PLOS ONE

Common dolphin whistle responses to experimental mid-frequency sonar --Manuscript Draft--

Manuscript Number:	PONE-D-23-38783R1
Article Type:	Research Article
Full Title:	Common dolphin whistle responses to experimental mid-frequency sonar
Short Title:	Dolphin acoustic response to sonar
Corresponding Author:	Caroline Casey UCSC: University of California Santa Cruz Santa Cruz, UNITED STATES
Keywords:	Bioacoustics: Common dolphins; (Delphinus delphis); (Delphinus bairdii); Behavioral response study; Navy sonar; Acoustic behavior
Abstract:	Oceanic delphinids around naval operations are regularly exposed to intense military sonar broadcast within the frequency range of their hearing. However, empirically measuring the impact of sonar on the behavior of highly social, free-ranging dolphins is challenging. Additionally, baseline variability or the frequency of vocal state-switching among social oceanic dolphins during undisturbed conditions is lacking, making it difficult to attribute changes in vocal behavior to anthropogenic disturbance. Using a network of drifting acoustic buoys in controlled exposure experiments, we investigated the effects of mid-frequency (3-4 kHz) active sonar (MFAS) on whistle production in short-beaked (Delphinus delphis delphis) and long-beaked common dolphins (Delphinus delphis bairdii) in southern California. Given the complexity of acoustic behavior exhibited by these group-living animals, we conducted our response analysis over varying temporal windows (10 min – 5 s) to describe both longer-term and instantaneous changes in sound production. We found that common dolphins exhibited acute and pronounced changes in whistle rate in the 5 s following exposure to simulated Navy MFAS. This response was sustained throughout sequential MFAS exposures within experiments simulating operational conditions, suggesting that dolphins may not habituate to this disturbance. These results indicate that common dolphins exhibit brief yet clearly detectable acoustic responses to MFAS. They also highlight how variable temporal analysis windows – tuned to key aspects of baseline vocal behavior as well as experimental parameters related to MFAS exposure – enable the detection of behavioral responses. We suggest future work with oceanic delphinids explore baseline vocal rates a-priori and use information on the rate of change in vocal behavior to inform the analysis time window over which behavioral responses are measured.
Order of Authors:	Caroline Casey
	Selene Fregosi
	Julie Oswald
	Vincent Janik
	Fleur Visser
	Brandon Southall
Response to Reviewers:	Dear Vitor Hugo Rodrigues Paiva and the editorial team, We greatly appreciate your response to our submitted manuscript (Common dolphin whistle response to experimental mid-frequency sonar – PONE-D-23-38783). It was helpful and gratifying to receive reviewer comments on our study that were so thoughtful and meticulous. We appreciate that the editorial team believes that this is a unique paper that should be of broad interest to the readers of PLOS One. We have spent considerable time reflecting on and revising this manuscript based on the detailed recommendations of each reviewer. These changes can be seen in the "Revised Manuscript with Track Changes" document. With respect to the specific Journal Requirements, we have made the following

requested changes:

1. Please ensure that your manuscript meets PLOS ONE's style requirements, including those for file naming. The PLOS ONE style templates can be found at https://journals.plos.org/plosone/s/file?id=wjVg/PLOSOne_formatting_sample_main_bo

dy.pdf and https://journals.plos.org/plosone/s/file?id=ba62/PLOSOne_formatting_sample_title_aut hors affiliations.pdf

The Title, Author, and affiliations have been updated. Additionally, we have carefully gone through PLOS ONE's style requirements, and have made several changes to the manuscript.

2. Thank you for stating the following financial disclosure:

"Funding for this project was provided by the U.S. Navy's Office of Naval Research (Award Numbers N000141713132, N0001418IP-00021, N000141712887, N000141912572). "

Please state what role the funders took in the study. If the funders had no role, please state: ""The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.""

If this statement is not correct you must amend it as needed.

Please include this amended Role of Funder statement in your cover letter; we will change the online submission form on your behalf.

This statement is correct. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We have removed the funding information from the Acknowledgements section and can re-include this in our cover letter.

3. Thank you for stating the following in the Acknowledgments Section of your manuscript:

"Funding for this project was provided by the U.S. Navy's Office of Naval Research (Award Numbers N000141713132, N0001418IP-00021, N000141712887, N000141912572). "

We note that you have provided funding information that is not currently declared in your Funding Statement. However, funding information should not appear in the Acknowledgments section or other areas of your manuscript. We will only publish funding information present in the Funding Statement section of the online submission form.

Please remove any funding-related text from the manuscript and let us know how you would like to update your Funding Statement. Currently, your Funding Statement reads as follows:

"Funding for this project was provided by the U.S. Navy's Office of Naval Research (Award Numbers N000141713132, N0001418IP-00021, N000141712887, N000141912572). "

Please include your amended statements within your cover letter; we will change the online submission form on your behalf.

We apologize for the confusion. We have removed the funding statement from the main body of the manuscript. The funding statement that you have here is correct. 4. We note that Figure 1 in your submission contain [map/satellite] images which may be copyrighted. All PLOS content is published under the Creative Commons Attribution License (CC BY 4.0), which means that the manuscript, images, and Supporting Information files will be freely available online, and any third party is permitted to access, download, copy, distribute, and use these materials in any way, even commercially, with proper attribution. For these reasons, we cannot publish previously copyrighted maps or satellite images created using proprietary data, such as Google software (Google Maps, Street View, and Earth). For more information, see our copyright guidelines: http://journals.plos.org/plosone/s/licenses-and-copyright.

We require you to either (1) present written permission from the copyright holder to publish these figures specifically under the CC BY 4.0 license, or (2) remove the figures from your submission:

a. You may seek permission from the original copyright holder of Figure 1 to publish the content specifically under the CC BY 4.0 license.

We recommend that you contact the original copyright holder with the Content Permission Form (http://journals.plos.org/plosone/s/file?id=7c09/content-permission-form.pdf) and the following text:

"I request permission for the open-access journal PLOS ONE to publish XXX under the Creative Commons Attribution License (CCAL) CC BY 4.0

(http://creativecommons.org/licenses/by/4.0/). Please be aware that this license allows unrestricted use and distribution, even commercially, by third parties. Please reply and provide explicit written permission to publish XXX under a CC BY license and complete the attached form."

Please upload the completed Content Permission Form or other proof of granted permissions as an ""Other"" file with your submission.

In the figure caption of the copyrighted figure, please include the following text: "Reprinted from [ref] under a CC BY license, with permission from [name of publisher], original copyright [original copyright year]."

b. If you are unable to obtain permission from the original copyright holder to publish these figures under the CC BY 4.0 license or if the copyright holder's requirements are incompatible with the CC BY 4.0 license, please either i) remove the figure or ii) supply a replacement figure that complies with the CC BY 4.0 license. Please check copyright information on all replacement figures and update the figure caption with source information. If applicable, please specify in the figure caption text when a figure is similar but not identical to the original image and is therefore for illustrative purposes only.

The following resources for replacing copyrighted map figures may be helpful:

USGS National Map Viewer (public domain): http://viewer.nationalmap.gov/viewer/ The Gateway to Astronaut Photography of Earth (public domain): http://eol.jsc.nasa.gov/sseop/clickmap/

Maps at the CIA (public domain): https://www.cia.gov/library/publications/the-world-factbook/index.html and https://www.cia.gov/library/publications/cia-maps-publications/index.html

NASA Earth Observatory (public domain): http://earthobservatory.nasa.gov/ Landsat: http://landsat.visibleearth.nasa.gov/

USGS EROS (Earth Resources Observatory and Science (EROS) Center) (public domain): http://eros.usgs.gov/#

Natural Earth (public domain): http://www.naturalearthdata.com/ We have redesigned the figure based on the map provided by NASA Earth Observatory (public domain) that complies with the CC BY 4.0 license. The updated Figure 1. is now reflected in the manuscript. We have also added the following to the figure caption. "The map was inspired by images obtained from the NASA Earth Observatory (public domain), is not drawn to scale, and is for illustrative purposes only".

5. Please include captions for your Supporting Information files at the end of your manuscript, and update any in-text citations to match accordingly. Please see our Supporting Information guidelines for more information:

http://journals.plos.org/plosone/s/supporting-information.

This has been done.

6. Please review your reference list to ensure that it is complete and correct. If you have cited papers that have been retracted, please include the rationale for doing so in the manuscript text, or remove these references and replace them with relevant current references. Any changes to the reference list should be mentioned in the rebuttal letter that accompanies your revised manuscript. If you need to cite a retracted article, indicate the article's retracted status in the References list and also include a citation and full reference for the retraction notice.

We have carefully gone through our references and have updated the formatting. We do not believe we have any retracted references in our reference list.

Additionally, all the reviewers made minor suggestions to strengthen the manuscript, and we have addressed each in turn. Our specific responses to reviewers are provided below. Given these changes, we hope that PLOS One finds our manuscript suitable for publication. Please do not hesitate to contact me if you require any additional information.

Specific comments to reviewers can be found below:

Reviewer #1: The information contained in the manuscript is useful. One has to wonder whether the results will stand if/when additional data are obtained and n is increased. We certainly aim to address this in the future in our ongoing BRS efforts and appreciate the supportive feedback.

The information itself is straightforward, but the manuscript is not as clear as it could be. There also were some inaccuracies, errors, inconsistencies, missing words, and formatting issues. The manuscript should be reviewed/revised editorially, since PLOS ONE does not use a copy editor.

Some of the issues included-

• Short- and long-beaked common dolphins are separate subspecies, not species. Their correct scientific names must be used.

Thank you for bringing this to our attention. This has been corrected throughout the manuscript based on the Marine Mammal Society Taxonomic list of marine mammal species subspecies.

• The units for source level and received level must be correct and complete (dB re 1 μ Pa at 1 m and dB re 1 μ Pa, respectively) and should include rms, when applicable Thank you, this has been adjusted throughout the manuscript where appropriate.

• 10 MFAS CEEs were denoted in Table 1, but the text in the manuscript specified 9 CEEs in numerous instances.

We apologize for the confusion on this. We realize that there were some details here that needed to be resolved. Specifically, we had to exclude one of the CEEs (2021_11) from our modeling work because of the low number of whistles detected during this experiment. The following information has been added to the text of the manuscript for clarity: "For the changepoint analysis, all 10 MFAS experiments were included. However, for the assessment of changes in whistle behaviors across different time scales, CEE 2021_11 (conducted with long-beaked common dolphins) had to be excluded because the overall lack of detected whistles could not be successfully modeled. Consequently, the modeling results include nine controls and nine MFAS experiments. "

• The tense of nouns and verbs should be the same within a given sentence, as should the person.

Commas should be used consistently and correctly throughout. In some instances, commas were not used when they should have been (i.e., after introductory clauses).
Hyphens should not be used for nouns (i.e., 'in 5 sec' instead of 'in 5-sec') but should be used for adjectives (i.e., 'in a 5-sec bin' instead of 'in a 5 sec bin').

Abbreviations should be used consistently (i.e., second, sec, and s were all used).

• "Table" should be capitalized when cited in the text.

• References should be cited in the correct order (numerically ascending), format (when the name also is used in the text), and with the correct punctuation (brackets [] instead of parentheses () for PLOS ONE).

• Capitalization for headings/headers and bolding of captions should be consistent.

• Extra spaces should be deleted within and between sentences.

We thank the reviewer for these detailed comments. We have carefully gone through the manuscript and have addressed each of their edits. These changes can be seen within the "Revised Manuscript with Track Changes" document.

Also, information regarding the IACUC review and approval was missing in various sections of the manuscript.

We apologize for this oversight. Our IACUC information has been added to the Acknowledgments section. The text now reads: "Additionally, all activities reported in this study were reviewed and approved by the Institutional Animal Care and Use Committee (IACUC Protocol No: CRC-2021-AUP-06, CRC-2021-AUP-08)."

Please see the pdfs for specific comments and questions regarding the manuscript and supplementary docs.

Many suggestions were made directly in an associated PDF (Reviewer #1). Those

changes (unless noted otherwise below) were made to the revised version of the manuscript and greatly improved the clarity. We thank Reviewer 1 for the time they spent reviewing our work.

-With respect to their comments about the consistency of the y-axis in Fig. 4b and Fig 4c, we decided to leave the figure as is, as the intention of the figure is to highlight the relative changes between the pre-exposure and exposure period for each individual plot, rather than compare across the plots. Keeping the axes as they are allows maximum resolution for across period comparisons.

-We will upload the data to NCEI as well since the project was funded by ONR. -With respect to their comment about the validity of pooling the two subspecies acoustic data for baseline analysis, we decided not to pursue this approach since they regularly occur in mixed groups, and our sample size of Delphinus delphis delphis was relatively small. Further work looking at subspecies-specific differences in whistle production is still needed but is not within the scope of this paper.

