irene	Nekesa	World Alliance for Lung and Intensive Care Medicine in
		Uganda (WALIMU)
David	Katumba	World Alliance for Lung and Intensive Care Medicine in
		Uganda (WALIMU)
Lucy	Asege	World Alliance for Lung and Intensive Care Medicine in
		Uganda (WALIMU)
Talemwa	Nalugwa	World Alliance for Lung and Intensive Care Medicine in
		Uganda (WALIMU)
Vietnam		
Hai	Dang	Vietnam National Tuberculosis Program-University of
		California San Francisco Research Collaboration Unit,
		Hanoi, Vietnam
Luong	Dinh	Vietnam National Lung Hospital
Thien	Doan	Hanoi Lung Hospital, Hanoi, Vietnam
Hang	Do	Hanoi Lung Hospital, Hanoi, Vietnam
Tam	Do	Hanoi Lung Hospital, Hanoi, Vietnam
Hien	Le	Vietnam National Tuberculosis Program-University of
		California San Francisco Research Collaboration Unit,
		Center for Promotion of Advancement of Society, Hanoi,
		Vietnam
Nguyet	Le	National TB reference Lab/ Vietnam National Lung Hospital,
		Hanoi, Vietnam
Anh	Nguyen	Hanoi Lung Hospital, Hanoi, Vietnam
Dong	Nguyen	Hanoi Lung Hospital, Hanoi, Vietnam
Hanh	Nguyen	Vietnam National Tuberculosis Program-University of
		California San Francisco Research Collaboration Unit,
		Center for Promotion of Advancement of Society, Hanoi,
Hoang	Nguyen	Hanoi Lung Hospital, Hanoi, Vietnam
Thanh	Nguyen	Hanoi Lung Hospital, Hanoi, Vietnam
Nam	Pham	Vietnam National Tuberculosis Program-University of
		California San Francisco Research Collaboration Unit,
		Hanoi Lung Hospitai, Hanoi, Vietnam
Thuong	Pham	Hanoi Lung Hospital, Hanoi, Vietnam

First name	Surname	Affiliation				
На	Phan	Vietnam National Tuberculosis Program-University of California San Francisco Research Collaboration Unit, Center for Promotion of Advancement of Society, Hanoi, Vietnam				
Trang	Trinh	Vietnam National Tuberculosis Program-University of California San Francisco Research Collaboration Unit, Center for Promotion of Advancement of Society, Hanoi, Vietnam				
USA						
Robert	Castro	University of California San Francisco				
Catherine	Cook	University of California San Francisco				
Tessa	Mochizuki	University of California San Francisco				
Midori	Kato-Maeda	University of California San Francisco				
Ruvandhi	Nathavitharana	Beth Israel Deaconess Medical Center Harvard Medical School				
Kevin	Nolan	University of California San Francisco				
Kinari	Shah	University of California San Francisco				
Swati	Sudarsan	University of California San Francisco				
Christina	Yoon	University of California San Francisco				
Germany						
Ioana-Diana	Olaru	Heidelberg University Hospital, Heidelberg, Germany				
Maria del Mar	Castro Noriega	Heidelberg University Hospital, Heidelberg, Germany				
Seda	Yerlikaya	Heidelberg University Hospital, Heidelberg, Germany				

Supplementary methods

City, Country	Enrollment sites	Ethics Committee*
Vellore, India	CMC Pulmonary Outpatient Department, Primary care clinics in Vellore (Shalom/LCC, Chittor, CHAD) and Chitoor (CMC satellite campus)	Christian Medical College Institutional Review Board (13256)
Hanoi, Vietnam	Outpatient departments, Hanoi Lung Hospital	Ministry of Health Ethical Committee for National Biological Medical Research (94/CN-HĐĐĐ); National Lung Hospital Ethical Committee for Biological Medical Research (566/2020/NCKH); Hanoi Lung Hospital Science and Technology Initiative Committee (22/BVPHN)
Dasmariñas City, Philippines	Community-based screening in Dasmariñas City and nearby municipalities, outpatient clinics in Dasmariñas City	De La Salle Health Sciences Institute Independent Ethics Committee (2020-33-02-A)
Cape Town, South Africa	Scottsdene and Wallacedene primary care clinics; Brooklyn Chest Hospital; Khayelitsha District Health Center; Kraaifontein Community Health Clinic	Stellenbosch University Health Research Ethics Committee (M20/07/020)
Kampala, Uganda	Mulago Outpatient Department, Kisenyi Health Center,	Makerere University, College of Health Sciences, School of Medicine, Research Ethics Committee (2020-182)

Table S1. R2D2 TB Network study	enrolment sites and ethics committees
---------------------------------	---------------------------------------

* The study was additionally approved by the University of California San Francisco Institutional Review Board (20-32670), and the University of Heidelberg Ethics Committee of the Medical Faculty (S-539/2020).

