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1. BACKGROUND 
 
The first case of Covid-19 in Denmark was confirmed in February 2020, roughly 
coinciding with the first cases in most other European countries. Figure S1 
illustrates the epidemiological dynamics over the following two years by 
plotting infection rates (Panel A), hospitalization rates (Panel B) and 
mortality rates (Panel C) over time. It is easy to discern three distinct 
waves: In Spring 2020 following the initial outbreak, in Winter 2020-2021, 
and in Winter 2021-2022 coinciding with the arrival of the Omicron variant.  
 
The government affected the epidemiological dynamics with different sets of 
policies, notably restrictions on activities involving physical proximity, 
free and widely available testing for Covid-19 combined with self-quarantine 
of those testing positive, and a population-wide vaccination program.  
 
The restrictions varied significantly in scope over the pandemic. At 
different points in time, non-essential parts of the public sector were shut 
down; private sector employees were urged to work from home; non-essential 
retail and personal services were shut down; borders were closed for foreign 
nationals; congregations of more than 10 individuals were banned; schools 
and universities were limited to online teaching; bars, nightclubs and 
concert venues were shut down; restaurants were limited to take-away service; 
and face masks were required in public buildings, shops and public transport. 
The restrictions were relatively mild compared to most European countries, 
but significantly stricter than in neighboring Sweden [1]. Supermarkets and 
grocery stores were open throughout the pandemic.  
 
Except for the very earliest stage of the pandemic with severe shortages of 
test equipment, Covid-19 tests were generally free and easily accessible for 
individuals with symptoms or exposure to infected persons. Further, the 
government quickly adopted an aggressive test strategy by which individuals 
were encouraged to test frequently, even in the absence of symptoms and known 
exposure [2]. Figure S1 illustrates how the aggregate number of tests evolved 
over the pandemic (Panel D). By the end of our sample period in January 2022, 
public and private test centers had performed around 56 million molecular 
tests, around 10 tests per inhabitant, and roughly as many antigen tests. By 
comparison, the United Kingdom had performed around 6 tests per inhabitant; 
France around 3; the United States around 2; and Germany around one [3]. Two 
Danish seroprevalence studies estimate that the share of infections diagnosed 
in tests was around 50% in 2020 and around 80% in 2021 [4-5]. 
 
Starting in December 2020, the government rolled out a comprehensive 
vaccination program. While the scale of the program was initially limited by 
scarce supply of vaccines, Denmark gradually achieved a high vaccination 
rate by international standards. By the end of our sample period in January 
2022, the health authorities had administered more than 12 million doses, 
i.e. around 2 per inhabitant. Around 80% of the population had completed a 
vaccination program, which compares to 74% in Germany, 72% in the United 
Kingdom and 65% in the United States [6]. 
 
 
2. DATA CREATION 
 
2.1 Data sources 
 
We combine micro-data from three sources: Danske Bank that is the largest 
retail bank in Denmark [7]; Statens Serum Institut in Denmark that collect 
and process Covid-19 test data from public as well as private test providers 
[8]; and Statistics Denmark that compiles administrative micro-data from a 
range of government registers [9-13]. All the data sources use the same 
unique personal identifiers, which makes it possible to combine them at the 
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level of individuals. Personal identifiers are encrypted and the datasets 
contain no other information that directly identifies individuals (e.g. names 
and addresses).  
 
From Danske Bank, we obtain comprehensive transaction data for each of the 
bank’s customers for the period between 1 January 2018 and 15 January 2022. 
We focus on two types of transactions: payments by card and money transfers 
through a mobile application.  
 
First, information about card transactions allows us to determine the time 
and place of consumers’ in-store purchases. We distinguish between 
transactions made in a physical store and transactions made online by 
exploiting that the two transaction types differ with respect to the 
authorization process in the payment system. To determine the place, we use 
a unique identifier for the store where the card was used. When multiple 
stores constitute a retail chain, each physical store has its own store 
identifier. When a store has multiple payment terminals, i.e. typically one 
terminal per cash register, they share the same store identifier. To 
determine the time, we use a time stamp in the transaction records. For 
technical reasons, the precision of the time stamps varies across the two 
major cards used by the bank customers. For the most commonly used card, 
Visa/Dankort, transaction information arrives in batches. This implies that 
one can identify a time interval in which a transaction is made, typically 
an hour or longer, but not the exact time. For the other major card, 
MasterCard, the time stamps indicate the date, hour, minute and second that 
the payment was made in the store. As our empirical design requires the 
timing of transactions to be determined with a high degree of precision, our 
analysis only uses transactions made with the latter type of cards.  
 
Second, we exploit that money transfers carry information about social 
networks, a potential confounder of the analysis. For the sample of Danske 
Bank customers, we observe all ingoing and outgoing transactions through the 
mobile application MobilePay. This is the dominant mobile tool for person-
to-person money transfers in Denmark, used by around 95% of Danish 
individuals aged 16-69 [14]. An existing study documents that these 
transactions map a network with structural properties very similar to large-
scale social networks such as Facebook [15]. To integrate this data into our 
analysis, we identify pairs of individuals where, at some point during the 
sample period, one received the exact same amount through the application as 
the other sent in the exact same second. We refer to such pairs of individuals 
as members of the same payment network. In the infrequent cases where more 
than one individual sent or received the exact same amount in the same second, 
we do not consider them members of the same payment network.  
 
From Statens Serum Institut, we obtain administrative information about the 
Covid-19 tests performed by all public test providers as well as the private 
providers offering free tests under a government contract. We do not have 
information about the relatively small number of tests performed by private 
providers for a fee nor about the tests performed at home. We observe the 
unique identifier of the individual taking the test, the date at which the 
test was performed, the type of test (i.e. antigen or molecular) and the 
test result.  
 
From Statistics Denmark, we obtain administrative micro-data from a range of 
government registers. The administrative registers contribute to the 
identification of social networks and further provide detailed information 
about background characteristics.  
 
Starting with the social networks, the population register contains 
information about the parents of each individual, which we use to identify 
extended families. We define extended family members as siblings, parents, 
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children, grandparents and grandchildren. The population register also 
contains an encrypted identifier for the address of each individual’s main 
residence, allowing us to identify co-habiting individuals. We define 
household members as individuals who share the same registered address in 
the beginning of the quarter. Further, the employment register contains 
information about the physical workplaces of each individual. We define work 
colleagues as individuals who were at the same workplace in 2020, the most 
recent year with available data, provided no more than 100 individuals worked 
at the workplace. Finally, the education register contains detailed 
information about enrolment in educational institutions at all levels. For 
primary and secondary schools, we define school friends as individuals who 
attend the same institution in the same school year and who belong to the 
same birth cohort. For tertiary education, we define school friends as 
individuals who attend the same institution and are enrolled in the same 
degree program, except for degree programs with more than 100 individuals.  
 
For background characteristics, we obtain information about each individual’s 
age, gender and place of residence from the population register; about the 
industry of employment from the employment register; and about total taxable 
income from the income register. The income measure is highly reliable, as 
it is mostly based on compulsory reporting by employers and financial 
institutions, which makes underreporting negligible [16].  
 
In summary, our analysis uses payment data, test data and government register 
data for a gross sample of around 630,000 individuals who are customers at 
Danske Bank and have a MasterCard. As shown in Table S1, these individuals 
are not entirely representative of the general population in terms of socio-
demographics. While they mirror the population almost perfectly in terms of 
gender and is highly similar in terms of household composition and size, 
they are somewhat younger, with an average age of around 38 years compared 
to around 41 years in the general population, and they have a lower average 
income. As Danske Bank is a national bank with a customer base that is 
generally highly representative of the overall population [17], the high 
share of young and low-income people reflects that we only use payment data 
from MasterCard, a product that is particularly popular in the young customer 
segment. 
 