Reviewer #2: Casey et al. aimed to measure the impact of Navy MFAS sonar on freeranging dolphins in comparison to baseline variability data of acoustics. They utilize a network of acoustic buoys and controlled exposure experiments measure acoustic disturbance of free ranging short-beaked and long-beaked common dolphin whistles. CEEs were conducted off the coast of Santa Catalina Island and data were analyzed for vocal state changes. The authors found a significant vocal state change in the 5 seconds post CEEs. Interestingly, they give information on potential habituation of the animals as well.

Overall, it is a well written paper looking at vocal state changes as a tool for measuring disturbance. There are a few errors and areas that transition phrases are redundant. There are some areas where the authors have accidentally put in an extra space between words.

Thank you for this positive review of our manuscript. To address reviewers 1 and 2's comments, we have gone through the manuscript carefully to correct any editorial errors. We hope that this makes things easier to follow and clearer for the reader.

Line 19: Considering we do not have data that states that millions hear and are affected by Navy MFAS in particular, I would suggest rephrasing this first sentence or adding a citation.

We agree and have changed this sentence to be more general.

Line 222-223: While the author's state that the distance between the drone and the octocopter were estimated every thirty minutes, it would be beneficial for the authors to state how high the drone was flying on average.

Thank you for this suggestion. We have added the following details to the text to address both reviewer 2 and 3's point: "The animals' location was known from an associated octocopter drone flight (APO-42, Aerial Imaging Solutions) that utilized a micro 4/3 digital camera (Olympus E-PM2) and 25 mm lens (Olympus M. Zuiko F1.8) mounted to a gimbal. The octocopter flew at approximately 60 m directly above the dolphins to provide sufficient pixel resolution while also decreasing the potential for disturbance (see [34] for details)."

Line 427: Consider deleting "however" after Note. We appreciate this suggestion and we have made this change.

Line 448: consider replacing en dash with an em dash. We appreciate this suggestion and we have made this change.

Line 449: 10 MFAS CEEs were conducted but only 2 in Dolphinus delphis, why? I would suggest at least one line of explanation on this. The reviewer here caught an important mistake in our text. While Table 1. reflected the correct proportion of CEEs for both sub-species (7 of 10 with D. d. bairdii and 3 of 10 with D. d. delphis), the text did not. The text is now consistent with the proportion of MFAS CEEs conducted with each sub-species presented in Table 1. To address their question as to why we conducted more MFAS cees with D. d. bairdii – The total length of this project spanned over 4 years (2017, 2018, 2019, 2021). During that time, we did balance MFAS playbacks equally across subspecies. However, for this paper, we only decided to include data from 2019 and 2021 because of the consistency in acoustic methodology in the field during these two years. We happened

to conduct more experiments with D. d. bairdii during the later years of this project.

which is why they are represented more here in this paper. We do not agree that we should include this in the text of the manuscript (as it is a bit verbose), so we have left it as is. We could add that D. d. bairdii was encountered more often and is therefore making up most of the data if the editors think this is helpful. Please advise.

Line 483: cee is not capitalized in this line but is in front of the word type in the line before. I would suggest making this congruent in the paragraph. This has been corrected in the manuscript.

Line 618: There is an extra space between the last word of the sentence and the period.

This has been corrected in the manuscript.

Line 647: There is an extra space between the words "sizes" and "where". This has been corrected in the manuscript.

Reviewer #3: In this manuscript, the authors investigate the impact of mid-frequency active sonar (MFAS) on the whistle production of common dolphins in Southern California. The study uses a network of drifting acoustic buoys in a controlled exposure experiment to analyze the dolphins' acoustic reactions to sonar exposure over various time frames, to understand both longer-term and immediate changes in sound production.

The manuscript is detailed and informative but can be challenging to follow due to its complexity. Simplifying the language or reorganizing the data presentation could enhance readability. The authors do a good job arguing that the main objective is to clearly understand variability in baseline and examine differences in whistle count compared to baseline. However, some aspects are still unclear and could help the readability and better understanding of the scale.

We have taken into consideration this comment and have tried to make the manuscript clearer and more concise throughout. We hope that this satisfies reviewer 3's comment.

To better grasp the scope of the study, it would be helpful to know: How much total recording hours were collected? How much was actually used in the analysis? Up to 30 minutes of acoustic data per CEE was used in the baseline vocal activity (10-minute pre-exposure, 10-minute exposure, and 10-minute post-exposure periods) and 20 minutes of recordings per CEE was used in the response analysis (10-minute pre-exposure and 10-minute pre-exposure periods).

Due to the nature of working with dynamic groups of free-ranging dolphins, the amount of additional recording before or after the actual CEE is highly variable (from just a few minutes before, to maybe 20 minutes or more after the CEE ended if it the animals moved a lot and the boat had to transit further back to pick up the buoy). Additionally, because of what we know about transmission loss, we used the 1600 m cut off considering a focal group within the range of the recordings; we may have had underwater recordings during the CEE time, or outside the nominal 30-minute CEE, but when the animals were 2+ km away those recordings were not considered usable. Because of this, we just analyzed up to the 30 minutes of the actual CEE, and only recordings from when the animals were within 1600 m of the recorder.

To address the suggestion for better grasping the scope, we added the following text to line 233-244:

"After accounting for this distance cut off, 9.25 total hours of recordings remained and were used in subsequent analysis."

Was the use of WMD validated with manually labeled data? AND Although automated tools have gotten better, they still often bring a large amount of errors compared to manual labeling which is still recommended depending on the task. The validity of the results would be improved if the authors could use a subset of their data for manual analysis as a reliability measure of the software approach. We appreciate these two comments and have combined our response here as they are closely related. We acknowledge that automated tools are imperfect and ideally would benefit from systematic manual review and validation. Our initial approach for this project did include manual review of all whistles, but we quickly realized this was not a feasible approach with the amount of data and very large numbers of whistles that we recorded. We had three analysts go through and count individual whistles from a very small portion of these same recordings and found large variability in each analyst's manual assessment. The recordings often contain overlapping and/or 10s of whistles per second, which made accurate counts unreliable. While automated approaches have the same difficulties with overlapping whistles and periods of dense whistling, we opted to use an automated approach instead to remove some of the subjectiveness and biases introduced by different analyst. Our idea is that although an automated approach is imperfect, it is consistently imperfect within a 30-minute CEE, where recording conditions are similar. The text under the header "Quantifying whistle production and variability" aims to justify this approach within the text. To try to further clarify, we changed the term 'whistle counts' to 'whistle detections' throughout the body of the manuscript, and added the following to this section:

"A qualitative assessment of detector performance within each CEE ensured that variation in whistle detections accurately reflected variation in whistle activity observed in the spectrograms."

We qualitatively reviewed the WMD outputs to ensure we were getting valid results and that the observed counts reflected what we saw in the spectrograms. We observed that the WMDtends to fragment whistles that a human would likely consider one whistle, and its performance decreases as whistling increases. Any potential bias from this increased variance in performance with increased whistle counts is accounted for in the covariance matrix of the modeling, where we allowed variance to differ by overall whistle count. False positives were rare and occurred in the form of harmonics of the projected sonar signal or were from an unknown linear noise of some sort that occasionally occurred on one of the CEEs; we manually removed these false positives.

The abstract effectively summarizes a lot of information but could be enhanced by a clearer statement of the main findings beyond "exhibited an acute and dramatic change in acoustic behavior in the 5-seconds following exposure to experimental" Is the metrics only a count of whistle per overlapping windows?

We have reworded the abstract to make the findings of the study clearer.

L.157 - To what extent are the animals already accustomed to the signals. For how long? How many generations? What differences in dispersion, sample rate, etc, between actual MFAS pings and experimental conditions could affect the results?

Common dolphin habitat overlaps with the Southern California Range Complex, which is frequently used by the US Navy as the site of MFAS training exercises. Active sonar of some type, including the most powerful MFAS systems, is used in this area daily, often multiple times a day. How many years this has occurred is not information that is publicly available. The exact timing and repetition of sonar produced in this area is unknown, but presumably, these animals have been exposed to MFAS multiple times throughout their lives (lifespan ~ 30 years). The playback stimuli that we used are categorically very similar (with respect to timing – once every 25 seconds) to certain Navy sources (i.e., helo-dipping sonar). The source itself and the positioning of the source boat relative to the animals during our experiments were designed to mimic the received levels animals are likely exposed to during actual helo-dipping training exercises.

L.180 - Regarding the use of drones for the experiment, specific details such as the type of drones, their number, operational height, and potential disturbances (visual or sonic) at the water level would be valuable.

Thank you for this suggestion. We have added the following details to the text to address this point: "The animals' location was known from an associated octocopter drone flight (APO-42, Aerial Imaging Solutions) that utilized a micro 4/3 digital camera (Olympus E-PM2) and 25 mm lense (Olympus M. Zuiko F1.8) mounted to a gimbal. The octocopter flew at approximately 60 m directly above the dolphins to provide sufficient pixel resolution while also decreasing the potential for disturbance."

L.180-190 - Good methodology observation

Thank you.

L.227 - More clarification needed

We hope that the above text concerning the details of the octocopter is sufficient to address this point.

L.260 - Good methodological point Thank you

L.270: Why use different recording hardware? Any baseline to address differences in recordings?

Different recording hardware was used because of cost/available resources over the course of this study. In the first years of this work, we had access to 2 SNAP recorders and 1 SoundTrap. In the time between the two field years, we were able to acquire two additional SoundTraps, which we found to be more reliable and easier to use in the field than the SNAPS. We qualitatively assessed the quality of the recordings (electronic noise, frequency response) and didn't observe any noticeable differences that we felt limited us from being able to use data from both recorder types. We standardized the Pamguard analysis approach to account for the differences in sample rate, and the detection threshold is based on SNR, so differences in system sensitivity are not an issue.

L.282: More clarification needed

Lines 281-208 of the original submitted manuscript read: "Whistles were exported from PAMGuard using the PAMGuard MATLAB tools

(https://github.com/PAMGuard/PAMGuardMatlab) and R package `PAMPal` (40). MFAS harmonics were removed, and whistles were quantified at 1-second resolution." We are unsure what more clarification is needed here, however we reworded and added a few additional words to try to improve clarity. It now reads "Detected whistles were automatically exported from the PAMGuard detection database using the PAMGuard MATLAB tools (https://github.com/PAMGuard/PAMGuardMatlab). Annotated MFAS harmonics were removed using R package `PAMmisc` in R version 4.3.1 [33,34]. Whistles were quantified at 1-s resolution; because whistles are often longer than 1 s in duration, the total number of whistles starting within a 1-s bin was counted, providing a metric for whistle activity as whistles detections per second." We hope this is sufficient to address the reviewers needs.

Fig 1: It would be beneficial to add scale information to the figure. This schematic is not drawn to scale. Instead, we attempted to highlight the configuration and experimental design used during playback experiments. Therefore, we have left out a scale bar from this figure and have added the sentence "This schematic is not drawn to scale" to the figure caption. (Lines 211-213).

L.577 - The lack of elevation in whistle count during the 1.6 s signal broadcast is intriguing. Further explanations on this observation and its implications would be insightful. Was the sonar frequency removed from the recorded audio? Extend on the possible use of full duplex vs single duplex for future experiments.

We certainly agree that the lack of whistles present during the 1.6s sonar signal is interesting, and we present some possible explanations in the discussion. For example, lines 572-581 read:

"The lack of whistle production during sonar transmission may be a tactic for reducing acoustic interference and masking, which has been shown to impact the detection, discrimination, and localization of relevant signals [41]. If the signal is predictable (as in our experiment), then animals should be able to adjust the timing of sound production to limit communication to periods in which noise is reduced [e.g., 41-44]. The ability of dolphins to learn the timing of intermittent noise has previously been demonstrated by Finneran et al., 2023 [41], who showed that individuals can modify their hearing sensitivity before the onset of predictably timed impulses, presumably to mitigate adverse auditory impacts."

Given that we didn't explicitly test this phenomenon, we have refrained from elaborating more on this topic.