Table S2. Procedure summary during participant enrolment and follow up

Bracadura	Enro	lment	Follow- up	Notes		
Procedure	Day 1	Day 2	VISICI			
Demographic/Clinical questionnaire	Х		Y			
TB symptom assessment	х		Y			
Chest X-ray	Y		Y	All CXRs undergo digitization		
Finger prick blood collection	X			 All participants: HIV, Hemoglobin A1c (in some sites this is done using blood collected from venipuncture in a central lab) novel blood tests 		
Venipuncture⁴	Y			 HbA1c if done in a central lab CD4 cell count (if HIV-positive) novel blood tests 		

LEGEND. X: applies to all participants; Y: applies to people without a known TB diagnosis

Spot sputum ⁴ collection	x		Y	 Participants without known TB diagnosis: Xpert Ultra x 1, Smear microscopy and MGIT culture x 2, storage. Sputum collection will be repeated on Day 2 if initial Xpert Ultra results are indeterminate or trace- positive. Participants with RIF-resistance by Xpert: MGIT culture, DNA extraction, novel rDST assays, storage Sputum induced if participants are unable to expectorate
Urine collection ⁴	Y			 Urine Xpert Ultra conducted on HIV- positive participants only then discontinued part-way through the study due to low yield.
Other TB testing per clinician discretion	x	x	Х	 Results of any additional mycobacterial culture or Xpert testing from other samples (e.g. pleural fluid, tissue biopsy, etc.) requested by clinicians recorded

¹ Follow-up visit 1 conducted at 3-months if the participant has a negative/indeterminate sputum Xpert Ultra result at baseline AND no positive culture

²For all participants without confirmed TB but a positive novel TB triage or diagnostic test result, trained study staff collect 1 follow-up spot sputum specimen for Xpert Ultra (x1) and mycobacterial culture (1 liquid, 1 solid) and perform a CXR.

³All left-over samples stored.

Reasons for South Africa using capillary blood

Cepheid instructs that blood may be collected for Xpert TB Host Response using either capillary sampling or venipuncture (phlebotomy) sampling. If capillary sampling is used, blood must not be held in the minivette for more than 15 minutes due to risk of clogging. If using venipuncture, an EDTA blood collection tube can be stored at 2-8 °C up to 24 h before testing. Due to onsite logistical constraints, South Africa was the only site able to conduct the test immediately following blood collection, allowing for capillary sampling.

Details of reference standards

Primary: Microbiologic reference standard (MRS)

The primary reference standard for all novel tests will be a microbiologic reference standard defined by Xpert Ultra for sputum, Xpert Ultra for urine, and sputum MGIT culture. The MRS is based only on baseline test results and does not incorporate any results from follow-up visits.

- TB positive will include participants with:
 - A positive result on sputum Xpert Ultra (grade very low, low, medium, high)
 OR
 - A positive culture in MGIT <u>OR</u>
 - A positive culture in solid culture media (e.g. 7H10 or LJ agar*) OR
 - Two trace Xpert Ultra results on sputum
- TB negative will include participants with:
 - No positive result (sputum Xpert Ultra, culture) AND EITHER
 - 2 negative cultures in MGIT <u>OR</u>
 - 2 negative cultures in solid media (e.g. 7H10 or LJ agar*) OR
 - 1 negative culture in MGIT and 1 negative in solid media (e.g. 7H10 or LJ agar*)†
- Indeterminate will include participants with:
 - No positive result (sputum Xpert Ultra, urine Xpert Ultra, culture), AND
 - <2 trace Ultra results on sputum and/or urine <u>AND</u>
 - <2 negative cultures due to contamination or pending results.

* Cultures on solid media will not routinely be done but may be done when MGIT is not available.