2.2 Sample selection 
 
To create the estimation sample, we first identify all the instances where 
an in-store transaction on day d was made by an individual with a positive 
Covid-19 test in the 7-day period between day d-4 and day d+2. Assuming that 
individuals infected with Covid-19 are contagious from around two days before 
the onset of symptoms until five days after, these individuals are potential 
infectors who were likely contagious when making the purchase on day d. We 
limit the search to transactions with MasterCard, implying that we observe 
the precise time of the purchase, and to transactions in supermarkets and 
grocery stores, corresponding to the merchant category code 5411.  
 
Next, we identify individuals who made a transaction with MasterCard in the 
same store on the same day as a transaction of a potential infector and 
measure the time distance between the individual’s own transaction and the 
potential infector’s transaction. In the rare cases where we find two 
infector transactions in the same store on the same day, we define the time 
distance relative to the closest one.  
 
Drawing on this measure, we define a group of exposed individuals who made 
a transaction within 5 minutes of the potential infector’s transaction. To 
be precise, if the infector’s transaction is recorded within the first minute 
after 10am, e.g. at 10:00:30, an individual is counted among the exposed if 
they make a transaction in the 11-minute interval from 9:55:00 to 10:06:00. 
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Analogously, we define two alternative groups of exposed individuals 
comprised by individuals who make transactions within 1 minute and within 10 
minutes of the potential infector respectively. We also define a reference 
group of non-exposed individuals who made a transaction between 16 and 30 
minutes before the potential infector’s transaction. In all cases, we exclude 
from these groups individuals who are themselves potential infectors, i.e. 
individuals with a positive test between day d-4 and day d+2. 
 
To create the estimation sample, we combine exposed and non-exposed 
individuals, according to one of the definitions above, and exclude 
individuals with social connections to the potential infector: members of 
the same extended family, members of the same household, employees at the 
same workplace, students at the same educational institution and members of 
the same payment network. We note that the same individual can appear in the 
estimation sample multiple times, by making transactions in supermarkets or 
grocery stores close to a potential infector more than once over the sample 
period.  
 
Table S2 offers an overview of the sample selection. We identify around 
126,000 transactions made by a potential infector, representing around 53,000 
unique individuals. We find 1,517,000 transactions made within 30 minutes of 
a potential infector, on the same day and in the same store, by individuals 
who are not themselves potential infectors. From this gross sample, we 
exclude around 11,000 transactions where the card owner has social ties to 
the potential infector: around 1,300 family members, 800 household members, 
1,300 school colleagues, 800 work colleagues and 7,000 with transfers through 
the mobile payment application. From the remaining transactions, we define 
the baseline estimation sample, which comprises around 328,000 exposed 
individuals who made a transaction within 5 minutes of the potential infector 
and around 340,000 individuals who made a transaction between 16 and 30 
minutes before the potential infector. The alternative exposed groups 
comprise 96,000 and 598,000 individuals who made a transaction within 1 
minute and 10 minutes of the potential infector, respectively.  
 
We note that the number of transactions is not completely proportional to 
the length of the time interval. In the baseline sample, the intervals 
defining exposure and non-exposure are 11 minutes and 15 minutes 
respectively, but the difference in the number of transactions is relatively 
smaller. This reflects a general pattern whereby the number of transactions 
per minute decreases slightly the longer the distance to the potential 
infector, which is at least partly due to stores’ opening hours. If a 
potential infector makes a purchase 5 minutes after a store opens or 10 
minutes before it closes, there will be no transactions more than 5 minutes 
before in the former case and more than 10 minutes after in the latter case. 
 
2.3 Descriptive statistics 
 
Individuals socially connected to the potential infector represent a possible 
confounder of the analysis. By definition, they are likely to be exposed to 
the potential infector outside the store, e.g. in the household, at school 
or at work. Thus, if they are more likely to be exposed than non-exposed 
inside the store, the key assumption underlying the research design, i.e. no 
correlation between exposures inside and outside the store, breaks down.  
 
Figure S2 documents that individuals socially connected to the potential 
infector are indeed more likely to be exposed than non-exposed in the store. 
For each type of social connection, the figure shows the fraction of 
transactions made by socially connected individuals by the number of minutes 
between their own transaction and the transaction of the potential infector. 
In all four cases, there is sharp bunching around 1 minute. For instance, 
work colleagues of social infectors account for around 0.04% of the 
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transactions at the same minute as the infector’s transaction and less than 
0.01% of the transactions at all times more than 1 minute away.  
 
After excluding family members, household members, school colleagues, work 
colleagues and individuals with money transfers from the estimation sample, 
some individuals with other social links to the potential infector may remain 
in the sample. In a robustness test, we further exclude around 142,000 
observations from the gross sample where the individual in the sample had a 
transaction within 1 minute of the potential infector at some other time 
during the sample period. While the vast majority of these individuals are 
likely not social connections, the patterns in Figure S2 suggest that there 
is a much higher fraction of social connections in this group than in the 
full sample.  
 
Next, we describe the timing of the potential infector transactions in our 
sample and document that it closely tracks the dynamics in overall Covid-19 
infections in Denmark. Figure S3 shows the number of potential infector 
transactions in our sample by month. There is a spike with just below 10,000 
infector transactions in December 2020 at the peak of the second wave and 
another spike with more than 35,000 infector transactions in December 2021 
at the peak of the third wave. Figure S4 documents a tight correlation between 
the weekly number of confirmed cases in the population and the weekly number 
of potential infector transactions (blue markers) and transactions within 30 
minutes of potential infector transactions (red markers) in our sample.  
 
Finally, we compute for each potential infector transaction the number of 
exposed and non-exposed individuals in the baseline estimation sample and 
illustrate the distribution in Figure S5. Most commonly, there are one or 
two individuals in each group. 
 
 
3. ESTIMATION FRAMEWORK 
 
The goal of the empirical framework is to compare the outcomes of individuals 
who made a transaction within 5 minutes of a potential infector (“exposed”) 
to individuals who made a transaction on the same day and in the same store 
between 16 and 30 minutes before the same potential infector (“non-exposed”).  
 
Letting i denote an individual in our estimation sample and letting q denote 
the transaction of a potential infector that assigns individual i to the 
group of exposed or non-exposed, we estimate the following model:  
 

𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑௜,௤ ൌ 𝛼௤ ൅ 𝛽𝑒𝑥𝑝𝑜𝑠𝑒𝑑௜,௤ ൅ 𝜖௜,௤ 
 
On the left-hand side, infectedi,q is an indicator that individual i tests 
positive for Covid-19 between day 3 and day 7 after transaction q. On the 
right-hand side, αq represents a separate intercept for each infector 
transaction q. It captures, separately for each infector transaction q, the 
average infection rate among the non-exposed between day 3 and day 7 after 
the transaction and thus absorbs the background infection risk. The variable 
of interest, exposedi,q, is an indicator for individual i being exposed at 
transaction q. Thus, the parameter β captures the differential infection 
rate for the exposed, measured relative to the non-exposed associated with 
the same infector transaction q.  
 
We interpret β as the probability of transmission from the potential infector 
to exposed individuals. This interpretation requires two assumptions. First, 
we assume that other infection risks are uncorrelated with exposure across 
individuals associated with the same infector transaction (Assumption #1). 
This requires that individuals transacting within 5 minutes of a potential 
infector are not systematically different from individuals transacting 
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between 16 and 30 minutes before the same potential infector, at least not 
in ways that correlate with exposures outside the store. Second, we assume 
that there is no transmission from the potential infector to the non-exposed 
individuals (Assumption #2).  
 