We only detected whistles between 5-20 kHz, which excluded the frequency bands of the sonar signal itself. Further, we manually removed any harmonics from the sonar between 5-20 kHz that were detected incorrectly as whistles (this is already mentioned in the methods). We are a little unclear about the reviewer's question regarding "full

	duplex versus single duplex for future experiments," however I believe that we addressed this comment above.
	L.590 - Interesting hypothesis, how could this be tested in the future? We agree that this is an interesting point, although it would be difficult to test using the acoustic data alone. We have added the following sentence to expand upon this idea and how it is currently being explored by our research group: "In these cases, there are often a few key individuals that catalyze the collective behavior of the rest of the group. While it would be difficult to evaluate this process using acoustic data alone, concurrent video data collected from the associated drone flights is currently being evaluated to explore the spatial movement patterns of the group and identify those individuals that successfully initiate changes in group movement."
	L.607 - This point warrants earlier discussion in the manuscript for better context. Text
	We did mention that the animals tested in this study occur in Navy operational areas in the methods section.
	L.618 - Extra space before comma.
	This has been resolved.
	How do the two species compare in terms of vocal reactions?
	Due to the relatively small sample size, differences in species response were not quantitatively tested. Anecdotally, one of the three MFAS experiments that were conducted with D. d. delphis showed a change in whistle production relative to baseline at the 5-second scale, and the remaining two experiments did not show a response. While interesting, this is inconclusive and deserves further investigation.
Additional Information:	
Question	Response
Financial Disclosure	Yes
Enter a financial disclosure statement that describes the sources of funding for the work included in this submission. Review the <u>submission guidelines</u> for detailed requirements. View published research articles from <u>PLOS ONE</u> for specific examples.	
This statement is required for submission and will appear in the published article if	
the submission is accepted. Please make sure it is accurate.	

 Funded studies Enter a statement with the following details: Initials of the authors who received each award Grant numbers awarded to each author The full name of each funder URL of each funder website Did the sponsors or funders play any role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript? 	
Did you receive funding for this work?	
Please add funding details. as follow-up to " Financial Disclosure Enter a financial disclosure statement that describes the sources of funding for the work included in this submission. Review the <u>submission guidelines</u> for detailed requirements. View published research articles from <u>PLOS ONE</u> for specific examples.	Funding for this project was provided by the U.S. Navy's Office of Naval Research (Award Numbers N000141713132, N0001418IP-00021, N000141712887, N000141912572) The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
This statement is required for submission and will appear in the published article if the submission is accepted. Please make sure it is accurate.	
 Funded studies Enter a statement with the following details: Initials of the authors who received each award Grant numbers awarded to each author The full name of each funder URL of each funder website Did the sponsors or funders play any role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript? 	
Did you receive funding for this work?"	
Please select the country of your main research funder (please select carefully as in some cases this is used in fee calculation).	UNITED STATES - US

	T
as follow-up to "Financial Disclosure	
Enter a financial disclosure statement that describes the sources of funding for the work included in this submission. Review the <u>submission guidelines</u> for detailed requirements. View published research articles from <u>PLOS ONE</u> for specific examples.	
This statement is required for submission and will appear in the published article if the submission is accepted. Please make sure it is accurate.	
 Funded studies Enter a statement with the following details: Initials of the authors who received each award Grant numbers awarded to each author The full name of each funder URL of each funder website Did the sponsors or funders play any role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript? 	
Did you receive funding for this work?"	
Competing Interests	The authors have declared that no competing interests exist.
Use the instructions below to enter a competing interest statement for this submission. On behalf of all authors, disclose any <u>competing interests</u> that could be perceived to bias this work—acknowledging all financial support and any other relevant financial or non-financial competing interests.	
This statement is required for submission and will appear in the published article if the submission is accepted. Please make sure it is accurate and that any funding sources listed in your Funding Information later in the submission form are also declared in your Financial Disclosure statement.	

View published research articles from <u>PLOS ONE</u> for specific examples.	
NO authors have competing interests	
Enter: The authors have declared that no competing interests exist.	
Authors with competing interests	
Enter competing interest details beginning with this statement:	
I have read the journal's policy and the authors of this manuscript have the following competing interests: [insert competing interests here]	
* typeset	
Ethics Statement	Animal observations, octocopter flights over dolphins, close approaches, and CEEs
Enter an ethics statement for this submission. This statement is required if the study involved:	were conducted under NMFS permits 19116 and 19091. Additionally, all activities reported in this study were reviewed and approved by the Institutional Animal Care and Use Committee (IACUC Protocol No: CRC-2021-AUP-06, CRC-2021-AUP-08).
 Human participants Human specimens or tissue Vertebrate animals or cephalopods Vertebrate embryos or tissues Field research 	
Write "N/A" if the submission does not require an ethics statement.	
General guidance is provided below. Consult the <u>submission guidelines</u> for detailed instructions. Make sure that all information entered here is included in the	

Format for specific study types

Human Subject Research (involving human participants and/or tissue)

- Give the name of the institutional review board or ethics committee that approved the study
- Include the approval number and/or a statement indicating approval of this research
- Indicate the form of consent obtained (written/oral) or the reason that consent was not obtained (e.g. the data were analyzed anonymously)

Animal Research (involving vertebrate

animals, embryos or tissues)

- Provide the name of the Institutional Animal Care and Use Committee (IACUC) or other relevant ethics board that reviewed the study protocol, and indicate whether they approved this research or granted a formal waiver of ethical approval
- Include an approval number if one was obtained
- If the study involved *non-human primates*, add *additional details* about animal welfare and steps taken to ameliorate suffering
- If anesthesia, euthanasia, or any kind of animal sacrifice is part of the study, include briefly which substances and/or methods were applied

Field Research

Include the following details if this study involves the collection of plant, animal, or other materials from a natural setting:

- Field permit number
- Name of the institution or relevant body that granted permission

Data Availability

Authors are required to make all data underlying the findings described fully available, without restriction, and from the time of publication. PLOS allows rare exceptions to address legal and ethical concerns. See the <u>PLOS Data Policy</u> and FAQ for detailed information.

Yes - all data are fully available without restriction

Data Availability Statement describing nere the data can be found is required a abmission. Your answers to this question onstitute the Data Availability Statement ad will be published in the article , if eccepted.
nportant: Stating 'data available on request om the author' is not sufficient. If your data re only available upon request, select 'No' fo e first question and explain your exceptiona tuation in the text box.
o the authors confirm that all data iderlying the findings described in their anuscript are fully available without striction?
escribe where the data may be found in Il sentences. If you are copying our ample text, replace any instances of XX th the appropriate details.
If the data are held or will be held in a public repository , include URLs, accession numbers or DOIs. If this information will only be available after acceptance, indicate this by ticking the box below. For example: <i>All XXX files</i> <i>are available from the XXX database</i> (accession number(s) XXX, XXX.). If the data are all contained within the manuscript and/or Supporting Information files , enter the following: <i>All relevant data are within the</i> <i>manuscript and its Supporting</i> <i>Information files</i> . If neither of these applies but you are able to provide details of access elsewhere , with or without limitations, please do so. For example: <i>Data cannot be shared publicly becaus</i> <i>of [XXX]. Data are available from the</i> <i>XXX Institutional Data Access / Ethics</i> <i>Committee (contact via XXX) for</i>
researchers who meet the criteria for access to confidential data. The data underlying the results presented in the study are available from (include the name of the third part

and contact information or URL). This text is appropriate if the data are owned by a third party and authors do not have permission to share the data.
peset
Additional data availability information:

1	Common dolphin whistle responses to experimental mid-frequency sonar
2	
3	Caroline Casey ^{a,b} ¶, Selene Fregosi ^a ¶, Julie N. Oswald ^c , Vincent M. Janik ^c , Fleur Visser ^{d,e} ,
4	Brandon Southall ^{a,b}
5	
6	^a Southall Environmental Associates, Inc., Aptos, California, United States of America
7	^b Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, California,
8	United States of America
9	^c Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St.
10	Andrews, St. Andrews, United Kingdom
11	^d Kelp Marine Research, Hoorn, the Netherlands
12	^e Department of Coastal Systems, Royal Netherlands Institute for Sea Research, Den Burg, Texel,
13	the Netherlands
14	
15	*Corresponding author
16	E-mail: <u>cbcasey@ucsc.edu</u>
17	
18	
19	[¶] CC and SF are Joint Senior Authors of this work.

20 Abstract

21 Oceanic delphinids around naval operations are regularly exposed to intense military 22 sonar broadcast within the frequency range of their hearing. However, empirically measuring the 23 impact of sonar on the behavior of highly social, free-ranging dolphins is challenging. 24 Additionally, baseline variability or the frequency of vocal state-switching among social oceanic 25 dolphins during undisturbed conditions is lacking, making it difficult to attribute changes in 26 vocal behavior to anthropogenic disturbance. Using a network of drifting acoustic buoys in 27 controlled exposure experiments, we investigated the effects of mid-frequency (3-4 kHz) active 28 sonar (MFAS) on whistle production in short-beaked (Delphinus delphis delphis) and long-29 beaked common dolphins (Delphinus delphis bairdii) in southern California. Given the 30 complexity of acoustic behavior exhibited by these group-living animals, we conducted our 31 response analysis over varying temporal windows (10 min - 5 s) to describe both longer-term 32 and instantaneous changes in sound production. We found that common dolphins exhibited acute 33 and pronounced changes in whistle rate in the 5 s following exposure to simulated Navy MFAS. 34 This response was sustained throughout sequential MFAS exposures within experiments 35 simulating operational conditions, suggesting that dolphins may not habituate to this disturbance. 36 These results indicate that common dolphins exhibit brief yet clearly detectable acoustic 37 responses to MFAS. They also highlight how variable temporal analysis windows – tuned to key 38 aspects of baseline vocal behavior as well as experimental parameters related to MFAS exposure 39 - enable the detection of behavioral responses. We suggest future work with oceanic delphinids 40 explore baseline vocal rates a-priori and use information on the rate of change in vocal behavior 41 to inform the analysis time window over which behavioral responses are measured.

43 Introduction

44 Sound production and reception play a critical role in the lives of cetaceans, aiding in 45 important life-history events, including maintenance of social relationships, coordination of 46 group movement, foraging, and evasion of predators [1]. Consequently, substantial effort has 47 been directed toward describing cetacean acoustic behavior [2,3] and evaluating how it is 48 impacted by human-generated disturbance [4-8]. Many sources of anthropogenic noise pollution 49 (e.g., vessel noise, oil and gas exploration, renewable energy, coastal construction and 50 maintenance, fisheries and aquaculture, and military activity) can have varying short and long-51 term impacts on marine mammal behavior and health [4,9-11]. Concentrated research efforts to 52 characterize these impacts have led to the systematic development of acoustic exposure criteria, 53 informing and improving effective management strategies for regulators and industries (for 54 reviews on auditory criteria, see 12). Such assessments have also highlighted species and noise 55 exposure contexts for which information is sparse or unavailable. 56 57 Among cetaceans, oceanic delphinids represent an essential and logistically challenging

58 group to evaluate the impact of anthropogenic noise on vocal behavior. These animals are highly 59 soniferous, abundant, and often extremely gregarious (pods of > 500 individuals are common for 60 some species). Sound production has been demonstrated to play a vital role in the maintenance of 61 social relationships and cohesion among group members [2,3]. Oceanic delphinids are 62 ubiquitous around some U.S. Navy operational areas where mid-frequency active sonar (MFAS; 63 1-10 kHz) is commonly used for submarine detection in training exercises, resulting in 64 associated large numbers of sonar exposures for these federally protected species. Some of the 65 most powerful MFAS systems (e.g., AN/SQS-53C) emit repeated pings with fundamental

frequencies in the 3-4 kHz range, ping lengths of approximately 1-3 s, and nominal source levels as high as 235 dB re 1 μPa at 1 m root-mean-square (RMS) that may be transmitted for several minutes to hours at high duty cycles (more than 1 ping/min) [13]. Aside from the elevated background noise and potential disturbance that may result from these training exercises [*e.g.*, 14], MFAS signals overlap with the frequencies that oceanic dolphins commonly rely on for social sound (whistle) production. Delphinid whistles are narrowband tonal sounds with most acoustic energy concentrated below 20 kHz [15].

73

74 While MFAS has been linked to mass stranding events of cetaceans [13,16] and its effect 75 on cetaceans has been experimentally evaluated in a handful of species (for a recent review, see 76 [17]), the impact of sonar on the acoustic behavior of oceanic delphinids have not been 77 systematically explored. This is mainly due to the logistical challenges of applying previously 78 developed methods used in other behavioral response studies of individual animals to large 79 aggregations of dolphins. Much of the prior research on cetacean behavioral responses to noise 80 has capitalized on using suction-cup-attached motion-sensing and acoustic recording tags to 81 characterize responses following controlled exposure to MFAS [e.g., 18-20]. Unfortunately, such 82 tags are challenging to deploy and are easily shed by small dolphins due to the tag size relative to 83 the smaller body surface, high drag due to fast swimming speeds, and frequent physical social 84 contact. Additionally, oceanic delphinids commonly occur in large groups that display 85 remarkable coordination, making the collective vocal behavior of the group perhaps a more 86 appropriate focus of analysis [21]. Opportunistic passive acoustic studies relying on large, cabled 87 hydrophone arrays have been used to quantify changes in vocal activity and thus act as a proxy 88 for the presence or absence of multiple animals before, during, and after exposure to MFAS

89 [22,23). Such experiments are valuable but require extensive, high-cost moored hydrophone90 arrays with restricted spatial coverage.