† The initial protocol in India included only one sputum culture from August 16 to November 18 2021. Therefore, participants enrolled in India during this period are considered to be TB negative by MRS if they do not have a positive sputum Xpert result AND their single sputum culture result is negative.

Secondary: Sputum Xpert Ultra Reference Standard (SXRS)

Additionally, we will consider a simplified reference standard using the same definitions as the MRS but using sputum Xpert Ultra results only to classify participants as TB positive or Not TB positive.

The objective of inclusion of this reference standard is to assess sensitivity of a novel triage test in the context of a programmatic setting where only sputum Xpert Ultra is available as a confirmatory diagnostic test (*i.e.*, culture is not done as part of routine care). Sensitivity is therefore the focus of this reference standard, nevertheless specificity will be calculated for secondary analyses.

- TB positive will include participants with:
 - A positive baseline sputum Xpert Ultra result (grade very low, low, medium, high), <u>OR</u>

- Two trace baseline sputum Xpert Ultra results
- TB negative will include participants with:
 - A negative baseline sputum Xpert Ultra result, WITHOUT any trace or
- TB indeterminate will include participants where neither criteria for TB positive nor TB negative are met.

Supplementary results

Indeterminate reference standard results

Of the 115 indeterminate reference standard results: 15 had two contaminated cultures; 87 had one contaminated culture and one negative culture result; 2 had one contaminated culture and one culture positive for non-tuberculous mycobacteria; 8 had one negative and one missing culture result. Of these 115, 68 had follow-up sputum culture results of which none were positive for TB.

		Overall	MRS TB Negative	MRS TB Positive	p-value
Ν		1499	1170	329	•
Country	Philippines	325 (21.7%)	296 (25.3%)	29 (8.8%)	<0.001
	Vietnam	284 (18.9%)	176 (15.0%)	108 (32.8%)	
	South Africa	300 (20.0%)	243 (20.8%)	57 (17.3%)	
	Uganda	314 (20.9%)	205 (17.5%)	109 (33.1%)	
	India	276 (18.4%)	250 (21.4%)	26 (7.9%)	
Sex	Male	813 (54.2%)	590 (50.4%)	223 (67.8%)	<0.001
	Female	686 (45.8%)	580 (49.6%)	106 (32.2%)	
Age, mean (SD), years		42.3 (15.5)	43.2 (15.4)	39.1 (15.5)	<0.001
BMI, median (IQR)		21.4 (19.1, 25.2)	22.5 (19.8, 26.4)	19.4 (17.8, 21.0)	<0.001
Cough for 2 weeks		1499 (100.0%)	1170 (100.0%)	329 (100.0%)	
Fever		533 (35.6%)	344 (29.4%)	189 (57.4%)	<0.001
Weight loss		702 (46.8%)	475 (40.6%)	227 (69.0%)	<0.001
Night Sweats		528 (35.2%)	358 (30.6%)	170 (51.7%)	<0.001
Prior TB diagnosis ^a	Yes	290 (19.3%)	231 (19.7%)	59 (17.9%)	0.46
Person living with HIV ^b	Yes	229 (15.3%)	184 (15.8%)	45 (13.7%)	0.37
	Median CD4, cells/µL (IQR)	399 (206, 667)	445.5 (240.0, 675.5)	258.5 (115.0, 529.0)	<0.001
Diabetes	Yes	202 (13.5%)	142 (12.1%)	60 (18.2%)	0.004
Sputum Xpert status ^c	Negative	1201 (80.1%)	1169 (99.9%)	32 (9.7%)	<0.001
	Positive	297 (19.8%)	0 (0.0%)	297 (90.3%)	
Venous or capillary blood collection	Capillary	1170 (78.1%)	231 (19.7%)	55 (16.7%)	0.22
	Venous	329 (21.9%)	939 (80.3%)	274 (83.3%)	

Table S3: Demographical and clinical characteristics overall and by Microbiological Reference Standard (MRS) result

^a3 participants were unsure about prior TB diagnoses. ^b3 participants had an unknown HIV status. ^c1 participant was missing a sputum Xpert result. *MRS microbiological reference standard. SD Standard Deviation; IQR Interquartile Range*

Figure S1. Histogram of Xpert HR TB Score and its components

Xpert HR TB Score (panel 1) is calculated as (Ct GBP5 + Ct DUSP3)/2 – Ct TBP. A previous version of the assay used an alternate caluation using KLF2 in place of TBP (panel 2). Ct Cycle threshold; GBP5 guanylate binding protein 5; DUSP3 dual specificity phosphatase 3; KLF2 Krüppel-like factor 2; TBP TATA-binding protein; MRS microbiological reference standard. Median TB Score was -2.85 (IQR -3.28 to -2.18) for participants positive by MRS, and -1 (IQR -1.5 to -0.7) for participants negative by MRS.