We also estimate the model using a number of alternative dependent variables. 
First, we use ex ante characteristics such as age, occupation and testing 
frequency as outcomes to investigate whether individuals associated with the 
same infector transaction are similar in these dimensions across exposed and 
non-exposed individuals. Second, we use indicators for infection in other 
periods to estimate how differential infection rates evolve dynamically over 
a longer time window. Both types of analysis serve to probe the assumption 
that individuals who are exposed and non-exposed in the store are not 
differentially exposed to other infection risks in a systematic way (i.e. 
Assumption #1). To the extent that the exposed and non-exposed groups are 
highly similar in terms of observable characteristics correlating with such 
external exposures (i.e. age, occupation, testing frequency) and in terms of 
infection rates in other periods than the one following the differential in-
store exposure, it is suggestive that this assumption holds.  
 
Further, we estimate variants of the model that absorb differences in 
observable characteristics between the exposed and non-exposed groups. We 
take a non-parametric approach by defining a set of indicators for each 
dimension of heterogeneity and augmenting the model with interactions between 
each of these indicators and a set of calendar day dummies. For instance, we 
control for age differences by including interactions between birth-year 
indicators and calendar day dummies, which implies that the model allows for 
a separate and fully flexible trend in infection rates for each birth-year 
cohort.  
 
Finally, we employ alternative definitions of the exposure indicator based 
on the notion that individuals who make transactions nearer to the potential 
infector are more likely to have close contact in the store and therefore 
more likely to be infected. First, we vary the interval around the potential 
infector’s transaction that delineates exposure. This enables us to 
corroborate that the transmission rate decreases with the time distance to 
the potential infector. Second, we estimate the model with a placebo measure 
of exposure that covers transactions between 11 and 15 minutes before the 
potential infector. This serves to probe the assumption that individuals 
categorized as non-exposed indeed have no exposure to the potential infector 
(i.e. Assumption #2). To the extent that the estimated effect of this placebo 
treatment is zero, i.e. that the individuals with transactions between 11 
and 15 minutes before the infector have the same infection risk as those 
with transactions between 16 and 30 minutes before the infector, it is 
suggestive that this assumption holds. 
 
4. ANALYSIS 
 
4.1 Comparing exposed and non-exposed individuals 
 
The empirical design critically assumes that individuals that were exposed 
and non-exposed to the potential infector in the store were not 
differentially exposed to other infection risks. While these infection risks 
are not directly observable, one can probe the assumption by comparing 
characteristics that correlate with infection risks across the two groups. 
 
Table S3 compares the socio-demographic characteristics (Panel A) and 
behavior relevant for infection risks and the ability to detect infections 
(Panel B) across exposed and non-exposed. For each characteristic, the table 
displays the raw means in the two groups (Columns 1-2), the difference in 
the raw means (Column 3) and the difference conditional on a separate 
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intercept for each infector transaction (Column 4). The latter is the most 
relevant diagnostic. It compares exposed and non-exposed who made a 
transaction in the same store on the same day with only a slight difference 
in the timing, which is the exact same comparison used to estimate the in-
store transmission rate. In practice, we obtain this diagnostic by estimating 
the empirical model using the observable characteristics of interest as 
dependent variable in separate regressions [SM section 3].  
 
Starting with the socio-demographic characteristics, we find a small age 
difference, 33.57 years in the exposed group vs. 33.76 years in the non-
exposed group, which may reflect a tendency for younger individuals to shop 
later in the day. This is potentially important, as age was a strong correlate 
of infection risk throughout the pandemic, and it motivates a robustness 
test with exhaustive controls for age differences. The two groups are almost 
perfectly balanced on other socio-demographic variables, such as the share 
of females, 50.3% vs 50.2%; household size, 2.91 vs 2.89 individuals; and 
income, DKK 140,262 vs 139,667. 
 
Turning to behavior, we first note that exposed and non-exposed individuals 
exhibited exactly the same infection rates over the 30 days prior to exposure, 
3.3% vs 3.3%. Hence, this summary measure of baseline infection risk shows 
no indication of behavioral differences across the two groups. However, 
infections are only detected if a test is performed, which makes it important 
to compare the test behavior of the two groups. Reassuringly, they exhibited 
almost identical test rates over the 30 days prior to exposure, 50.6% vs 
50.3%, and almost the same average number of tests over the same period, 
1.528 vs 1.507. Moreover, individuals differ in virus exposure due to their 
occupation. We find that the share employed in high-exposure sectors was 
almost the same share for the two groups, 6.9% vs 7.0% in the health sector 
and 6.7% vs 6.5% in education, suggesting that their average work-related 
exposure was similar.  
 
Consumer activities may be associated with infection risk and it is therefore 
comforting that the two groups exhibit almost identical shopping behavior. 
In 2019, they had the same number of in-store card transactions, 495.6 vs 
495.6, aggregating across all types of stores. Focusing only on supermarkets 
and grocery stores, the number of in-store card transactions remains highly 
similar for the two groups, 204.0 vs 205.0, and this continues to be the 
case when zooming in on the peak hour between 4pm and 5pm where supermarkets 
have the highest number of transactions, 19.64 vs 19.71.  
 
In summary, exposed and non-exposed individuals are strikingly similar in 
terms of observable characteristics even without restricting the comparisons 
to individuals associated with the same potential infector transaction. This 
is not surprising, despite the presence of selection into stores and 
transaction times, given that the two groups are sampled from precisely the 
same set of stores and almost the same set of transaction times.  
 
When we restrict comparisons to individuals associated with the same 
potential infector transaction, the two groups often become even more 
similar. For instance, the small difference in annual income of DKK 594 
shrinks to DKK -126 and the small difference in the number of Covid-19 tests 
over the past 30 days of 0.021 narrows to 0.005. In some other cases, the 
differences become marginally larger.    
 
4.2 Main results 
 
In the main analysis, we estimate the differential infection rate for exposed 
individuals relative to non-exposed individuals associated with the same 
potential infector transaction (see section 2.1). The infection rates are 
computed between day d+3 and day d+7 after the transaction, which corresponds 
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to the typical period where symptoms would emerge in the case of transmission 
from the potential infector on day d. The estimates are illustrated in Figure 
2 in the main text and reiterated with precise coefficients and sample sizes 
in Table S4.  
 
Our main result is a differential infection rate in the exposed group of 
around 0.12%-points (p<0.000). This estimate of the in-store transmission 
rate compares to a baseline infection rate of 1.3% in the non-exposed group 
over the same period. When we vary the time interval that defines exposure, 
we continue to find statistically significant differential infection rates 
in the exposed group. Specifically, our estimate increases to around 0.18%-
points (p=0.002) for a narrower definition covering transactions within 1 
minute of the infector and decreases to around 0.08%-points (p=0.002) for a 
broader definition covering transactions within 10 minutes of the infector. 
The gradient in these estimates confirms the intuitive notion that an 
individual’s effective exposure in the store is decreasing in the time 
difference between the individual’s own transaction and the potential 
infector’s transaction. Finally, the estimate drops to 0.01%-point (p=0.77) 
when we employ a placebo measure of exposure that covers transactions between 
11 and 15 minutes before the potential infector. This result suggests that 
individuals transacting more than 10 minutes before the infector were 
virtually non-exposed and, by implication, that the reference group with 
transactions between 16 and 30 minutes before the potential infector are not 
contaminated by exposure to the infector.  
 