91

92 Previous studies on acoustic responses of oceanic dolphins to Navy sonar have observed 93 shifting specific frequency components of whistle contours, increasing or decreasing calling rate, 94 increasing call amplitude, and even mimicry of MFAS elements [14, 23-25]. For example, 95 tagged killer whales (Orcinus orca) adjust the high-frequency component of their whistles during 96 sonar exposure and increase the number and amplitude of their calls following each ping [24]. 97 False killer whales (*Pseudorca crassidens*) appear to increase their whistle rate and produce 98 more MFAS-like whistles after exposure to simulated sonar [25]. 99 100 One opportunistic study provided initial insights into the behavioral responses of some 101 social oceanic delphinids to MFAS. Bottlenose dolphins (Tursiops truncatus), common dolphins 102 (Delphinus sp.), Pacific white-sided dolphins (Lagenorhynchus obliquidens), and Risso's 103 dolphins (*Grampus griseus*) incidentally exposed to MFAS showed a cessation of vocalizations, 104 an increase in the intensity of vocalizations, or a combination of both [14]. Of all delphinid 105 species, common dolphins displayed the broadest range of responses, including changing their 106 behavioral state or direction of travel when sonar stopped, increasing the intensity of 107 vocalizations when sonar began, vocalizing very little or not at all during sonar exposure, or a 108 combination of these observations [14]. These results are consistent with a more recent 109 opportunistic evaluation of delphinid responses to an underwater detonation, which showed that 110 whistle rate, complexity, and frequency content varied in response to the explosive event [26]. 111 Depending upon the frequency, intensity, and consistency of these noise exposures, such

behavioral changes could result in physiological consequences that impact overall population
health [27]. Unfortunately, information on baseline variability and the frequency of vocal stateswitching during undisturbed conditions is lacking among free-ranging, social, oceanic
delphinids, making it challenging to interpret the responses observed. While opportunistic
studies of delphinid acoustic responses to sonar are insightful, a detailed assessment under
controlled experimental conditions is needed to understand the extent to which MFAS impacts
oceanic delphinids.

119

120 Quantifying vocal behavior in these taxa is complicated by the fact that dolphin acoustic 121 behavior is dynamic, variable, and influenced by a myriad of social and environmental factors 122 [28]. Acoustic behavior and how it changes in response to disturbance must be measured across 123 some predetermined time interval. In previous cetacean behavioral response studies using a 124 conventional controlled exposure experimental (CEE) design, this temporal window was often 125 dictated by logistical limitations of the technology being used (e.g., battery power of tags, the 126 feasibility of continuous behavioral observations, etc.), or designed to match the duration of 127 anthropogenic noise source being evaluated. However, averaging vocal behavior over long time 128 windows may result in missing instantaneous or shorter duration responses at the onset of 129 exposure or at scales more biologically meaningful to the individuals exposed. One way to 130 address this is to examine acoustic metrics computed over various time windows to determine if 131 and when we can attribute a change in vocal behavior to a known, controlled disturbance. 132

For this study, different broad and fine-scale analytical approaches were used to investigate
the effects of experimental MFAS on whistle production in short-beaked (*Delphinus delphis*

135	delphis) and long-beaked common dolphins (Delphinus delphis bairdii) in southern
136	California. By assessing group-level vocal behavior across different time scales, we aimed to:
137	1. Describe the variability in baseline vocal behavior of common dolphin aggregations
138	during control conditions.
139	2. Compare vocal responses detected during a controlled exposure to MFAS across broad
140	and fine temporal scales.
141	Given the need to establish sampling regimes that can be applied and compared across studies,
142	our objective is to provide an informative framework for assessing the complex acoustic
143	behavior exhibited by group-living species. We highlight how using different-sized temporal
144	windows - tuned to key aspects of baseline vocal behavior as well as experimental parameters
145	related to MFAS exposure – impacts the detection of behavioral responses.
146	

147 Materials and methods

148 CEEs were conducted with two subspecies of common dolphins. This study was part of a 149 broader effort to quantify group-level responsiveness of oceanic delphinids to military sonar 150 using CEEs around Santa Catalina Island, located off the coast of southern California, USA. 151 Since they regularly occur in mixed groups, we pooled data for the two subspecies to describe 152 baseline vocal data and included subspecies as a potential explanatory variable in our models. 153 The project integrated multiple data streams, including shore-based tracking of dolphin pods, 154 passive acoustics to record vocal activity, and photogrammetry to measure fine-scale behavior 155 [29]. This work was conducted between 2017-2021. We chose our study area because it lies near 156 the Southern California Offshore Range (SCORE) – a tactical training area for the U.S. Navy

Pacific Fleet located off the west side of San Clemente Island – where animals regularly
encounter the types of signals we used in our experiment.

159

160 CEEs comprised three discrete phases: pre-exposure (baseline), exposure using 161 intermittent simulated MFAS signals, and post-exposure. In control trials, the equipment was 162 lowered into the water from the exposure boat, but no MFAS signals were broadcast. For details 163 about the experimental source and source characteristics - including calculations of 164 received levels – see Durban et al. 2022 [29]. Each experimental phase was 10 min in duration. 165 During exposure phases, MFAS 'pings' of 1.6 s in duration consisting of three tonal and 166 frequency-modulated elements between 3.5-4 kHz were transmitted. Pings were emitted at a 167 broadband source level of 212 dB re 1µPa RMS every 25 s, which is similar in repetition rate, 168 duty cycle, and the absence of a ramped-up source level (as used in some previous MFAS CEEs) 169 to certain active Navy MFAS systems (e.g., helicopter-dipped sonar systems). Up to 24 total 170 pings were emitted per 10-min exposure phase, provided no permit-mandated shutdowns were 171 implemented for animals within 200 m of the active sound source (this happened in only one 172 CEE). The sound source was positioned relative to focal animal groups using sound propagation 173 modeling to ensure received levels at focal animals were no greater than 140-160 dB re 1μ Pa 174 RMS.

175

For every CEE, subspecies identity (based on differences in genetics, morphology, and
pigmentation) was determined using aerial images obtained from drone footage, genetic
sequencing from biopsy samples, and visual observation. Additionally, group size was
characterized by experienced shore-based observers using binoculars or a binocular scope

180	located at elevated locations (~70 m), enabling a broad overview of the research area (up to 20
181	km from shore). Shore-based tracking of animals could be conducted for groups up to 7 km from
182	shore. Focal follows included estimating low, best, and high group size, the number of subgroups
183	(defined as all individuals closer to each other than other individuals in the area), the range of
184	inter-individual spacings within subgroups, and distances between subgroups. These
185	observations were taken continuously throughout the experiment at 2-min intervals. For a
186	complete description of these methods, see [29,30]

188 Acoustic data collection and processing

189 Passive acoustic monitoring

190 Passive acoustic recordings were obtained from each target group of dolphins using three 191 drifting, remote-deployed acoustic recording units. Up to three separate recording units were 192 tactically positioned and recovered from a single small (~6 m) rigid-hull inflatable boat, with the 193 objective of placing one recording unit within 500 m of the predicted trajectory of the dolphins 194 during each CEE phase (Fig 1). Each recording unit consisted of a surface buoy and flag with an 195 underwater recorder. The recorder was either a SoundTrap ST300 (Ocean Instruments NZ, 196 Auckland, New Zealand) or a SNAP Recorder (Loggerhead Instruments, Sarasota, FL, USA). 197 Both recorded via a single omnidirectional calibrated hydrophone (SoundTrap: integrated 198 hydrophone, frequency response $0.02-60 \text{ kHz} \pm 3 \text{ dB}$ re 1μ Pa, end-to-end sensitivity -178 dB re 199 1μ Pa/V; SNAP: HTI-96-MIN hydrophone, frequency response 1.0-20 kHz \pm 3 dB re 1μ Pa, end-200 to-end sensitivity -164 dB re 1μ Pa/V,) which was suspended by a shock-mounted cable at a 201 depth of 10 m. All recording units had a Global Positional System (GPS) tracking device (Trace, 202 SPOT LLC, Chantilly, VA, USA) that recorded the location of the instrument once every min

(Fig 1). Five-min WAV files were continuously recorded at a 96 kHz sampling rate with a 16-bit
resolution (SoundTrap) or a 44.1 kHz sampling rate with a 16-bit resolution (SNAP).

205

206 Fig 1. A schematic representation of the placement of acoustic recorders (see inset for 207 floating acoustic recording unit) relative to the track of the focal group of dolphins. A single 208 buoy and associated hydrophone were placed within 500 m of the animals during the pre-209 exposure, exposure, and post-exposure period. The sound source is approximately 1 km from the 210 dolphins at the onset of the exposure period. Note that the source vessel was idling in neutral and 211 was not moving throughout the duration of the exposure period. The dashed line with associated 212 arrows represents the movement path of the focal group. The shore station monitoring the group 213 was positioned on land and is denoted by the theodolite symbol. The map was inspired by 214 images from the NASA Earth Observatory (public domain) and was not drawn to scale (for 215 illustrative purposes only).

216

217 Given the dolphins' frequently unpredictable course, the relative proximity of each 218 hydrophone to the animals was determined post-hoc to evaluate which PAM recording unit was 219 closest to the focal group. The animals' location was known from an associated octocopter drone 220 flight (APO-42, Aerial Imaging Solutions) that utilized a micro 4/3 digital camera (Olympus E-221 PM2) and 25 mm lens (Olympus M. Zuiko F1.8) mounted to a gimbal. The octocopter flew at 222 approximately 60 m directly above the dolphins to provide sufficient pixel resolution while 223 decreasing the potential for disturbance [see 29 for details]. The relative distances (in meters) 224 between the focal group (from the drone's GPS) and each recorder (from their flag-mounted GPS 225 units) were estimated for every min of the 30-min experiment using the Haversine formula and

226 linear interpolation in a custom MATLAB script (Mathworks, Natick, MA, USA, Fig 2). 227 Recordings from the buoy closest to the focal group at 1-min intervals were used for all 228 subsequent analyses. Any recordings made when a recorder exceeded 1.6 km from the focal 229 group (even if the recorder was the closest available) were excluded. This threshold was selected 230 based on a previous assessment of detection ranges of playbacks of odontocete whistles (10-20 231 kHz) by bottom-mounted hydrophones in southern California, which demonstrated a 95% 232 probability of detection of a 135 dB re 1 µPa dolphin whistle at 1.6 km with an SNR of 2.2 dB re 233 1μ Pa [31]. This assessment was supported by the drop-off in whistle amplitude observed in the 234 spectrograms (*post-hoc*) when any buoy surpassed 1.6-1.8 km distance from the focal group (Fig 235 2). After accounting for this distance cut-off, 9.25 total hours of recordings remained and were 236 used in subsequent analysis.

237

238 Fig 2. Spectrograms of each of the three recorders strategically placed on the track line of a 239 moving group of dolphins and associated whistle detections from the buoy closest to the 240 animals at each minute. The solid white line represents the distance between the recorder and 241 the drone centered over the focal group (units on the right y-axis), the red dashed vertical lines 242 denote the experimental period, and the horizontal white dashed line marks the 1.6 km threshold. 243 Estimates of the relative distance between the focal group and each recorder were assessed every 244 min of the 30-min experiment. The bottom panel shows the number of whistles detected on the 245 closest recorder using the PAMGuard Whistle and Moan Detector. The blue dashed lines and 246 associated blue numbers indicate times when the closest buoy switched, and which buoy was 247 closest. The grey area denotes where whistle detections were excluded due to the recorder 248 distance exceeding 1.6 km.

251 252

Quantifying whistle production and variability 250

While common dolphins are known to emit buzzes, echolocation clicks, and whistles, we focused our efforts on characterizing whistle production since they are the critical signal for 253 long-distance communication and play a significant role in group cohesion and coordination [2]. 254 Extraction of whole whistle contours in high background noise with overlapping whistles is 255 exceptionally challenging and results in high rates of missed detections, irrespective of 256 methodology. To create a dataset in which error rates were kept constant across different 257 experimental phases, we used the Whistle and Moan Detector (WMD) module in PAMGuard (v 258 2.01.05)[32]. The WMD deals with uncertainties by only detecting parts of whistles that clearly 259 stand out above noise using standardized settings across extractions. It is important to note that 260 this often leads to a fragmentation of whistles, with one whistle being split into several 261 independent sections. Thus, whistle detections reported here are not comparable to ones obtained 262 with whole whistle extraction in other studies. However, for our assessment of changes in vocal 263 activity between different experimental phases, it was more important to keep error rates 264 constant to allow for relative comparisons. A qualitative assessment of detector performance 265 within each CEE ensured that variation in whistle detections accurately reflected variation in 266 whistle activity observed in the spectrograms.