Previous studies calculated the TB score using KLF2 instead of TBP. Here we present the ROC curves using this calculation: Ct GBP5 + Ct DUSP3)/2 – Ct KLF2. The median TB Score calculated in this manner was 1.00 (IQR 0.30 to 1.9) for participants positive by MRS, and 2.85 (IQR 2.30 to -3.30) for participants negative by MRS. Using this calculation, the optimal cut-point defining a positive test in this population would be \leq 2.7. Using this cut-point, sensitivity against the MRS is 90.3% (297/329, 95%CI 86.5-93.3), and specificity against the MRS is 56.8% (664/1170, 95% CI 53.9-59.6).

		Coefficient	95% CI	R ²	p-value
Country	Philippines	0.71	0.56 - 0.86		
	Vietnam	0.48	0.33 -0 .63		
	South Africa	0.63	0.48 - 0.77	0.072	<0.001
	Uganda	0.63	0.48 - 0.77		
	India	0.25	0.10 - 0.40		
Sex	Male	0.13	0.03 - 0 .23	0.005	0.009
Age, years		-0.16	-0.31- 0.28	0.026	0.839
BMI		-0.05	-0.060.04	0.077	<0.001
Person living with HIV ^a	Yes	0.30	0.16 – 0.43	0.012	<0.001
Diabetes	Yes	0.13	-0.11 – 0.28	0.002	0.07
Sputum Xpert semi- quantitative grade ^b	Trace	-0.12	-0.73 – 0.49		
	Low	0.41	0.11 – 0.72	0.097	<0.001
	Medium	0.78	0.47 – 1.10		
	High	0.66	0.34 – 0.97		
C-reactive protein		0.01	0.01 – 0.01	0.24	<0.001

 Table S4:
 Univariable regression between TB Score and other variables

Linear regression to assess associations with TB Score, transformed to a positive value. N=1,499. Continuous variables assumed to be linear and based on a one unit increase. Categorical variables fitted as factors. ^a3 participants missing their HIV status. ^b303 participants with positive Xpert results included in this analysis

Table S5: Area Under the Receiver Operating Characteristic (ROC) curve, overall and by subgroups

		Number of observations	Area under the ROC curve	(95%CI)	χ² test p- value
Overall		1499	0.89	(0.86-0.91)	
Country	Philippines	325	0.83	(0.75-0.91)	0.244*
-	Vietnam	284	0.88	(0.84-0.92)	0.938*
	South Africa	300	0.90	(0.84-0.95)	0.694*
	Uganda	314	0.87	(0.82-0.92)	0.463*
	India	276	0.91	(0.85-0.97)	0.448*
Sex	Male	813	0.87	(0.83-0.91)	0.275
	Female	686	0.89	(0.87-0.92)	0.375
Person living with HIV	No	1267	0.88	(0.81-0.94)	0.774
	Yes	229	0.89	(0.87-0.91)	
Diabetes	No Yes	1297 202	0.89 0.88	(0.84-0.95) (0.86-0.91)	0.790

Area under the ROC (AUROC) were compared using DeLong's test. *For country, the p-value is comparing the ROC for that country to the AUROC for the other countries.

Table S6: Diagnostic accuracy of Xpert-HR by blood sampling method, stratified by HIV-status

	Living v	vith HIV		Not living with HIV			
Blood sampling method for Xpert-HR	N (row %)	Sensitivity (95% CI)	Specificity (95% CI)	N (row %)	Sensitivity (95% CI)	Specificity (95% CI)	
Venous	114 (9.4%)	95.8% (78.9 - 99.9%)	45.6% (35.0- 56.4%)	1,099 (90.6%)	89.6% (85.1- 93.1%)	66.1% (62.8- 69.3%)	
Capillary	115 (40.6)	95.2% (76.2 - 99.9%)	44.7% (34.4- 55.3%)	168 (59.4%)	87.9% (71.8 - 96.6%)	64.4% (55.8- 72.5%)	