The results are robust to including a range of control variables that address 
the potentially confounding effect of differences in observable 
characteristics, as shown in Figure S6. The main concern is age: the exposed 
are slightly younger than the non-exposed and as overall infection rates 
correlated significantly with age throughout the pandemic, with higher 
infection rates for younger cohorts in most periods, this slight imbalance 
introduces a risk that age-related differences in out-of-store exposures add 
to the estimated effect of differential in-store exposure. However, 
controlling non-parametrically for age with interactions between birth-
cohort indicators and calendar-day indicators, barely changes the estimated 
effects (red bars). Another potential concern is geography, as infection 
rates varied strongly across different parts of Denmark, with more densely 
populated areas generally experiencing more infections. While the empirical 
design removes much of the geographical variation by identifying from within-
store comparisons, it is conceivable that some systematic differences in 
residential patterns remain. However, the results are similar to the baseline 
when adding interactions between 99 indicators of the individual’s 
municipality of residence and calendar-day indicators (blue bars). Further, 
income is a potential confounder, as it correlates with many other factors 
associated with infection risks such as housing conditions, occupation and 
awareness about health risks and disease prevention. Again, to the extent 
that individuals at different income levels sort into different stores, the 
empirical design addresses this issue by restricting the identifying 
variation to within-store comparisons. Indeed, the results are very similar 
to the baseline when augmenting the model with interactions between 100 
income indicators, based on total taxable income in 2019, and calendar-day 
indicators (green bars). As a final robustness test, we include all three 
sets of controls – age, geography and income – at the same time. While the 
precision of the estimates decreases slightly in this augmented model, the 
estimated effect sizes remain highly similar to the baseline.  
 
The results are also robust to addressing the potentially confounding effect 
of social networks with further sample restrictions. The baseline sample 
already excludes individuals connected to the infector through family, 
household, work and education as well as individuals who sent money to or 
received money from the potential infector through a mobile app at any point 
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during the sample period. However, one may be concerned that, as these 
measures of network connections are inherently incomplete, our estimates 
could still pick up out-of-store transmissions in social networks. We address 
this concern with two additional tests and illustrate the results in Figure 
S7.  
 
First, we re-estimate the model while excluding all individuals who, at least 
once during the sample period, made a transaction within 1 minute of the 
potential infector (not counting the transaction that defines the individual 
as exposed or non-exposed). We observed in Figure S2 above that connected 
individuals are highly overrepresented among those who make transactions 
within 1 minute and we should therefore expect this restriction to reduce 
the prevalence of social connections in the estimation sample. As this 
approach defines possible social connections based on closeness in stores 
(at other times), it may reduce the prevalence of precisely the social 
connections that potential infectors are more likely to go to stores with, 
which are also the connections that could bias the results. The estimates 
remain highly similar to the baseline when we impose this additional sample 
restriction (blue bars). When we follow the same procedure, but exclude a 
wider range of individuals, i.e. those who ever made a transaction within 5 
minutes of the potential infector, the point estimates generally become 
somewhat smaller, but remain statistically indistinguishable from the 
baseline estimates (green bars).   
 
Second, we re-estimate the model while excluding all individuals whose age 
is within 5 years of the potential infector. Social networks generally 
exhibit strong homophily in age [18], which implies that individuals with a 
similar age as the potential infector are much more likely to be social 
connections than others. This additional sample restriction does not 
materially change the estimated effects (brown bars).  
 
While our baseline specification restricts the non-exposed group to 
individuals who transacted 16-30 minutes before the potential infector, we 
check whether the results are robust to using a symmetrically defined non-
exposed group, which also includes individuals who transacted 16-30 minutes 
after the potential infector. The estimated effect is somewhat smaller with 
this specification (purple bars), which is consistent with the notion that 
individuals who transacted after the potential infector may have experienced 
some transmission through exposure to contaminated air or surfaces in the 
store and therefore do not constitute a valid reference group. Restricting 
the non-exposed group to individuals who transacted 20-30 minutes before or 
after the potential infector yields highly similar but, if anything, slightly 
larger estimates (gray bars).  
 
4.3 Infection dynamics 
 
In addition to the main results, which concern infection rates shortly after 
exposure, we also conduct a dynamic analysis of infection rates over a longer 
time horizon. Letting d denote the day of exposure, our main outcome is an 
indicator for testing positive in the 5-day period [d+3, d+7]. None of the 
individuals in our estimation sample tested positive in the period [d-4, 
d+2] by construction - if they did they would be potential infectors and 
therefore excluded from the estimation sample. To study dynamics, we 
therefore construct indicators for testing positive in other 5-day periods, 
both before exposure, i.e. [d-9, d-5], [d-14, d-10], [d-19, d-15] etc., and 
after exposure, i.e. [d+8, d+12], [d+13, d+17], [d+18, d+22] etc. We use 
these infection indicators as outcomes in a series of separate regressions 
and illustrate the results in Figure 3 in the main text. 
 
The results indicate that exposed and non-exposed individuals generally 
followed similar infection trajectories both before and after exposure. The 
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period [d+3, d+7] stands out as the only period where the exposed experienced 
materially higher infection rates than the non-exposed. This is consistent 
with our interpretation that the differential infection rate of the exposed 
in the period [d+3, d+7] reflects in-store transmission on day d and not 
general differences in infection risk. 
 
Figure S8 illustrates the dynamics at a higher frequency, with separate 
estimates for each day rather than 5-day periods. The precision is generally 
low, which is the main reason why we use 5-day periods in the main analysis. 
The largest estimate is for day d+3 where the differential infection rate of 
the exposed is close to 0.004 percentage points (p=0.012). The estimates for 
days d+4, d+5, d+6 and d+7 are all positive and larger than 0.001 percentage 
points. In the pre-exposure period [d-30, d-5], the daily estimates are 
generally smaller and carry no indication of a systematically higher 
infection risk in the exposed group. While a few of the daily estimates for 
the period after day d+7 are numerically large, this does not appear to 
reflect systematic differences, as the estimates for the adjacent days are 
generally much smaller and often even have the opposite sign.  
 
Figure S9 reports dynamic estimates for the two alternative definitions of 
exposure, i.e. transactions within 1 minute (Panel A) and 10 minutes (Panel 
B) of the potential infector. We observe a similar pattern as in the main 
dynamic analysis. Exposed and non-exposed individuals do not differ 
materially with respect to their infection dynamics, except for the 
differential infection rate of the exposed group in period [d+3, d+7]. Not 
surprisingly, the pattern is somewhat noisier for the narrowest definition 
of exposure.  
 
Finally, we probe the robustness of the dynamic estimates by including non-
parametric controls for age, region and income. Figure S10 illustrates the 
results. Overall, the estimates are highly similar to the analogous results 
without controls illustrated in Figure 3. 
 
4.4 Differences across Covid-19 variants 
 
We investigate to what extent the transmission rate in stores varied with 
the dominant variant of Covid-19. Specifically, we split the sample period 
into four subperiods, each corresponding to a Covid-19 variant. To delimit 
the subperiods, we use the first days on which a new variant accounted for 
more than half of the genome-sequenced tests, i.e. 19 January 2021 for Alpha; 
28 June 2021 for Delta; and 17 December 2021 for Omicron.  
 
Figure 4 illustrates the estimates for the baseline definitions of exposure 
as well as the two alternative measures. The estimated transmission rates 
for Omicron are generally much larger than for the other three variants and 
much larger than the headline estimates based on the full sample. There is 
much less variation across the other three variants. 
 
One may be concerned that the striking differences in the estimated variant-
specific transmission rates do not reflect differences between the variants 
themselves, but confounding differences in the environments, in which they 
operated. The main concern is seasonal factors. We only observe Omicron in 
the cold season where in-store transmission rates may generally be more 
elevated, although conditions inside supermarkets and grocery stores are 
relatively stable throughout the year. Another concern is changing policy 
interventions: Face masks were required through the entire period where we 
observe Omicron, but not in many other phases of the pandemic. Finally, there 
are concerns about confounding changes in the composition of those infected.  
 