267

268 The WMD operates on the spectrogram output of the PAMGuard Fast Fourier Transform 269 (FFT) Engine module. We optimized settings for the FFT Engine to provide comparable 270 frequency and temporal resolution of the calculated spectrograms across the two recorders and 271 sampling rates. For the SoundTrap recorders, which had a sampling rate of 96 kHz, the FFT

272 Engine module computed spectrograms with an FFT length of 1024, hop size of 512, and a Hann 273 window. This resulted in a frequency resolution of 93.75 Hz and time resolution of 10.67 ms. For 274 the SNAP recorders, which had a sampling rate of 44.1 kHz, spectrograms were calculated with 275 a Hann window, FFT length 512, and hop size 256, resulting in a frequency resolution of 86.13 Hz and time resolution of 11.61 ms. The WMD was set to detect whistles between 5 kHz and 20 276 277 kHz to exclude detection of the tonal sounds from the simulated mid-frequency sonar source 278 (below 5 kHz) and to standardize the upper detection limit across the two sampling rates and 279 avoid any possible edge effects near the Nyquist frequency of the lower sampling rate. The 280 detection threshold was set at 6.0 dB re 1µPa. Full WMD settings are in the S1 Fig. While the 281 fundamental sonar tonals were excluded by the 5 kHz high-pass cut-off for detections, the high 282 source level of the simulated MFAS resulted in the presence of harmonics in some of the 283 recordings. All harmonics were manually annotated in PAMGuard Viewer using the 284 Spectrogram Annotation module for later removal.

285

286 Detected whistles were automatically exported from the PAMGuard detection database

287 using PAMGuard MATLAB tools (<u>https://github.com/PAMGuard/PAMGuardMatlab</u>).

Annotated MFAS harmonics were removed using R package `PAMmisc` in R version 4.3.1

289 [33,34]. Whistles were quantified at 1-s resolution; because whistles were often longer than 1 s

in duration, the total number of whistles starting within a 1-s bin was counted, providing a metric

291 for whistle activity as whistles detections per second. For brevity, this is referred to as whistle

292 count throughout the remainder of this manuscript.

293

294 Characterization of baseline vocal behavior

295 **Overall whistle count**

We calculated the mean and median whistle count per second for the entire 30-min experiment for each control CEE to assess common dolphin vocal behavior under control conditions. These data were evaluated with reference to group size estimates collected by experienced shore-based observers.

300

301 Changepoint analysis

302 We applied a changepoint analytical approach to the control CEE data collected for both 303 common dolphin subspecies to describe the natural variability in vocal behavior during control 304 conditions. Change point detection is used to pinpoint times when the probability distribution of 305 a time series changes (*i.e.*, vocal state changes). The aim is to identify times when either the 306 mean or variance deviates from the expected trends in the dataset and estimate the number and 307 position of all changepoints. Effectively, this approach detects points in time when a significant 308 change in whistle count occurs. First, a 5-s smoothing window was applied to the raw 1-s whistle 309 count data. Then, changepoints in both mean whistle count and whistle count variance were 310 detected using the 'changepoint' package in R version 2.2.4 [34-35]. The "BinSeg" (Binary 311 Segmentation) algorithm was used. This provided the number and locations of all state changes 312 in the mean and the variance of whistle count over the 30-min sampling period.

313

314 Assessing the impact of disturbance on vocal behavior

Using broad and fine-scale time windows, we employed a hierarchical approach to characterizing the types of vocal responses that might be detected during controlled exposure to MFAS (Fig 3). All statistical analyses were carried out using R version 4.3.1 [34].

319 Fig 3. Flowchart of methods implemented to assess changes in common dolphin vocal 320 behavior during controlled exposure to MFAS. Methods include pre-processing of acoustic 321 data and baseline vocal behavior analysis, as well as a hierarchical assessment of disturbance on 322 vocal behavior at three temporal scales. 323 Difference in changepoints by period across CEEs 324 325 We conducted a changepoint analysis on all CEEs (both controls and MFAS) to evaluate 326 whether common dolphins change the frequency of vocal state switching as a result of exposure 327 to MFAS. We used the same general method described above but quantified the number of 328 changepoints in the 10-min pre-exposure and 10-min exposure periods separately. Changepoints 329 were detected for both the mean and variance of the whistle count data. The difference in the 330 number of changepoints between the two periods was calculated, and an unpaired t-test was used 331 to evaluate any significant differences between controls and MFAS experiments. 332 Characterize the impact of MFAS exposure on whistle count: 10-min time 333 334 scale 335 To identify potential broad-scale changes in whistle count in response to simulated MFAS 336 exposure, we pooled and analyzed all CEEs (both controls and MFAS exposures) using a 337 Generalized Linear Mixed Model (GLMM) approach, implemented using R package 338 `glmmTMB` [36]. We modeled the absolute difference in median whistle count between the 10-339 min pre-exposure period and the 10-min exposure period (*periodDiff*) as a function of CEE type 340 (*ceeType*; either control or MFAS), a random identity variable (*ceeNum*), dolphin subspecies

341	(subSpecies), the best estimate of total group size from the shore-based observers (groupSize),
342	and the mean distance between the focal group and the closest buoy for the entire CEE
343	(buoyDistance). Using the absolute value for difference in median whistle count enabled us to
344	explore the magnitude of a potential response. We modeled the relationship using a negative
345	binomial distribution, which fit the count-type data after the transformation. Our full model was:
346	
347	$periodDiff \sim ceeType + ceeNum + subSspecies + groupSize + buoyDist$
348	
349	We used backward elimination, ΔAIC , and analysis of variance (ANOVA) to select the best
350	model.
351	
352	Characterize the impact of MFAS exposure on whistle count: 20-s time scale
353	To characterize more instantaneous changes in whistle production in response to MFAS
354	exposure, we compared dolphin whistle detections in the 20 s before and 20 s after each ping (n
355	= 24 1-s pings per 10-min experimental period, ~25 s between each ping) for both MFAS
356	experiments and controls. We selected this time window to capture sustained variation in
357	whistling behavior within a single ping cycle without overlap between cycles. Differences
358	between these two sequential time bins were calculated by subtracting the mean whistle count for
359	the first bin from the mean whistle count of the second bin (Fig 4B). The first ping started at time
360	0, the second at 25 s, and so on. Because no actual pings were present in the control experiments,
361	we calculated the change in whistle count surrounding time points placed at the same time as
362	when actual pings would have occurred during an MFAS CEE.
363	

364	Fig 4. Example plots of (A) raw whistle detections over time, (B) changes in whistle count
365	between 20-s duration sequential bins, and (C) changes in whistle count between 5-s
366	duration sequential bins for the pre-exposure, exposure, and post-exposure period within
367	one CEE. The dashed vertical red line indicates the onset of exposure, and the sequential gray
368	dashed lines represent each ping within the exposure period. Post-exposure periods were not
369	included in the modeling analysis but are presented here for reference. The grey shaded area
370	denotes where whistle detections were excluded due to the recorder distance exceeding 1.6 km.
371	
372	Like the analysis at the 10-min time scale, we used a GLMM approach (using R package
373	`glmmTMB`) to identify potential significant differences immediately following pings
374	(pingChange) in MFAS experiments compared to controls where no pings were present. In
375	addition to the previous fixed effects included at the 10-min scale (ceeType, ceeNum, subSpecies,
376	buoyDis, and groupSize), we also included median whistle count per second for the entire
377	experimental period to account for the varied baseline whistling activity across CEEs
378	(medWhist).
379	
380	$pingChange \sim ceeType + ceeNum + subspecies + groupSize + buoyDist + medWhist$
381	
382	Binned ping change data were generally normally distributed but were zero-inflated, so
383	we used a Gaussian distribution for the primary model and additionally modeled the zero
384	inflation as a function of median whistle count (medWhist). We used backward elimination,
385	Δ AIC, and analysis of variance (ANOVA) to select the best model.
386	

Characterize the impact of MFAS exposure on whistle count: 5-s time scale 387 388 We repeated the analysis conducted above but over a shorter 5-s time window to 389 investigate potential instantaneous changes immediately following pings (Fig 4C). 390 Like the above analysis, we used a GLMM approach to identify potential significant differences 391 in whistle count changes in the 5 s following compared to the 5 s before each ping (*pingChange*) 392 for MFAS experiments compared to controls. We used the same fixed effects implemented at the 393 20-s scale (ceeType, ceeNum, [subSpecies, buoyDis, and groupSize, medWhist) but also included 394 an autocorrelation structure to this analysis AR(1) to account for apparent temporal lag effects in 395 exploratory plots. 396 397 $pingChange \sim ceeType + ceeNum + subSspecies + groupSize + buoyDist + medWhist + AR(1)$ 398 399 Like the 20-s scale, binned ping change data were normally distributed and zero-inflated; a 400 Gaussian distribution was used for the conditional model and zero-inflation was modeled as a 401 function of median whistle count (*medWhist*). We used backward elimination, ΔAIC , and

403

402

404 **CEE-by-CEE analysis**

ANOVA to select the final model.

We assessed each playback individually at each time scale to better contextualize the severity and persistence of responses and whether dolphins increased or decreased their whistle behavior following sonar exposure. The methods and results for the CEE-by-CEE analysis can be found in the supplementary materials (S1 File).

409

410 **Results**

411

412 Characterization of baseline vocal behavior

413 **Basic description**

414 This analysis includes nine control experiments, each conducted on separate days. Four 415 control experiments were conducted with short-beaked common dolphins, and five were 416 conducted with long-beaked common dolphins (Table 1). This resulted in 270 mins of baseline 417 acoustic data for both subspecies (pooled). The average group size across subspecies was 190 418 individuals (45-300 animals). The dispersion of animals varied considerably within and between 419 control experiments, including small to large groups (55-300 individuals) in tight to lose 420 organization, joint (in a single group with no subgroups), or spread out over several subgroups 421 (range: 2-6) at tens to several hundreds of meters apart (range: 10-800 m). 422 423 Whistles were successfully detected across all control experimental deployments. Mean 424 (SD) and Median (IQR) whistle count per second varied between control CEEs (Table 1). In our 425 assessment of the control experiments, we found the total number of whistles varied between 426 0.3-4.6 whistles/s. Note that the inherent uncertainty error in our group size assessment for large 427 groups did not allow us to calculate accurate whistle rates/individual (see Table 1 for group size 428 estimates and whistle detections). 429

429

Table 1. Summary of each controlled exposure experiment, including controls (no sound
emitted) and MFAS (playback of mid-frequency active sonar).

1	2	0
4	Э	L

CEE ID	Subspecies	Estimated group size	Туре	RL (max)	RL (range)	Median [IQR] whistles per second	Changepoints (mean, pre- exposure)	Changepoints (mean, exposure)	Changepoints (variance, pre- exposure)	Changepoints (ariance, exposure)
2019_01	Db	260	MFAS	147 dB re 1µPa RMS	140-147 dB re 1µPa RMS	6.96 [6.39]	26	39	5	1
2019_02	Dd	350	control	n/a	n/a	4.80 [5.19]	37	29	0	5
2019_04	Db	200	control	n/a	n/a	0.25 [0.77]	2	0	4	2
2019_06	Db	45	control	n/a	n/a	0.32 [1.38]	5	0	4	9
2019_07	Db	300	MFAS	154 dB re 1µPa RMS	150-154 dB re 1µPa RMS	3.11 [3.81]	36	20	3	3
2019_08	Db	250	MFAS	142 dB re 1µPa RMS	131-142 dB re 1µPa RMS	1.50 [3.91]	30	12	4	4
2019_09	Dd	250	control	n/a	n/a	4.21 [5.38]	46	44	2	4
2019_10	Dd	30	MFAS	149 dB re 1µPa RMS	146-149 dB re 1µPa RMS	0.091 [0.38]	0	0	3	7
2021_01	Db	150	control	n/a	n/a	3.14 [4.47]	3	51	1	3
2021_02	Db	200	control	n/a	n/a	4.68 [3.89]	18	29	0	4
2021_03	Dd	150	control	n/a	n/a	0.99 [2.01]	11	0	2	0
2021_04	Db	150	control	n/a	n/a	4.66 [4.20]	27	37	4	2
2021_05	Dd	250	control	n/a	n/a	0.36 [1.87]	0	5	8	4
2021_08	Db	30	MFAS	153 dB re 1µPa RMS	145-153 dB re 1µPa RMS	14.13 [7.85]	50	49	2	4
2021_09	Db	200	MFAS	157 dB re 1µPa RMS	152-157 dB re 1µPa RMS	1.17 [2.17]	3	6	2	2
2021_10	Db	300	MFAS	159 dB re 1µPa RMS	150-159 dB re 1µPa RMS	15.34 [9.16]	42	61	3	2
2021_11	Db	10	MFAS	153 dB re 1µPa RMS	150-153 dB re 1µPa RMS	0.0029 [0.063]	0	0	0	6
2021_12	Dd	150	MFAS	152 dB re 1µPa RMS	149-152 dB re 1µPa RMS	2.85 [3.07]	7	24	4	6
2021_13	Dd	200	MFAS	147 dB re 1µPa RMS	139-147 dB re 1µPa RMS	2.21 [4.73]	2	2	9	4

434 CEE ID denotes the year and the CEE number. Subspecies abbreviations are Db for D. d. bairdii

435 and Dd for *D. d. delphis*, and the estimated group size is taken from shore observations.