Capillary blood sampling occurred at only at the South Africa site. Using Chi-squared tests, the p-values for specificity comparing venous and capillary sampling is 0.891 for people living with HIV and 0.665 for people not living with HIV

Table S7: Cross tabulation of TB culture results and highest Xpert Ultra semi-quantitative grade for participants positive by the microbiological reference standard

	TB culture not	TB culture positive	TB culture negative
	done		
Trace	3*	2	0
Very low	44	0	0
Low	95	0	0
Medium	76	0	0
High	79	0	0
Xpert negative	0	30	1,170

*3 patients had 2 Xpert Ultra trace results

Table S8: Cross tabulation of TB culture results and highest Xpert Ultra semi-quantitative grade for participants positive by the microbiological reference standard

	TB culture not done	TB culture positive
Trace	3*	2
Very low	44	0
Low	95	0
Medium	76	0
High	79	0
Xpert negative	0	30

*3 patients had 2 Xpert Ultra trace results

Figure S3: Positive and negative predictive values for the Xpert-HR and WHO minimum Target Product Profile accuracy for a range of TB prevalence

TB Prevalence

Positive and negative predictive values plotted for different TB prevalence, based on a cutpoint of \leq -1.25 (i.e. sensitivity of 90.3% and specificity of 62.6%). The WHO TPP lines are based on a hypothetical triage test minimum criteria (sensitivity of 90% and specificity of 70%). Shaded areas represent 95% confidence intervals. Analysis done using 'plot-curve' in R. Xpert HR PPVs are 11.3%, 21.2%, 29.9% and 37.6%, and NPVs 99.2%, 98.3%, 97.3% and 96.3% for TB prevalence of 5%, 10%, 15% and 20% respectively. PPV positive predictive value; NPV negative predictive value; WHO World Health Organization; TPP Target Prodict Profile.

Figure S4: Numbers needing sputum testing based on a hypothetical cohort of 1000 patients with presumed TB and 10% TB prevalence

Panel A presents a hypothetical cohort tested with the Xpert-HR triage test. Panel B is based on a hypothetical triage test that meets WHO minimum TPP targets. Assumes all patients have valid test results.

						ТВ								
Category		тр	FP	FN	TN	prevalence	Sensitivity	(95%CI)	Specificity	(05%CI)	PPV (%)	(95%CI)	NPV (%)	(95%CI)
Category						(70)	(70)	(337801)	(70)	(557801)	(70)		(70)	(337001)
Overall														
(cut-point ≤-	-1.25)	297	438	32	732	21.9	90.3	(86.5-93.3)	62.6	(59.7-65.3)	40.4	(36.8-44.1)	95.8	(94.1-97.1)
Country				_										
	Philippines	22	78	7	218	8.9	75.9	(56.5-89.7)	73.6	(68.2-78.6)	22.0	(14.3-31.4)	96.9	(93.6-98.7)
	Vietnam	102	82	6	94	38.0	94.4	(88.3-97.9)	53.4	(45.8-60.9)	55.4	(47.9-62.7)	94.0	(87.4-97.8)
	South Africa	52	105	5	138	19.0	91.2	(80.7-97.1)	56.8	(50.3-63.1)	33.1	(25.8-41.1)	96.5	(91.7-98.8)
	Uganda	97	75	12	130	34.7	89.0	(81.6-94.2)	63.4	(56.4-70.0)	56.4	(48.6-63.9)	91.5	(84.2-94.8)
	India	24	98	2	152	9.4	92.3	(74.9-99.1)	60.8	(54.4-66.9)	19.7	(13.0-27.8)	98.7	(95.2-99.8)
Sex														
	Female	203	210	20	380	15.5	88.7	(81.1-94.0)	60.7	(56.6-64.7)	29.2	(24.3-34.5)	96.7	(93.8-98.0)
	Male	94	228	12	352	27.4	91.0	(86.5-94.4)	64.4	(60.4-68.3)	49.2	(44.2-54.1)	95.0	(92.2-96.8)
HIV status		10	101	2	00	10.7	05.0		45.4		<u> </u>		07.0	
	HIV +ve	43	226	20	03 649	19.7	95.6	(84.9-99.5)	45.1	(37.8-52.6)	29.9	(22.5-38.0)	97.6	(91.4-99.7)
	HIV -ve	253	330	30	040	22.3	89.4	(85.2-92.7)	65.9	(62.8-68.8)	43.0	(38.9-47.1)	95.6	(93.4-96.8)
Diabetes														
	Yes	53	44	7	98	29.7	88.3	(77.4-95.2)	69.0	(60.7-76.5)	54.6	(44.2-64.8)	93.3	(86.4-97.2)
	Νο	244	394	25	634	20.7	90.7	(86.6-93.9)	61.7	(58.6-64.7)	38.2	(34.5-42.1)	96.2	(94.1-97.3)
Collection														
method														
	capillary	50	101	5	130	19.2	90.9	(80.0-97.0)	56.3	(49.6-62.8)	33.1	(25.7-41.2)	96.3	(91.3-98.7)
	venous	247	337	27	602	22.6	90.1	(86.0-93.4)	64.1	(60.9-67.2)	42.3	(38.2-46.4)	95.7	(93.5-96.9)