We address these concerns with a model that identifies the excess 
transmission rate of Omicron relative to other variants while also allowing 
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the transmission rate to depend on other relevant factors. We implement this 
idea by interacting the exposure variable with an indicator for Omicron being 
the dominant variant on the day of the exposure as well as other variables 
that capture confounding factors. First, we interact with indicators for 
calendar months. This implies that the model effectively compares the 
transmission of Omicron in December 2021-January 2022 to the transmission of 
the Index and Alpha variants in December 2020-January 2021. Second, we 
interact exposure with an indicator for a facemask requirement in retail 
stores. This implies that the model compares the transmission of Omicron to 
transmission in other periods with a facemask requirement. Third, we interact 
exposure with an indicator for the age of the exposed individual. This implies 
that the model compares the transmission of Omicron to transmission of other 
variants for individuals at a similar age.  
 
We find that the excess transmission rate of Omicron is highly robust, as 
illustrated in Figure S11. For the main definition of exposure, the estimated 
excess transmission rate is around 0.3% without controlling for confounding 
factors. The estimate does not fall below 0.25% when allowing the 
transmission rate to vary by calendar month, face masks requirements and 
age.   
 
4.5 Heterogeneity by individual characteristics  
 
We investigate how transmission rates in stores varied with individual 
characteristics. We implement this idea by splitting the sample according to 
the characteristic of interest and estimate the baseline model separately 
for each subsample. Figure S12 illustrates the results for the baseline 
definition of exposure (transactions within 5 minutes). 
 
The estimated transmission rate is strongly decreasing in the age of the 
exposed individual (red bars), increasing in the age of the potential 
infector (blue bars), and almost the same for the two genders (green bars).  
 
This result relates to a large literature that investigates how the 
susceptibility to Covid-19 infection as well as the onward transmissibility 
of the infection vary with age [19-23]. While many of these studies suggest 
that both susceptibility and transmissibility are increasing in age, 
differences in contact patterns and the share of asymptomatic cases across 
age groups are important potential confounders. Moreover, recent studies find 
that both age gradients might differ substantially across variants, resulting 
in much higher infection rates of children and adolescents under Delta and 
Omicron.  
 
Taken at face value, our results suggest that susceptibility is decreasing 
in age whereas transmissibility is increasing in age. An important advantage 
of our research design is that transmission rates are compared across age 
groups while holding the physical environment approximately constant: All 
exposures happen in a supermarket or a grocery store. However, there are 
also notable caveats, which make this causal interpretation less 
straightforward. First, the comparison may be influenced by behavioral 
differences, e.g. elderly people may observe distancing requirements more 
rigorously and wear a protective facemask more frequently because of the 
higher risk of severe illness in case of infection. Second, vaccinations 
were offered to the elderly first and take-up rates were generally increasing 
in age. Third, systematic differences in the physical environment may remain, 
as younger people may tend to visit less spacious stores at times where they 
are more congested.  
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4.6 Testing  
 
As detection of Covid-19 is imperfect, differential testing across exposed 
and non-exposed individuals could potentially confound our estimates. While 
we showed above that the two groups are very similar in terms of their 
baseline testing behavior, one may be concerned that exposed individuals 
tested more in the days following exposure. In principle, the contact-tracing 
app operated by the health authorities may have alerted exposed individuals 
about the potential infector in the store and induced some of them to get 
tested. To the extent that such additional tests detected infections 
contracted elsewhere, we would over-estimate the in-store transmission rate.  
 
We gauge the importance of this potential confounder by estimating our model 
using as the dependent variable an indicator for having taken a test with a 
negative result between day 3 and day 7 after exposure. To the extent that 
our main result were driven by alerts from the contact-tracing app, we should 
expect a large differential effect of exposure on testing. Specifically, 
according to data released by the Danish Ministry of the Interior and Health, 
around 99% of the tests triggered by alerts from the app were negative [24], 
so to explain the entire estimated effect on positive tests of around 0.12 
%-points, the estimated effect on negative tests should be around two orders 
of magnitude larger, i.e. around 12 %-points. By contrast, if the contact-
tracing app plays no role in explaining our results, we should see no effect 
on negative tests.  
 
Figure S13 illustrates the results for negative tests (green bars) and 
compares them to the analogous results for positive tests (red bars). 
Regardless of the definition of exposure, the effect on negative tests is 
essentially zero. This result is hard to reconcile with any material 
confounding effect of the contact-tracing app. A plausible explanation is 
that casual contact in stores is typically associated with much less than 
the 15 minutes’ close contact required for the contact tracing app to send 
an alert.  
 
4.7 Multiple exposures 
 
To the extent that individuals are exposed to multiple potential infectors 
in the same store, our estimates could in principle overstate the 
transmission risk associated with a single exposure.  
 
For the sample of individuals with a transaction within 10 minutes of a 
potential infector, Figure S14 shows the number of potential infectors who 
made a transaction within these 10 minutes.  
 
The vast majority of cases involve only one potential infector (around 90%) 
and while a non-negligible number of cases involve two potential infectors 
(around 9%), there are very rarely three or more (around 1%).  
 
Figure S15 illustrates that our estimates of in-store transmission rates are 
not sensitive to considering only exposed individuals with a single potential 
infector making a transaction within 10 minutes of their own transaction.  
 
4.8 Socially connected individuals 
 
Our main analysis excludes individuals who are socially connected to the 
potential infector based on the notion that they are likely to be exposed to 
the potential infector not just inside the store, but also outside of the 
store [See Section S2.2]. This suggests that leaving such individuals in the 
estimation sample would cause a severe upward bias in the estimated 
probability of transmission inside the store.  
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We substantiate this argument by estimating the model for precisely the 
individuals who are socially connected to the potential infector. Concretely, 
the estimation sample then consists of non-exposed individuals (same as in 
the baseline specification) as well as exposed individuals who are family 
members, household members, school colleagues, or work colleagues of the 
potential infector or are linked to the potential infector through money 
transfers.  
 
Figure S16 illustrates the results. The 5-day infection rate of individuals 
who made a transaction within 5 minutes of a potential infector to whom they 
are socially connected is 8 percentage points above the infection rate of 
the non-exposed (blue bar). This estimate is more than 60 times higher than 
the corresponding estimate from the baseline specification where socially 
connected individuals are excluded (red bar). There is considerable variation 
across social networks with the highest estimates for household members 
(around 17 percentage points) and family (around 12 percentage points), mid-
range estimates for individuals linked by money transfers (around 8 
percentage points) and the lowest estimates for school colleagues and work 
colleagues (both around 4 percentage points). 
 
We emphasize that these results should not be interpreted as estimates of 
the transmission probability associated with the interaction in the store, 
because socially connected individuals are also likely to interact outside 
the store. 
 
We conduct the same exercise for individuals who transacted within 1 minute 
or 5 minutes of the potential infector on another occasion, indicating that 
they may be socially connected (green bars). The estimates are close to the 
results from the baseline specification suggesting that at most a small 
fraction of these individuals is in fact socially connected to the potential 
infector.   
 
 
5. IMPLICATIONS 
 
We use the estimated transmission rates from the regression analysis to gauge 
the individual and aggregate risks associated with casual contact in 
supermarkets and grocery stores. Specifically, we provide estimates of the 
probability of getting infected for the average non-infected individual 
making a purchase in a store (Section 5.2) and the number of transmissions 
in stores for the average infected individual, i.e. reproduction (Section 
5.3).  
 