436 Received sound levels (RLs) are reported by Durban et al. 2022 [29]. The median and

437 interquartile range (IQR, 25-75th percentiles) are given for the raw whistle detections per second

438 of the entire 30-min CEE. Changepoints were calculated for both the mean whistle count and the

439 variance in whistle count, separately for the pre-exposure and exposure periods. Note that

440 "exposures" in controls were quiet periods compared to sound exposure in MFAS trials.

441

442 **Baseline Changepoint Analysis**

The baseline changepoint analysis revealed that mean detected whistle counts over the
30-min sampling periods changed once every min, and variance in detected whistle counts
changed once every 3.5 min.

446

447 Assessing the impact of disturbance on whistle behavior

448 A total of 10 MFAS CEEs were conducted - seven of which included long-beaked 449 common dolphins and three of which included short-beaked common dolphins. The calculated 450 average received level across all experiments was 151 dB re 1µPa RMS (range 142-159 dB re 451 1µPa RMS, Table 1). The average group size for MFAS CEEs was 173 individuals (range 10-452 300, Table 1). For the changepoint analysis, all 10 MFAS experiments were included. However, 453 for the assessment of changes in whistle behavior across different time scales, CEE 2021_11 454 (conducted with long-beaked common dolphins) had to be excluded because the overall lack of 455 detected whistles could not be successfully modeled. Consequently, the modeling results include 456 nine controls and nine MFAS experiments.

457

458 Number of changepoints in pre-exposure vs exposure

459 Changepoint analysis was run for all control (9) and MFAS (10) experiments. The 460 number of changepoints detected in both the mean and variance of whistle count during the pre-461 exposure and exposure periods is presented in Table 1 for both controls and MFAS experiments. 462 There was no significant increase or decrease in the mean and variance of detected whistle 463 counts following MFAS exposure when compared to the natural variance present during control 464 conditions. The difference (Δ) in change points in variance of whistle detections between the pre-465 exposure and exposure period did not differ significantly between controls and MFAS CEEs
466 (controls: M = 3.1, SD = 1.4; MFAS: M = 2.5, SD = 2.3; t(17) = 0.69, p = 0.5). The same was 467 true when comparing the mean whistle count between both experimental types (controls: M =468 11.3, SD = 14.2; MFAS, M = 8.7, SD = 8.5; t(17) = 0.5, p = 0.63).

469

470 Impact of MFAS exposure on whistle count: 10-min time scale

471 Whistle detections did not change between the pre-exposure and exposure period during 472 MFAS experiments at the 10-min time scale. The preferred model was the simplest model with 473 the absolute value of the change in median whistle count as a function of only CEE type (either 474 MFAS or control). There was no significant effect of CEE type on the change in median whistle 475 detections (negative binomial GLMM, n = 18, p = 0.8). The full model (Δ AIC 5.4) indicated that 476 no proposed predictor variables (CEE type, CEE number, subspecies, buoy distance, or group 477 size) had a significant effect on the change in median whistle count between the pre-exposure 478 and exposure periods for both MFAS and control CEEs (negative binomial GLMM, n = 19: P > 479 0.05 for all variables, Table 2).

480

481 Table 2. Overview of GLMMs used at three time scales – 10-mins, 20-s, and 5-s.

	Zero-inflation			Degrees of	Dispersion	
Conditional model		Distribution	ΔΑΙϹ	freedom	(σ ^2)	
10-min scale						
$abs(periodDiff) \sim ceeType$	n/a	nbinom2	0	3	5.44	
$abs(periodDiff) \sim ceeType + (1 ceeNum)$	n/a	nbinom2	2	4	1.04	
$abs(periodDiff) \sim ceeType + (1 \mid ceeNum) + subSpecies + buoyDist + groupSize$	n/a	nbinom2	5.4	7	1.48	
20-s scale						
$pingDiff \sim ceeType + medWhist$	~medWhist	gaussian	0	6	7.1	
$pingDiff \sim ceeType$	~medWhist	gaussian	5.1	5	7.23	
$pingDiff \sim ceeType + subSpecies + groupSize + buoyDist + medWhist$	~medWhist	gaussian	5.3	9	7.09	

$pingDiff \sim ceeType + (1 ceeNum)$	~medWhist	gaussian	7.1	6	7.23
$pingDiff \sim ceeType$	none	gaussian	28.3	3	6.71
5-s scale					
$pingDiff \sim ceeType + groupSize + medWhist + ar1(times + 0 ceeNum)$	~medWhist	gaussian	0	9	10.1
$pingDiff \sim ceeType + (1 \mid ceeNum) + subSpecies + groupSize + buoyDist + buo$	~medWhist	gaussian	2.6	12	10.1
medWhist + ar1(times + 0 ceeNum)	meannisi	guussiun	2.0	12	10.1
$pingDiff \sim ceeType + ar1(times + 0 ceeNum)$	~medWhist	gaussian	13.8	7	9.83
$pingDiff \sim ceeType + (1 ceeNum) + ar1(times + 0 ceeNum)$	~medWhist	gaussian	15.8	8	9.83
$pingDiff \sim ceeType$	none	gaussian	207.8	3	10.9

482 Model formulas (conditional and zero-inflation if included) are listed for each time scale of

483 analysis, and within each time scale are given in ascending order of ΔAIC relative to the best 484 model ($\Delta AIC = 0$).

485

486 Characterize the impact of MFAS exposure on whistle count: 20-s time scale

Whistle detections did not differ significantly over the 20-s time windows surrounding each ping. The preferred model at the 20-s scale included only predictor variables for CEE type and median whistle count (Table 2). The results of this model showed that CEE type did not have a significant effect on changes in whistle count in the 20 s after each ping (GLMM, n=18, slope = 0.47, SE = 0.27, P > 0.05, Table 2) but that the baseline median whistle count for that experimental period was a significant predictor for the change in whistle count following a ping or control treatment (GLMM, n = 19, slope = 0.76, SE = 0.028, p = 0.0075).

494

495 Characterize the impact of MFAS exposure on whistle count: 5-s time scale

The preferred model at the 5-s scale included the temporal autocorrelation structure and three explanatory variables, CEE type, group size, and median whistle count, all of which had a significant effect on the change in whistle count in the 5 s immediately following a ping

499	compared to the 5 s immediately before a ping. When accounting for all other variables, the
500	magnitude of the change in whistle count in the 5 s following an actual MFAS ping was 1.4
501	times greater than any change in whistle count following control treatments (GLMM, n=18,
502	slope = 1.43, SE = 0.47, $p = 0.002$, Table 2). The results of the CEE-by-CEE analysis (S1 File)
503	showed that in five of the nine MFAS experiments, detected whistle counts were elevated in the
504	5 s after each ping for the entire 10-min exposure period (plots of all raw whistles are provided in
505	S2 Fig). The effect was particularly pronounced (outside the 75 th percentile; S3 Fig) in the first
506	ping of six of the MFAS CEEs; whistle activity increased in the 5 s following the first MFAS
507	ping up to 15 times the whistle count in the 5 s before the first ping (mean of all MFAS CEEs
508	3.9, SD 5.2), compared to increases of only up to 1.4 times (mean 0.46, SD 0.88) at the start of
509	control treatments (Fig 5, S3 Fig). Additionally, group size and median whistle count for the
510	exposure period were significant predictor variables. Larger groups showed more extensive
511	changes in whistle count following pings and control treatments (GLMM, n=18, slope = 0.007,
512	SE = 0.003, $p = 0.008$, Table 2), and when the median background whistle count was higher, so
513	too were the changes following pings and control treatments (GLMM, $n=18$, slope = 0.25, SE =
514	0.048, p = < 0.005, Table 2).

Fig 5. (A) Spectrogram example of 5 s before and 5 s after the first ping for MFAS CEE 2021_08 illustrates the significant increase in whistle count immediately following the cessation of the ping. The focal group was comprised of approximately 30 long-beaked common dolphins. The MFAS signal can be seen between 3 and 4 kHz. (B) Boxplot of the change in

520 whistle count from the 5 s before to the 5 s following each of the 24 pings for CEE 2021_08.

521 Boxplot shows median, 25th, and 75th percentiles, with raw whistle count changes as open gray522 circles. The change following the first ping is shown as a red star.

523

524 **Discussion**

525 Multiple factors – including rapid changes in behavioral state throughout the experiment and 526 variation in group size and composition - make it difficult to assess whether changes in vocal 527 behavior are due to disturbance or natural variability. We assessed vocal behavior during control 528 conditions to understand typical acoustic variation among common dolphins. We found that 529 dolphins exhibited natural vocal state changes (identified by the changepoint analysis) in whistle 530 production approximately once every min. This rapid acoustic state switching informed our 531 analytical approach, which utilized a range of temporal windows to test for changes in whistle 532 count (5 s - 10 min) before and after MFAS exposure. Across the longer time windows selected; 533 we did not detect a shift in whistle behavior attributable to MFAS. However, CEE type 534 significantly affected the change in whistle count in the 5 s following a ping compared to the 5 s 535 immediately before a ping.

536

The initial selection of the time period over which behavior was assessed in response to Navy sonar (10 min) for this project was influenced by multiple factors, including the flight endurance of the drone used for calculating animal distance to our recording buoys, our ability to consistently track large groups of fast-moving dolphins, and other previous BRS studies using MFAS (*e.g.*, 18, 37]. Many of the aforementioned constraints are imposed by the logistics of fieldwork. An informed approach to identifying behavioral responses to anthropogenic sources also requires prior knowledge of the timing of behavioral state switching in the study species.

544	For example, previous work with blue whales (Balaenoptera musculus) evaluated several
545	behavioral metrics (e.g., maximum depth, dive time, ascent/descent rate) in responses to
546	simulated MFAS exposure over a 30-min time window [37]. This exposure duration (which
547	included a 30-min pre-exposure period) was adequate to capture a behavioral change given the
548	typical duration of their dive cycles (5-8 mins) [38]. In contrast, beaked whales exhibit incredibly
549	long, deep foraging dives that often last over an hour, followed by long periods of recovery [e.g.,
550	39,40). Consequently, studies focused on direct measurements of behavioral response by
551	Cuvier's beaked whales to MFAS extended their pre-exposure baseline period up to 9.3 hours
552	and evaluated their response to sonar for up to 1.7 hours after the exposure period [41].
553	
554	While the 10-min exposure period seemed appropriate given the fast-paced lifestyle of
555	common dolphins, neither the aggregate model nor the individual assessment of each CEE
556	detected a change in acoustic behavior that could be ascribed to sonar exposure at this time scale.
557	Even when we explored variation in whistle production during the 20-s surrounding each ping,
558	the experimental period was not a significant predictor of changes in whistle count in either the
559	MFAS or control experiments, as vocal state switching often occurs within a 40-s time window
560	under baseline conditions. While the impacts of sonar may be evident over the 10-min exposure
561	period for other behavioral metrics (i.e., changes in behavioral state, group composition, diving
562	behavior), our analysis reveals that changes in acoustic behavior are limited to an extremely
563	narrow time window in these two subspecies.
564	

It was only at the 5-s time scale surrounding each ping that we observed dolphins exhibiting
an acute acoustic response, which included a rapid increase in whistle production relative to the 5

s immediately before sound exposure. On average, dolphins increased their whistle count four times the average in the 5 s preceding the first ping of the exposure. In one MFAS experiment, dolphins increased their whistle production 15 times compared to the whistle count in the 5 s immediately before the first ping (S3 Fig). This elevated vocal response following the first ping of the exposure was seen in six of the nine MFAS exposures where whistles were present.

573 Elevations in whistle detections did not occur during the sonar transmission itself – which 574 lasted for 1.6 s. Rather, the increased vocal production occurred once the signal had been 575 transmitted, often abating within ~ 10 s. The lack of whistle production during sonar 576 transmission may be a tactic for reducing acoustic interference and masking, which has been 577 shown to impact the detection, discrimination, and localization of relevant signals [42]. If the 578 signal is predictable (as in our experiment), then animals should be able to adjust the timing of 579 sound production to limit communication to periods in which noise is reduced [e.g., 42-45]. The 580 ability of dolphins to learn the timing of intermittent noise has previously been demonstrated by 581 Finneran et al., 2023 [42], who showed that individuals can modify their hearing sensitivity 582 before the onset of predictably timed impulses, presumably to mitigate adverse auditory impacts. 583 Surprisingly, little is known about their capacity to alter the timing of vocal production in 584 response to interfering signals under baseline conditions.