Table S9: Diagnostic Accuracy for the Xpert-HR based on Microbiological Reference Standard overall and by subgroup

TP True positive, FP False positive, FN False Negative, TN true negative, PPV positive predictive value, NPV negative predictive value

Figure S5: Decision Curve Analysis stratified by HIV status

Decision curve analysis, shown as net reduction in (sputum-based) TB tests per 100 patients tested with Xpert-HR weighted by a range of threshold probabilities from 5 to 30%, stratified by HIV status. The threshold probability describes how clinicians and patients value different outcomes, and can be defined as the minimum probability could reflect a clinician and/or patient testing would be warranted. A low threshold probability could reflect a clinician and/or patient who are very concerned about missing TB disease and therefore likely to do further TB testing. For example, a 5% threshold probability (equivalent to a risk:benefit odds of 1:19) where missing TB disease is 19 times worse than unnecessary testing, would lead to a net reduction of approximately 9 TB tests per 100 patients may be less worried about TB and not want to do further sputum-based testing, leading to a higher threshold probability. For example a 25% threshold probability, (equivalent to a risk:benefit odds of 1:3) the risk of missing TB is 3 times worse than unnecessary investigations for TB, and would lead to a net reduction in approximately 42 TB tests per 100 patients in people not living with HIV, but only 10 TB tests per 100 patients in PLHIV.

		Overall	Philippines	Vietnam	South Africa	Uganda	India
N		1606	352	303	340	328	283
Sex	Male	874 (54.4%)	156 (44.3%)	187 (61.7%)	173 (50.9%)	189 (57.6%)	169 (59.7%)
	Female	732 (45.6%)	196 (55.7%)	116 (38.3%)	167 (49.1%)	139 (42.4%)	114 (40.3%)
Age, mean (SD), years		42.5 (15.5)	40.1 (15.4)	51.6 (15.9)	40.0 (12.2)	34.9 (12.7)	47.5 (15.5)
BML modian (IOP)		21.5 (19.1,	23.6 (20.2,	20.2 (18.7,	22.3 (19.4,	20.8 (19.0,	22.4 (19.0,
		25.2)	27.5)	21.9)	28.3)	24.0)	26.0)
Courds for 2 weeks		1606					
oough for 2 weeks		(100.0%)	352 (100.0%)	303 (100.0%)	340 (100.0%)	328 (100.0%)	283 (100.0%)
Fever		568 (35.4%)	51 (14.5%)	106 (35.0%)	123 (36.2%)	222 (67.7%)	66 (23.3%)
Weight loss		754 (46.9%)	99 (28.1%)	88 (29.0%)	218 (64.1%)	226 (68.9%)	123 (43.5%)
Night Sweats		566 (35.2%)	57 (16.2%)	94 (31.0%)	188 (55.3%)	201 (61.3%)	26 (9.2%)
Prior TB diagnosis ^b	Yes	316 (19.7%)	46 (13.1%)	63 (20.8%)	127 (37.4%)	41 (12.5%)	39 (13.8%)
Person living with HIV ^a	Yes	254 (15.8%)	3 (0.9%)	2 (0.7%)	138 (40.8%)	101 (30.8%)	10 (3.5%)
	Median CD4,	396.0 (204.0,	527.0 (184.0,	547.0 (497.0,	402.5 (205.0,	355.0 (200.0,	587.0 (220.0,
	cells/µL (IQR)	654.0)	812.0)	597.0)	667.0)	613.0)	692.0)
Diabetes	Yes	213 (13.3%)	46 (13.1%)	71 (23.4%)	19 (5.6%)	26 (7.9%)	51 (18.0%)
Sputum Xpert status ^c	Negative	1309 (81.5%)	330 (93.8%)	207 (68.3%)	291 (85.6%)	222 (67.7%)	259 (91.5%)
	Positive	297 (18.5%)	22 (6.2%)	96 (31.7%)	49 (14.4%)	106 (32.3%)	24 (8.5%)
TB Microbiologic	TR Nogativo						
reference standard	I D Negative	1165 (72.8%)	296 (84.1%)	176 (58.1%)	241 (70.9%)	203 (61.9%)	249 (89.6%)
	TB Positive	327 (20.4%)	29 (8.2%)	108 (35.6%)	56 (16.5%)	109 (33.2%)	25 (9.0%)
	Indeterminate	109 (6.8%)	27 (7.7%)	19 (6.3%)	43 (12.6%)	16 (4.9%)	4 (1.4%)
Venous or capillary	Conillony						
blood collection	Capillaly	325 (20.2%)	0 (0.0%)	0 (0.0%)	325 (95.6%)	0 (0.0%)	0 (0.0%)
	Venous	1281 (79.8%)	352 (100.0%)	303 (100.0%)	15 (4.4%)	328 (100.0%)	283 (100.0%)