The key challenge is that we do not observe all card payments for the full 
population. We only observe the payments made by customers at Danske Bank 
and we only have detailed information about the timing of the payments when 
they use a MasterCard. This has implications for both risk metrics. When we 
estimate the probability of getting infected in a store for an individual in 
our sample, we need to account for the exposures we do not observe because 
the potential infectors are not customers at Danske Bank or do not pay with 
a MasterCard. Similarly, when we estimate the average number of in-store 
transmissions caused by a potential infector in our sample, we need to account 
for the exposures we do not observe because the exposed individuals are not 
customers at Danske Bank or do not pay with a MasterCard. 
 
We address this challenge by scaling up the exposures we observe in the 
sample with an estimate of the inverse sampling probability, i.e. the number 
of similar transactions in the population corresponding to a given 
transaction in the sample. When estimating the inverse sampling 
probabilities, we account for the non-representativeness of the sample in 
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terms of age and for the fact that individuals can have multiple banks and 
multiple payment cards.  
 
5.1 Inverse sampling probabilities  
 
To implement this approach, we first delineate a set of primary customers, 
i.e. individuals whose primary bank is Danske Bank. We exploit that all 
adults in Denmark must designate a bank account for transactions with the 
public sector, that is an account for receiving child benefits, tax refunds, 
pensions and so on. For adults (18 years and older), we require that this 
so-called NemKonto is at Danske Bank. For children (below 18 years) who 
presumably only rarely have multiple banks, we simply require that they have 
an account at Danske Bank. Next, for each primary customer, we measure the 
share of the payments in supermarkets and grocery stores that they make with 
their MasterCard.  
 
Drawing on these steps, we compute the number of individuals for whom we 
observe transactions in supermarkets and grocery stores measured in full-
customer equivalents. This simply amounts to counting the primary customers 
while weighting with their MasterCard share. For instance, primary customers 
who pay for all their transactions with their MasterCard contribute one full-
customer equivalent while primary customers paying with their MasterCard 
every third time contribute one third full-customer equivalent. We make this 
computation for each quarter separately, thus allowing for changes in bank 
relations and payment behavior over time, and for each birth cohort.   
 
Finally, we estimate the inverse sampling probabilities, by quarter and by 
birth cohort, by dividing the number of individuals in the population by the 
number of primary customers measured in full-customer equivalents. Figure 
S17 illustrates the resulting estimates for the full sample period. The 
estimate is around 13 for the average person, but varies significantly by 
age group, from less than 5 at age 18 to more than 50 at age 70.  
 
We use the estimated inverse sampling probabilities to account for the 
incompleteness of our card payment data. First, when we observe an individual 
in our sample exposed to a potential infector with inverse sampling 
probability X, we assume that the individuals in our sample were in fact 
exposed to X-1 potential infectors that we do not observe, because these 
potential infectors were not customers at Danske Bank or because they did 
not pay with a MasterCard. Second, when we observe a potential infector in 
our sample exposing an individual with inverse sampling probability Y, we 
assume that the potential infectors in our sample exposed Y-1 other 
individuals that we do not observe, because they were not customers at Danske 
Bank or because they did not pay with a MasterCard. 
 
The key assumption is that selection into being a Danske Bank customer and 
into paying with MasterCard is random conditional on age. In other words, 
two same-aged individuals are equally likely to be exposed in a store when 
they are uninfected and equally likely to expose others in a store when they 
are infected, regardless of whether they are customers at Danske Bank or 
another bank, and regardless of whether they pay with MasterCard or another 
card.  
 
5.2 Individual risk  
 
We estimate the infection risk associated with a purchase in a supermarket 
and grocery store for the primary customers in our sample in the following 
steps. First, we identify the instances where we observe that a primary 
customer in our sample was exposed. Second, we scale up each instance with 
the inverse sampling probability of the potential infector and aggregate to 
obtain the expected number of times the primary customers in our sample were 
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exposed to any potential infector in the population. Third, we multiply by 
the estimated in-store transmission rate to obtain the expected number of 
times the primary customers were infected in a store. Finally, we divide by 
the number of payments made by the primary customers in supermarkets and 
grocery stores to estimate the infection risk per store visit.  
 
In these computations, we use the broadest definition of exposure covering 
transactions within 10 minutes of a potential infector. We employ the 
methodology described above to obtain estimates of in-store transmission 
rates while splitting the sample to allow the estimates to vary by the age 
of the potential infector, the age of the exposed individual and the dominant 
Covid-19 variant. Concretely, we distinguish between three age groups (i.e. 
<25 years, 25-45 years and >45 years) as well as between two types of variants 
(i.e. Omicron and other), yielding 18 distinct transmission rates.  
 
This methodology yields an estimated infection risk of around 0.00005 for 
the average store visit in the estimation period, i.e. around one infection 
per 20,000 store visits. The estimate varies significantly across months, 
from less than one infection per 1 million store visits in June 2020 to 
around one infection per 2,000 store visits in December 2021. The striking 
variation in the infection risk over time is primarily due to changes in the 
probability of in-store exposure, reflecting largely the number of infected 
individuals in the population (see Figure S4), and to a lesser extent changes 
in the estimated transmission rate (see Figure 4).  
 
We also provide an estimate of the infection risk associated with a purchase 
in a supermarket and grocery store for the average individual in the 
population. This estimate differs from what we found for the sample of primary 
customers presented above because the sampled individuals, being non-
representative of the overall population, face different probabilities of 
being exposed conditional on making a purchase as well as different 
probabilities of infection conditional on being exposed.  
 
The approach differs from the one applied above in two respects. First, we 
scale up each instance where a primary customer is exposed not just with the 
inverse sampling probability of the potential infector, but also with the 
inverse sampling probability of the exposed individual. This yields the 
expected number of exposures for the population as opposed to for the sample 
of primary customers. Moreover, it yields the expected number of in-store 
infections in the population when multiplied by the relevant transmission 
rates. Second, we use the inverse sampling probabilities to scale the number 
of payments observed in the sample up to the expected number in the 
population.  
 
We obtain an estimated infection risk of around 0.000025 for the average 
store visit, i.e. around one infection per 40,000 store visits, which is 
lower than in the sample of primary customers. This is intuitive as the 
sample is younger and therefore more likely to be exposed conditional on 
visiting a store and more likely to be infected conditional on being exposed 
(see Figure S12). 
 
5.3 Reproduction 
 
We take a similar approach to estimating the average number of transmissions 
in stores per infection in the sample of primary customers. First, we identify 
the instances where we observe that a primary customer is a potential infector 
and exposes another individual. Second, we scale up each of these instances 
with the inverse sampling probability of the exposed individual and aggregate 
to obtain the expected number of exposures due to the potential infectors in 
our sample. Third, we multiply by the estimated transmission rates to obtain 
the expected number of in-store transmissions due to the potential infectors 
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in our sample. Finally, we divide by the number of infections in our sample 
to estimate the number of in-store transmissions per infection.  
 
We note that also infected individuals who do not make card payments between 
day d-4 and day d+2, and who are thus not potential infectors, contribute to 
the number of infections in the denominator of the reproduction number. We 
also note that individuals may contribute more than one infection to the 
denominator if they suffer multiple distinct infections during the sample 
period.  
 
The estimated reproduction number for the full sample period is 0.038, 
suggesting that every 100 infections gave rise to around 4 transmissions 
through casual contact in supermarkets and grocery stores. As shown in Figure 
5, the estimated reproduction number was roughly constant around 0.02 for 
most of the sample period, but climbed to around 0.06 at the arrival of the 
Omicron variant in December 2021. This striking increase in in-store 
reproduction is mostly due to an increase in the estimated transmission rate 
population (see Figure 5). 
 