585

586 The sudden increase in vocal behavior following the first ping could be an example of the 587 amplification of the behavior of group members through recruitment or reinforcement (*i.e.*, 588 positive feedback) [46]. In this scenario, one dolphin may whistle in response to a surprising, 589 salient stimuli, and others may follow suit. As this recruitment response continues, the number of

590 dolphins producing whistles will increase further, and information is spread rapidly throughout 591 the group [47]. In such cases, a few key individuals could catalyze the collective behavior of the 592 rest of the group. While it would be difficult to evaluate this process using acoustic data alone, 593 concurrent video data collected from the associated drone flights is currently being assessed to 594 explore the spatial movement patterns of the group and identify those individuals that 595 successfully initiate changes in group movement. Alternatively, the rapid increase in vocal 596 behavior following each ping could indicate that multiple animals exchange whistles to contact 597 their closest social partners in the presence of an unknown stimulus. This could be expected 598 given the role of whistles in group cohesion and coordination [2,48].

599

600 Surprisingly, in the playbacks when dolphins showed a significant increase in vocal behavior 601 in the 5-sec following the first ping (6 of 9 CEEs, S3 Fig), the severity of their acoustic response 602 did not abate over the course of the exposure (S2 Fig). This suggests that dolphins did not 603 habituate to successive pings (*i.e.*, show a progressive decrease in the amplitude of a vocal 604 behavioral response after repeated exposure). This observation is surprising given that the 605 dolphins tested in this study likely live a large portion of their lives in areas regularly ensonified 606 by Navy sonar. Continued work is needed to confirm these initial findings; for example, future 607 studies could compare animals' responsiveness in the Southern California Bight to nearby 608 populations in areas where Navy sonar is not regularly present (e.g., Monterey Bay). Considering 609 whether dolphins may be learning to modify their vocal behavior in response to repeated noise 610 exposure may provide foundational evidence to support using vocal rates as a measure of 611 sensitization or habituation to anthropogenic stimuli, as has been done in terrestrial species [as in 612 49,50].

614	Future management decisions mitigating the impact of sonar on oceanic delphinids should
615	consider our reported results of clear responses during CEEs when analyses were conducted at
616	the appropriate temporal resolution. Concerning the most recent methodology for assessing the
617	relative response severity for free-ranging marine mammals to acoustic disturbance [51] – had
618	the acoustic response of animals to MFAS been pooled across the 10-min time window -
619	common dolphins likely would have been assigned a behavioral response severity score of 0 (no
620	response detected). However, when evaluating vocal behavior across a shorter time window,
621	common dolphins would be elevated to a category three severity, which includes an increase in
622	possible contact or alarm calls [51]. Ultimately, continued work with this (and other closely
623	related) species should also consider how observed behavioral responses vary with respect to
624	other contextual parameters, including behavioral state, group composition (e.g., presence or
625	absence of calves), seasonality, and environmental covariates. Concurrent efforts from this
626	project aim to integrate passive acoustics with other remotely sensed datasets (i.e., shore-based
627	group tracking and aerial photogrammetry) to identify group-level behavioral changes and
628	quantify exposure-response relationships [49]. Paired with energetic modeling methods [e.g.,
629	27,53,54], these data can link these observed short-term behavioral responses to long-term
630	fitness outcomes in this species and inform effective mitigation strategies.

Our study has some limitations that can be addressed in future work. Given the close
phylogenetic relationship between short-beaked and long-beaked common dolphins [55,56], the
basic description of baseline vocal behavior (*i.e.*, whistle count data) was combined across
subspecies in our analysis. However, recent work by Oswald et al. discovered unique whistle

636 contours in short-beaked common dolphins suggesting that these distinctive acoustic signals 637 could help facilitate recognition between these Delphinus subspecies [57]. An increase in sample 638 size for both long-beaked and short-beaked common dolphins would provide a more detailed 639 understanding of their baseline vocal behavior and enable the exploration of whether each 640 subspecies shows a differential or similar response in whistle-type usage to MFAS. Additionally, 641 photo identification of individuals within these large, ephemeral groups is challenging. 642 Consequently, whether individual dolphins around Catalina Island were exposed more than once 643 to the experimental treatment is unknown. Future research could direct efforts toward other 644 oceanic delphinids with smaller group sizes where photo-identification is feasible and reliable 645 (e.g., bottlenose or rough-toothed dolphins).

646

647 In any behavioral experiment, the response of the individual or group that is tested should be 648 measured and interpreted over a time window that is informed by their natural behavior. We 649 suggest that future work with other oceanic delphinid species explore baseline vocal rates a-650 priori and use information on vocal state-switching to inform the analysis time window over 651 which behavioral responses are measured. Given these animals' susceptibility to frequent MFAS 652 exposure in Navy operational areas, evaluating how repeated exposure influences responses is of 653 particular interest. Future work should continue to explore critical factors likely to affect the 654 probability of response among these large groups, including their behavioral state and proximity 655 to the sound source and received level at the onset of exposure.

656

657 Acknowledgments

658	Animal observations, octocopter flights over dolphins, close approaches, and CEEs were
659	conducted under NMFS permits 19116 and 19091. Additionally, all activities reported in this
660	study were reviewed and approved by the Institutional Animal Care and Use Committee
661	(IACUC Protocol No: CRC-2021-AUP-06, CRC-2021-AUP-08). We thank the M/V Magician
662	and Captain Carl Mayhugh for support in the field and the University of Southern California's
663	Wrigley Institute for Environment and Sustainability for their hospitality throughout this
664	project. This project would not have been possible without the dedicated contribution of all
665	members of the Tagless-BRS team. Thank you to Stacy DeRuiter for extensive advice on
666	statistical modeling and analysis. Additionally, we appreciate the thoughtful feedback provided
667	by Ari Friedlaender, Colleen Reichmuth, Peter Cook, and John Durban during analysis and
668	manuscript preparation. We also thank Ryan Jones, who created the line drawings for Fig 1.
669	
670	References
671	1. Tyack PL. Acoustic communication under the sea. In: Hopp SL, Owren MJ, Evans CS,
672	editors. Animal acoustic communication. Berlin / Heidelberg: Springer; 1998.

673 2. Janik VM. Acoustic communication in delphinids. Adv Study Behav. 2009;40: 123–157.

674 3. Lammers MO, Oswald JN. Analyzing the acoustic communication of dolphins. In: Herzing

- 675 DL, Johnson CM, editors. Dolphin communication and cognition: Past, present, and
 676 future. Cambridge: MIT Press; 2015. pp. 107-130.
- 4. Erbe C, Dunlop R, Dolman S. Effects of noise on marine mammals. In: Slabbekoorn H,
 Dooling R, Popper A, Fay R, editors. Effects of anthropogenic noise on animals. New
 York: Springer; 2018.

680	5. Williams R, Wright AJ, Ashe E, Blight LK, Bruintjes R, Canessa R, et al. Impacts of
681	anthropogenic noise on marine life: Publication patterns, new discoveries, and future
682	directions in research and management. Ocean Coast Manag. 2015;115: 17-24.
683	6. Southall BL, Finneran JJ, Reichmuth C, Nachtigall PE, Ketten DR, Bowles AE, et al. Marine
684	mammal noise exposure criteria: Updated scientific recommendations for residual hearing
685	effects. Aquat Mamm. 2019;45(2): 125–232.
686	7. Hatch LT, Wahle CM, Gedamke J, Harrison J, Laws B, Moore SE, et al. Can you hear me
687	here? Managing acoustic habitat in US waters. Endanger Species Res. 2016;30(1): 171-
688	86.
689	8. Tyack PL, Janik VM. Effects of noise on acoustic signal production in marine mammals. In:
690	Brumm H, editor. Animal communication and noise. New York: Springer; 2013. pp. 251-
691	271.
692	9. Nowacek DP, Thorne LH, Johnston DW, Tyack PL. Responses of cetaceans to anthropogenic
693	noise. Mamm Rev. 2007;37(2): 81–115.
694	10. Hastie G, Merchant ND, Götz T, Russell DJF, Thompson P, Janik VM. Effects of impulsive
695	noise on marine mammals: Investigating range-dependent risk. Ecol Appl. 2019;29:
696	e01906.
697	11. Harris CM, Sadykova D, DeRuiter SL, Tyack PL, Miller PJO, Kvadsheim PH, et al. Dose
698	response severity functions for acoustic disturbance in cetaceans using recurrent event
699	survival analysis. Ecosphere. 2015;6(11): 1-14.
700	12. Southall BL, Finneran JJ, Reichmuth C, Nachtigall PE, Ketten DR, Bowles AE, et al. Marine

701 mammal noise exposure criteria: Updated scientific recommendations for residual hearing
702 effects. Aquat Mamm. 2019;45(2): 125–232.

- 703 13. D'Amico A, Pittenger R. A brief history of active sonar. Aquat Mamm. 2009;35(4): 426–
 704 34.
- 14. Henderson EE, Smith MH, Gassmann M, Wiggins SM, Douglas AB, Hildebrand JA.
- Delphinid behavioral responses to incidental mid-frequency active sonar. J Acoust Soc
 Am. 2014;136(4): 2003–2014.
- 15. Oswald JN, Rankin S, Barlow J. The effect of recording and analysis bandwidth on acoustic
 identification of delphinid species. J Acoust Soc Am. 2004;116(5): 3178–3185.
- 710 16. Filadelfo R, Mintz J, Michlovich E, D'Amico A, Tyack PL, Ketten DR. Correlating military
- 511 sonar use with beaked whale mass strandings: What do the historical data show? Aquat
- 712 Mamm. 2009;35(4): 435–444.
- 713 17. Guan S, Brookens T. An overview of research efforts to understand the effects of underwater
 714 sound on cetaceans. Vol. 2, Water Biol Secur. 2023;2: 100141.
- 715 18. Southall BL, DeRuiter SL, Friedlaender A, Stimpert AK, Goldbogen JA, Hazen E, et al.
- 716 Behavioral responses of individual blue whales (Balaenoptera musculus) to mid-
- 717 frequency military sonar. J Exp Biol. 2019;222: 5.
- 718 19. Sivle LD, Kvadsheim PH, Fahlman A, Lam FPA, Tyack PL, Miller PJO, et al. Changes in
- dive behavior during naval sonar exposure in killer whales, long-finned pilot whales, and
 sperm whales. Front Physiol. 2012;11: 400
- 20. Deruiter SL, Boyd IL, Claridge DE, Clark CW, Gagnon C, Southall BL, et al. Delphinid
- whistle production and call matching during playback of simulated military sonar. Mar
- 723 Mamm Sci. 2013;29(2): E46-E59.

724	21. Ioannou CC, Laskowski KL. A multi-scale review of the dynamics of collective behaviour:
725	from rapid responses to ontogeny and evolution. Philos Trans R Soc Lond, B.
726	2023;10(378): 20220059.
727	22. Durbach IN, Harris CM, Martin C, Helble TA, Henderson EE, Ierley G, et al. Changes in the
728	movement and calling behavior of minke whales (Balaenoptera acutorostrata) in
729	Response to Navy Training. Front Mar Sci. 2021;8: 660122.
730	23. Rendell LE, Gordon JCD. Vocal response of long-finned pilot whales (Globicephala melas)
731	to military sonar in the Ligurian Sea. Mar Mamm Sci. 1999;15(1): 198–204.
732	24. Miller PJO, Antunes RN, Wensveen PJ, Samarra FIP, Catarina Alves A, Tyack PL, et al.
733	Dose-response relationships for the onset of avoidance of sonar by free-ranging killer
734	whales. J Acoust Soc Am. 2014;135(2): 975–93.
735	25. DeRuiter SL, Boyd IL, Claridge DE, Clark CW, Gagnon C, Southall BL, et al. Delphinid
736	whistle production and call matching during playback of simulated military sonar. Mar
737	Mamm Sci. 2013;2: 46-59.
738	26. Lara G, Bou-Cabo M, Llorens S, Miralles R, Espinosa V. Acoustical behavior of delphinid
739	whistles in the presence of an underwater explosion event in the Mediterranean coastal
740	waters of spain. J Mar Sci. 2023;11(4): 780.
741	27. Keen KA, Beltran RS, Pirotta E, Costa DP. Emerging themes in population consequences of
742	disturbance models. Proc R Soc B. 2021;288(1957): 20210325.
743	28. King SL, Connor RC, Montgomery SH. Social and vocal complexity in bottlenose dolphins.