Table S8: Demographical and clinical characteristics overall and by country for secondary analysis using Sputum Xpert Reference Standard

^a3 participants were unsure about prior TB diagnoses. ^b3 participants had an unknown HIV status. ^c1 participant was missing a sputum Xpert result.

Category		ТР	FP	FN	ΤN	TB prevalence (%)	Sensitivity (%)	(95%CI)	Specificity (%)	(95%CI)	PPV (%)	(95%CI)	NPV (%)	(95%CI)
Overall (cut-point <	-1.45)	908	29	401	268	18.5	90.2	(86.3-93.4)	69.4	(66.8-71.9)	40.1	(36.3-43.9)	96.9	(95.6-97.9)
Country														
-	Philippines	267	4	63	18	6.2	81.8	(59.7-94.8)	80.9	(76.2-85.0)	22.2	(13.7-32.8)	98.5	(96.3-99.6)
	Vietnam	132	7	75	89	31.7	92.7	(85.6-97.0)	63.8	(56.8-70.3)	54.3	(46.3-62.1)	95.0	(89.9-98.0)
	South Africa	180	5	111	44	14.4	89.8	(77.8-96.6)	61.9	(56.0-67.5)	28.4	(21.4-36.2)	97.3	(93.8-99.1)
	Uganda	152	10	70	96	32.3	90.6	(83.3-95.4)	68.5	(61.9-74.5)	57.8	(49.9-65.4)	93.8	(88.9-97.0)
	India	177	3	82	21	8.5	87.5	(67.6-97.3)	68.3	(62.3-74.0)	20.4	(13.1-29.5)	98.3	(95.2-99.7)
Sex														
	Female	473	21	197	183	12.7	91.4	(83.8-96.2)	68.1	(64.3-71.7)	29.4	(24.2-35.0)	98.2	(96.5-99.2)
	Male	435	8	204	85	23.3	89.7	(84.7-93.5)	70.6	(67.0-74.0)	48.2	(43.0-53.3)	95.7	(93.6-97.3)
HIV status														
	HIV +ve	801	27	290	232	15.0	94.7	(82.3-99.4)	49.1	(42.2-55.9)	24.7	(17.9-32.5)	98.1	(93.5-99.8)
	HIV -ve	106	2	110	36	19.2	89.6	(85.2-93.0)	73.4	(70.7-76.0)	44.4	(40.1-48.8)	96.7	(95.3-97.8)
Diabetes														
	Yes	795	23	356	219	25.8	89.1	(77.8-95.9)	71.5	(63.8-78.4)	52.1	(41.6-62.5)	95.0	(89.3-98.1)
	No	113	6	45	49	17.4	90.5	(86.1-93.9)	69.1	(66.3-71.7)	38.1	(34.1-42.2)	97.2	(95.8-98.2)
Collection method														
	capillary	172	5	105	43	14.8	89.6	(77.3-96.5)	62.1	(56.1-67.8)	29.1	(21.9-37.1)	97.2	(93.5-99.1)
	venous	172	5	105	43	19.4	90.4	(86.0-93.7)	71.3	(68.5-74.1)	43.2	(38.9-47.6)	96.8	(95.3-98.0)
														<u></u>