We also provide estimates of in-store reproduction numbers for the average 
individual in the population. Conceptually, this estimate differs from what 
we found for the sample of primary customers because the sampled individuals, 
being non-representative of the overall population, may exhibit different 
propensities to visit stores around infection, different probabilities of 
exposing others conditional on visiting a store, and different probabilities 
of infecting others conditional on exposing them. 
 
To produce population estimates, we alter our methodology in two respects. 
First, we scale up each instance where a potential infector in our sample 
exposes another individual not just with the inverse sampling probability of 
the exposed individual, but also with the inverse sampling probability of 
the potential infector. This yields the expected number of exposures for the 
population as opposed to the sample of primary customers. Moreover, it yields 
the expected number of in-store infections in the population when multiplied 
by the relevant transmission rates. Second, we use the number of confirmed 
cases in the population in the denominator as opposed to the infections 
observed in the sample.  
 
The estimated reproduction number for the population is 0.039 for the full 
sample period and exhibits a similar dynamics over the course of the pandemic 
(see Figure 5).  
 
A key assumption underlying this methodology is that our gross sample of 
Danske Bank customers is representative in terms of the risk of being exposed 
in a store conditional on age. One may be concerned about potential selection 
mechanisms that invalidate this assumption. For instance, if MasterCard is 
used primarily by males, and males are more likely to be exposed than females 
due to different shopping patterns, our baseline approach would overestimate 
the reproduction number by assigning a too small sampling probability to 
males who have higher-than-average likelihood of exposure and a too large 
sampling probability to females who have a lower-than-average likelihood of 
exposure.  
 
We address this concern by taking an alternative approach to obtaining 
sampling probabilities. For each quarter, we estimate a probit model where 
the sample is the full population of Denmark, the outcome is an indicator 
for being in the gross sample, and the explanatory variables are indicators 
capturing a range of observable characteristics, i.e. age cohort, gender, 
income decile, occupation, and region. This regression yields sampling 
probabilities for each individual in the sample and each quarter, which vary 
not just with age, but also with gender, income, occupation and region. For 
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individuals with multiple payment cards, we scale down the sampling 
probability with the non-MasterCard transaction share to reflect that we do 
not observe all their purchases in our transaction data. For instance, we 
assign a sampling probability of 7.5% to an individual who has an estimated 
10% probability of being in the customer sample and uses MasterCard for 75% 
of their transactions in supermarkets and grocery stores. Figure S17 
illustrates the distribution of the resulting sampling probabilities by age 
cohort.  
 
This approach yields an estimated reproduction number for the full sample 
period of 0.037, only slightly lower than the baseline estimate.  
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Figure S1: The Covid-19 pandemic in Denmark. The figure the daily number of new 
infections (Panel A), Covid-19 related hospitalizations (Panel B), Covid-19 related 
deaths (Panel C) and performed Covid-19 tests (Panel D) all measured per 100.000 
inhabitants. The data is available at the website of Statens Serum Institut, 
https://covid19.ssi.dk/overvagningsdata. 
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Figure S2: Social network indicators. The figures shows the prevalence of 
socially connected individuals in transactions by the time relative to the 
transactions of the potential infector for family and household members (Panel A), 
individuals working at the same workplace (Panel B), individuals attending the same 
educational institution (Panel C) and individuals who send or receive money on the 
money transfer app MobilePay. 
 
 

 
  



23 
 

Figure S3: Potential infectors over time. The figure shows the number of 
potential infectors’ payments in supermarkets and grocery by month. 
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Figure S4: Covid-19 cases vs potential infectors. The figure plots the weekly 
number of Covid-19 cases in the population against the weekly number of potential 
infector transactions in our sample (blue dots) and the weekly number of transactions 
within 30 minutes of a potential infector transaction. 
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Figure S5: Exposed and non-exposed individuals per potential infector. The 
figure illustrates how the number of exposed and non-exposed individuals per 
potential infector is distributed.  
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Figure S6: Robustness to controls. The figure illustrates how the main estimates 
change when our model is augmented with controls. For each of the three exposure 
measures, the figure shows the excess probability of testing positive between day 
d+3 and day d+7 for exposed individuals relative to non-exposed individuals estimated 
with five different sets of controls: no controls (red columns), indicators for birth 
year interacted with calendar days (blue bars), indicators for income percentile 
interacted with calendar days (green bars), indicators for municipality of residence 
interacted with calendar days (brown bars), all three sets of controls jointly (gray 
bars). The estimated coefficients and standard errors are reported in Table S4. 
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Figure S7: Robustness to sample restrictions. The figure illustrates how the 
main estimates change with the sample restrictions. For each of the three exposure 
measures, the figure shows the excess probability of testing positive between day 
d+3 and day d+7 for exposed individuals relative to non-exposed individuals estimated 
with five different sample restrictions: baseline (red columns), exclude individuals 
with another transaction within 1 minute of the potential infector (blue bars), 
exclude individuals within 5 years of age to the potential infector (green bars), 
include transactions between 16 and 30 minutes before and after the potential infector 
(brown bars), include transactions between 21 and 30 minutes before and after the 
potential infector (gray bars). The estimated coefficients and standard errors are 
reported in Table S4. 
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Figure S8: One-day infection dynamics. The figure shows the daily excess 
probability of testing positive for exposed relative to non-exposed individuals. 
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Figure S9: Dynamic results with alternative exposure measures. The bars 
indicate the excess probability of testing positive in different 5-day periods for 
exposed relative to non-exposed individuals using two alternative exposure measures: 
transactions with 1 minute (Panel A) and 10 minutes (Panel B) of the potential 
infector. 
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Figure S10: Dynamic results with controls. The bars indicate the excess 
probability of testing positive in different 5-day periods for exposed relative to 
non-exposed individuals estimating in a model with additional controls: indicators 
for birth year interacted with calendar days, indicators for income percentile 
interacted with calendar days, indicators for municipality of residence interacted 
with calendar days. 
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Figure S11: Differential transmission rate of Omicron. The figure shows the 
differential transmission rate of Omicron relative to other variants estimated in 
five different models: No controls (red columns), controls for calendar month (blue 
bars), controls for mask requirement (green bars), controls for the age of the exposed 
individual (brown bars), all three controls jointly (gray bars). 
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Figure S12: Heterogeneity by individual characteristics. The figure shows the 
excess probability of testing positive between day d+3 and day d+7 for exposed 
individuals relative to non-exposed individuals by the age of the exposed individual 
(red bars), the age of the potential infector (blue bars) and the gender of the 
exposed individual (green bars). The estimates are obtained by estimating the baseline 
model while restricting the sample to individuals with a given characteristic.  
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Figure S13: Endogenous testing. The figure shows the excess probability of 
testing positive (red bars) and testing negative (green bars) between day d+3 and 
day d+7 for exposed individuals relative to non-exposed individuals. 
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Figure S14: Number of potential infectors. The figure illustrates the distribution 
of the number of potential infectors with a transaction within 10 minutes of the 
exposed individual.  
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Figure S15: Robustness, subsample with only one potential infector. The figure 
shows the excess probability of testing positive between day d+3 and day d+7 for the 
baseline sample of exposed individuals (red bars) and for the subsample of exposed 
individuals with only one potential infector making a transaction within 10 minutes 
(green bars). 
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Figure S16: Estimation results for socially connected individuals. The figure 
shows the excess probability of testing positive between day d+3 and day d+7 for the 
baseline sample of exposed individuals (red bars); for the sample of socially 
connected individuals (blue and gray bars); and for the sample of individuals who 
made a transaction within 1 minute and 5 minutes of the potential infector on some 
other occasion (green bars). We emphasize that these are not estimates of in-store 
transmission probabilities as socially connected individuals are likely to be exposed 
to the potential infector outside of the store.  
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Figure S17: Inverse sampling probabilities. The figure illustrates two sets of 
estimates of the inverse sampling probabilities. The baseline estimates of the 
sampling probabilities are the ratio between the number of individuals at a given 
age in the population relative to the number of individuals whose main bank is Danske 
Bank in our sample, weighted by the share of MasterCard payments in their supermarket 
and grocery store transactions. The alternative approach obtains sampling 
probabilities as the predicted outcomes of a probit regression of an indicator for 
being in the sample of MasterCard holders on a range of observable characteristics: 
age, gender, income deciles, occupation dummies, and regional dummies. The resulting 
probabilities are scaled by the share of MasterCard payments in their overall 
supermarket and grocery store transactions. The gray area illustrates the range 
between the 90th and 10th percentile at each age with the alternative approach.  
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Table S1: Descriptive statistics. The table compares the sample of Danske Bank 
customers with MasterCard to the general population in Denmark in terms of sample 
size (Panel A) and individual characteristics (Panel B). Annual income is total pre-
tax income including government transfers in 2019. 