Table S9: Diagnostic Accuracy for the Xpert-HR based on Sputum Xpert Reference Standard overall and by subgroup

TP True positive, FP False positive, FN False Negative, TN true negative, PPV positive predictive value, NPV negative predictive value, CI confidence interval

Figure S5. Xpert TB HR Receiver Operating Characteristic (ROC) curve analysis against sputum Xpert reference standard.

N=1606 participants with valid sputum Xpert Ultra results. Median TB Score was -2.90 (IQR -3.35 to -2.20) for participants positive by SXRS, and -1.05 (IQR -1.55 to -0.70) for participants negative by SXRS.

STARD checklist

Section & Topic	No	Item	Reported on page #
TITLE OR	1	Identification as a study of diagnostic accuracy using	1&2
ABSTRACT		at least one measure of accuracy	
		(such as sensitivity, specificity, predictive values, or	
A DOTO 4 07	•	AUC)	~
ABSIRACI	2	Structured summary of study design, methods,	3
		(for specific guidance, see STAPD for Abstracts)	
INTRODUCTION		(101 Specific guidance, See STARD 101 Abstracts)	
	3	Scientific and clinical background including the	5
		intended use and clinical role of the index test	~
	4	Study objectives and hypotheses	5
METHODS			
Study design	5	Whether data collection was planned before the index	6
		test and reference standard	
		were performed (prospective study) or after	
		(retrospective study)	
Participants	6	Eligibility criteria	6
	7	On what basis potentially eligible participants were	6
		Identified	
		(such as symptoms, results from previous tests,	
	Q	Whore and when not orticilly eligible participants were	6
	0	identified (setting location and dates)	υ
	9	Whether participants formed a consecutive random	6
		or convenience series	v
Test methods	10a	Index test, in sufficient detail to allow replication	6
	10b	Reference standard, in sufficient detail to allow	6-7
		replication	
	11	Rationale for choosing the reference standard (if	NA
		alternatives exist)	
	12a	Definition of and rationale for test positivity cut-offs or	7
		result categories	
		of the index test, distinguishing pre-specified from	
	106	Exploratory Definition of and rationals for text positivity out offer an	7
	12D		1
		of the reference standard distinguishing pre-specified	
		from exploratory	
	13a	Whether clinical information and reference standard	7
		results were available	
		to the performers/readers of the index test	

	13b	Whether clinical information and index test results were available	7
		to the assessors of the reference standard	
Analysis	14	Methods for estimating or comparing measures of diagnostic accuracy	7
	15	How indeterminate index test or reference standard results were handled	7
	16	How missing data on the index test and reference standard were handled	7
	17	Any analyses of variability in diagnostic accuracy, distinguishing pre-specified from exploratory	7
	18	Intended sample size and how it was determined	7
RESULTS			-
Participants	19	Flow of participants, using a diagram	8, Figure 1
	20	Baseline demographic and clinical characteristics of participants	9
	21a	Distribution of severity of disease in those with the target condition	9/Appendix
	21b	Distribution of alternative diagnoses in those without the target condition	NA
	22	Time interval and any clinical interventions between index test and reference standard	12
Test results	23	Cross tabulation of the index test results (or their distribution) by the results of the reference standard	Appendix, table S7
	24	Estimates of diagnostic accuracy and their precision (such as 95% confidence intervals)	10/ Figure 3/ Appendix table S9
	25	Any adverse events from performing the index test or the reference standard	NA
DISCUSSION			
	26	Study limitations, including sources of potential bias, statistical uncertainty, and generalisability	16-17
	27	Implications for practice, including the intended use and clinical role of the index test	16-17
OTHER INFORMATION			
	28	Registration number and name of registry	ClinicalTrials.gov Identifier: NCT04923958
	29	Where the full study protocol can be accessed	On request from authors
	30	Sources of funding and other support; role of funders	8, 18