 

 

Danske Bank 

sample

Population 

in Denmark 

Panel A: Sample size

Number of individuals 630,042 5,822,742

Panel B: Individual characteristics

Age 37.7 41.3

 ‐ under 25 0.34 0.29

 ‐ between 25 and 45 years 0.30 0.26

 ‐ above 45 0.36 0.45

Female 0.48 0.50

Any children in household 0.41 0.43

Household size 2.86 2.58

Annual income (DKK) 181,690 266,072
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Table S2: Sample selection. The table describes the selection of our estimation 
sample. We identify transactions by potential infectors: around 126,000 transactions 
and 54,000 unique individuals (Panel A). We define a gross sample of around 1,517,000 
transactions that occur within 30 minutes of a potential infector transaction (Panel 
B). We exclude the roughly 11,000 of these transactions made by individuals socially 
connected to the potential infector (Panel C). In the remaining sample, we identify 
around 328.000 transactions occurring within 5 minutes of a potential infector and 
classify the card owner as exposed (Panel D) and around 340,000 transactions occurring 
between 16 and 30 minutes before the potential infector where we classify the card 
owner as non-exposed (Panel E). 

 

 

   

A: Potential infectors

 ‐ transactions 126,418

 ‐ unique individuals 53,506

B: Gross sample 

 ‐ within 30 minutes 1,517,105

C: Social connections

 ‐ same family  1,326

 ‐ same household 827

 ‐ same school 1,291

 ‐ same workplace 829

 ‐ same payment network 6,958

D: Exposure

 ‐ within 5 minutes 327,850

 ‐ within 1 minute 96,937

 ‐ within 10 minutes 598,006

E: Non‐exposure

 ‐ 16‐30 minutes before 340,199
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Table S3: Balancing tests. The table compares the characteristics of exposed and 
non-exposed individuals. Specifically, for a range of socio-demographic variables   
(Panel A) and behavioral variables (Panel B), the shows the sample mean for exposed 
and non-exposed individuals (Columns 1-2), the raw difference in means (Column 3) 
and the difference in means conditional on a separate intercept for each potential 
infector transaction (Column 4).  

   

 

   

Exposed 

(mean)

Non‐exposed

 (mean) Raw difference

Conditional 

difference

Panel A: Socio‐demographics

Age 33.57 33.76 ‐0.18 ‐0.30

(0.03) (0.03) (0.04) (0.04)

Female 0.503 0.502 0.001 ‐0.004

(0.001) (0.001) (0.001) (0.001)

Single 0.206 0.210 ‐0.004 ‐0.004

(0.001) (0.001) (0.001) (0.001)

Children 0.627 0.628 ‐0.001 ‐0.001

(0.002) (0.002) (0.003) (0.003)

Household size 2.91 2.89 0.01 0.02

(0.003) (0.003) (0.004) (0.004)

Annual income (DKK) 140,261 139,668 593 ‐126

(516) (405) (656) (756)

Panel B: Behavior

Positive test (30 days) 0.0328 0.0325 0.0003 ‐0.0007

(0.0004) (0.0003) (0.0005) (0.0005)

Number tests (30 days) 1.5284 1.5074 0.0211 0.0050

(0.0049) (0.0042) (0.0064) (0.0064)

Any tests (30 days) 0.5061 0.5032 0.0029 ‐0.0002

(0.0010) (0.0009) (0.0013) (0.0014)

Health worker 0.0695 0.0699 ‐0.0004 ‐0.0013

(0.0005) (0.0004) (0.0007) (0.0008)

Education worker 0.0667 0.0654 0.0013 0.0011

(0.0005) (0.0004) (0.0007) (0.0007)

All in‐store transactions (2019) 495.61 495.62 ‐0.01 0.69

(0.65) (0.56) (0.85) (0.96)

 ‐ in supermarkets  204.00 205.01 ‐1.01 ‐1.12

(0.35) (0.30) (0.47) (0.52)

 ‐ in supermarkets, peak‐hour  19.65 19.71 ‐0.06 ‐0.08

(0.04) (0.04) (0.06) (0.06)
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Table S4: Main results and robustness. The table reports the estimated 
coefficients and standard errors illustrated in Figures 2, S6 and S7.  

  

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Baseline

Figure 2

Age

controls

Area

controls

Income

controls

All

controls

No purchase 

within 1min

No purchase 

within 5min

Age difference 

> 5 years

Non‐exp: 

[‐30,‐15]+[15,30]

Non‐exp: 

[‐30,‐20]+[20,30]

Baseline (<5min) 0.00119*** 0.00120** 0.00125** 0.00123*** 0.00132** 0.00119*** 0.000871* 0.00135*** 0.000826** 0.000956**

(0.000) (0.001) (0.001) (0.001) (0.006) (0.001) (0.029) (0.000) (0.004) (0.002)

Observations 547,435 539,935 534,356 539,328 515,702 493,575 415,335 410,935 873,868 649,077

Alt. exposure (<1min) 0.00175** 0.00183** 0.00215** 0.00169** 0.00218* 0.00167** 0.00153* 0.00186** 0.00124* 0.00128*

(0.002) (0.004) (0.002) (0.005) (0.017) (0.005) (0.024) (0.003) (0.013) (0.015)

Observations 369,976 361,491 354,922 361,857 332,718 334,378 283,219 274,672 698,050 471,893

Alt. Exposure (<10min) 0.000842** 0.000842** 0.000820** 0.000891** 0.000836** 0.000845** 0.000644* 0.000939** 0.000544* 0.000743**

(0.002) (0.002) (0.006) (0.004) (0.004) (0.004) (0.045) (0.002) (0.016) (0.003)

Observations 782,496 775,766 769,717 774,698 753,903 708,514 598,195 592,051 1,106,532 883,512

Robustness to controls

Figure S6

Robustness to samples

Figure S7
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Table S5: Covid-19 variants. The table reports the estimated coefficients and 
standard errors illustrated in Figure 4. 

 

 

 

(1) (2) (3) (4)

Index Alpha Delta Omicron

Baseline (<5min) 0.000548 ‐0.000103 0.000351 0.00310***

(0.082) (0.750) (0.415) (0.001)

Observations 121,063 61,384 190,672 174,314

Alt. exposure (<1min) 0.00110* ‐0.000431 0.000838 0.00407**

(0.048) (0.406) (0.248) (0.009)

Observations 82,658 42,025 129,314 115,977

Alt. Exposure (<10min) 0.000634* ‐0.000177 0.000175 0.00212**

(0.013) (0.514) (0.624) (0.005)

Observations 171,218 86,828 270,970 253,478

Figure 4