744 Trends Neursci. 2022; 45: 881-883.

745	29. Durban JW, Southall BL, Calambokidis J, Casey C, Fearnbach H, Joyce TW, et al.
746	Integrating remote sensing methods during controlled exposure experiments to quantify
747	group responses of dolphins to navy sonar. Mar Pollut Bull. 2022;174: 113194.
748	30. Visser, F. Moving in concert: Social and migratory behaviour of dolphins and whales in the
749	North Atlantic Ocean. PhD dissertation, University of Amsterdam. 2014.
750	31. Hager CA. Assessment of the performance of the near-bottom hydrophones of the US Navy
751	Southern California offshore range in detecting, localizing and reconstructing 10-20KHZ
752	odontocete whistles. PhD dissertation, Naval Postgraduate School. 2008.
753	32. Gillespie D, Mellinger DK, Gordon J, McLaren D, Redmond P, McHugh R, et al.
754	PAMGUARD: Semiautomated, open-source software for real- time acoustic detection
755	and localization of cetaceans. J Acoust Soc Am. 2009;125(4): 2547-2547.
756	33. Sakai T, Barlow, J, Griffiths, E, Oswald, J, Schmidt, V.PAMmisc: Miscellaneous functions
757	for passive acoustic analysis. 2023. <u>https://CRAN.R-project.org/package=PAMmisc</u>
758	34. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
759	Statistical Computing, Vienna, Austria. 2023. https://www.R-project.org/
760	35. Killick R, Eckley I. changepoint: An R package for changepoint analysis. J Stat Softw.
761	2014;58(3): 1-9.
762	36. Brooks ME, Kristensen K, Van Benthem KJ, Magnusson A, Berg CW, Nielsen A, et al.
763	glmmTMB balances speed and flexibility among packages for zero-inflated generalized
764	linear mixed modeling. The R Journal. 2017;9(2): 378-400.
765	37. Goldbogen JA, Southall BL, DeRuiter SL, Calambokidis J, Friedlaender AS, Hazen EL, et al.
766	Blue whales respond to simulated mid-frequency military sonar. Proc R Soc B. 2013;280:
767	20130657.

- 38. Croll DA, Acevedo-Gutierrez A, Tershy BR, Urban-Ramırez J. The diving behavior of blue
 and fin whales: Is dive duration shorter than expected based on oxygen stores? Comp
 Biochem Physiol, Part A Mol Integ. 2001;129(4): 797-809.
- 39. Baird RW, Webster DL, Schorr GS, McSweeney DJ, Barlow J. Diel variation in beaked

whale diving behavior. Mar Mamm Sci. 2008;24(3): 630–642.

- 40. Shearer JM, Quick NJ, Cioffi WR, Baird RW, Webster D, Foley HJ, et al. Diving behaviour
 of Cuvier's beaked whales (*Ziphius cavirostris*) off Cape Hatteras, North Carolina. R Soc
 Open Sci. 2019;6(2): 181728.
- 41. Deruiter SL, Southall BL, Calambokidis J, Zimmer WMX, Sadykova D, Falcone EA, et al.
- First direct measurements of behavioural responses by Cuvier's beaked whales to midfrequency active sonar. Bio Lett. 2013;9: 20130223.
- 42. Finneran JJ, Schlundt CE, Bowman V, Jenkins K. Dolphins reduce hearing sensitivity in
- anticipation of repetitive impulsive noise exposures. J Acoust Soc Am. 2023;153(6): 3372.
- 43. Egnor SR, Wickelgren JG, Hauser MD. Tracking silence: adjusting vocal production to avoid
 acoustic interference. J Comp Physiol. 2007;193: 477-483.
- 44. Kiai A, Clemens J, Kössl M, Poeppel D, Hechavarría J. Flexible control of vocal timing in
 bats enables escape from acoustic interference. bioRxiv. 2023: 2023-05.
- 45. Munoz-Santos I, Ríos-Chelén AA. Vermilion flycatchers avoid singing during sudden peaks
 of anthropogenic noise. acta ethologica. 2022;26(3): 201-210.
- 46. Bonabeau E, Theraulaz G, Deneubourg J.L, Aron S, Camazine S. Self-organization in social
 insects. Trends Ecol Evol. 1997;12(188).
- 78947. Sumpter DJT. The principles of collective animal behaviour. Philos Trans R Soc Lond, B.
- 790 2005;361: 5–22.

- 48. Caldwell MC, Caldwell DK. Vocalization of naive captive dolphins in small groups. Science.
 1968;159(3819): 1121-1123.
- 49. Francis CD, Ortega CP, Cruz A. Noise pollution changes avian communities and species
 interactions. Curr Biol. 2009;19(16):1415–1419.
- 50. Brown CL, Hardy AR, Barber JR, Fristrup KM, Crooks KR, Angeloni LM. The effect of
- human activities and their associated noise on ungulate behavior. PloS One. 2012;10;(7):
 e40505.
- 51. Southall BL, Tollit D, Amaral J, Clark CW, Ellison WT. Managing human activity and
- marine mammals: A biologically based, relativistic risk assessment framework. Front MarSci. 2023;10.
- 52. Harris CM, Thomas L, Falcone EA, Hildebrand J, Houser D, Kvadsheim PH, et al. Marine
 mammals and sonar: Dose- response studies, the risk- disturbance hypothesis and the role
 of exposure context. J Appl Ecol. 2018;55:396-404.
- 53. Harwood J, King S, Booth C, Donovan C, Schick RS, Thomas L, et al. Understanding the
- 805 population consequences of acoustic disturbance for marine mammals. In Popper AN,
- Hawkins A, editors. The effects of noise on aquatic life II. New York: Springer; 2016. pp.
 417-423.
- 808 54. McHuron EA, Adamczak S, Costa DP, Booth C. Estimating reproductive costs in marine
- 809 mammal bioenergetic models: A review of current knowledge and data availability.
- 810 Conserv Physiol. 2023;11(1): coac080.
- 55. Natoli A, Cañadas A, Peddemors VM, Aguilar A, Vaquero C, Fernandez-Piqueras P, et al.
- 812 Phylogeography and alpha taxonomy of the common dolphin (*Delphinus* sp.). J Evol Biol.
- 813 2006;19(3): 943-954.

814	56. McGowen MR, Tsagkogeorga G, Álvarez-Carretero S, Dos Reis M, Truebig M, Deaville R,
815	et al. Phylogenomic resolution of the cetacean tree of life using target sequence capture.
816	Syst Biol. 2020;69(3): 479-501.
817	57. Oswald JN, Walmsley SF, Casey C, Fregosi S, Southall BL, Janik VM. Species information
818	in whistle frequency modulation patterns of common dolphins. Phil Trans R Soc B.
819	2021;376: 20210046.

821 Supporting information

822 S1 Fig. PAMGuard Whistle Detection Parameters. Detection settings for the PAMGuard
823 Whistle and Moan Detector.

824 S1 File. CEE-by-CEE Analysis. The main manuscript presents methods and results for

analyzing common dolphin vocal response to simulated mid-frequency sonar, pooling data from

826 all CEEs. We acknowledge that some readers may be interested in additional information about

827 each of the 19 CEEs (10 MFAS exposures and nine controls), so we have included additional

828 methods and results for each CEE.

829 S2 Fig. Plots of raw per-second whistle detections for all included CEEs. CEE-ID (year and

number) is given in the bottom right of each page. The red dashed line indicates the start of the

831 exposure period, with dashed grey lines indicating the timing of each ping (in an MFAS

832 exposure) or control treatment. The solid gray vertical line indicates the start of the post-

833 exposure period.

834 S3 Fig. Boxplots of the change in whistle count from the 5 s before to the 5 s following each

of the 24 pings for all CEEs (MFAS and controls). Boxplot shows median, 25th, and 75th

- 836 percentiles, with raw whistle count changes as open gray circles. The change following the first
- 837 ping is shown as a red star.
- 838
- 839

Click here to access/download Supporting Information S1_Fig.pdf

Click here to access/download Supporting Information S1_File.pdf

Click here to access/download Supporting Information S2_Fig.pdf

Click here to access/download Supporting Information S3_Fig.pdf

	1	Full title: Common dolphin whistle responses to experimental mid-frequency sonar	F	Forma
	2	Short title: Dolphin acoustic response to sonar		
	3			
	4	*Caroline Casey ^{a,b} , *Selene Fregosi ^a , Julie N. Oswald ^c , Vincent M. Janik ^c , Fleur Visser ^{d,e} ,		
ļ	5	Brandon Southall ^{a,b}		
	6			
	7	^a Southall Environmental Associates, Inc., , 9099 Soquel Drive, Aptos, California, United States		
	8	of America A 95003, USA		
	9	^b Institute of Marine Sciences, University of California Santa Cruz, 115 McAllister Way, Santa		
	10	Cruz, CA 95060, USACalifornia, United States of America		
	11	^c Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St.		
	12	Andrews, St. Andrews, KY16 8LB, United Kingdom		
	13	^d Kelp Marine Research, 1624 CJ, Hoorn, the Netherlands		
	14	^e Department of Coastal Systems, Royal Netherlands Institute for Sea Research, P.O. Box 59,		
	15	1790 AB Den Burg, Texel, the Netherlands		
ļ	16			
	17	<u>*</u>		
	18	Corresponding author		
	19	E-mail: cbcasey@ucsc.edu		
	20			
	21			
	22	<u>1</u>CC and SF are Joint Senior Authors of this work.: Caroline Casey, <u>cbcasey@ucsc.edu</u>		

Formatted: Centered

23 Abstract

24	Oceanic delphinids around navel operations are regularly exposed to high source
27	Occurre deprinted around navar operations are regularly exposed to high source
25	levelintense military sonar broadcast within the frequency range of in their hearing range on a
26	regular basis. H; however, empirically measuring the its impact of sonar on on the behavior of
27	highly social, free-ranging dolphins has proven logistically is challenging. Additionally, baseline
28	variability or the frequency of vocal state-switching among social oceanic dolphins during
29	undisturbed conditions is lacking among social oceanic delphinids, making it difficult to attribute
30	changes in vocal behavior to anthropogenic disturbance. Using a network of drifting acoustic
31	buoys in a three-phased controlled exposure experiments, we investigated the effects of mid-
32	frequency (3-4 kHz) active sonar (MFAS) on whistle production in short-beaked (Delphinus
33	delphis delphis) and long-beaked common dolphins (Delphinus delphis bairdii) in southern
34	California. Given the complexity of acoustic behavior exhibited by these group-living animals,
35	we conducted our response analysis over varying temporal windows $(10 \text{ min} - 5 \text{ s})$ to describe
36	both longer-term and instantaneous changes in sound production. We found that common
37	dolphins exhibited an acute and pronounced changes in whistle rate in the 5 s following
38	exposure to experimental simulated Navy sonar MFAS. This response was sustained throughout
39	repeated sonarsequential MFAS exposures within an experiments simulating operational
40	conditions to sonar in the experiment, suggesting that dolphins may not habituate to this
41	disturbance. These results indicate that common dolphins exhibit a brief yet significantclearly
42	detectable acoustic responses to MFAS. They also and highlight how different-sizedvariable
43	temporal analysis windows - tuned to key aspects of baseline vocal behavior as well as
44	experimental parameters related to MFAS exposure - impactenable the detection of behavioral
45	responses. We suggest that future work with oceanic delphinids explore baseline vocal rates a-

Formatted: Font: 18 pt

Formatted: Don't add space between paragraphs of the same style

46	priori and use information on the rate of change in vocal behavior to inform the analysis time
47	window over which behavioral responses are measured.
48	Millions of oceanic dolphins are exposed and presumably affected by military sonar annually;
49	however empirically measuring its impact on the behavior of free-ranging dolphins has proven
50	logistically challenging. Additionally, baseline variability or the frequency of vocal state-
51	switching during undisturbed conditions is lacking among social oceanic delphinids, making it
52	difficult to attribute changes in vocal behavior to anthropogenic disturbance. Using a network of
53	drifting acoustic buoys and a three-phased controlled exposure experiment, we investigated the
54	effects of mid-frequency (3-4 kHz) active sonar (MFAS) on whistle production in short-beaked
55	(Delphinus delphis) and long-beaked common dolphins (Delphinus bairdii) in southern
56	California. Given the complexity of acoustic behavior exhibited by these group-living species,
57	we conducted our response analysis over varying temporal windows (10 min – 5 sec) to describe
58	both longer-term and instantaneous changes in sound production. We found that common
59	dolphins exhibited an acute and dramatic change in acoustic behavior in the 5-seconds following
60	exposure to experimental Navy sonar. In some cases, this response was sustained throughout
61	repeated exposures to sonar in the experiment, suggesting that dolphins may not habituate to this
62	kind of disturbance. These results suggest that common dolphins exhibit a brief, yet dramatic
63	acoustic response to MFAS, and highlights how different sized temporal windows - tuned to key
64	aspects of baseline vocal behavior as well as experimental parameters related to MFAS exposure
65	- impacts the detection of behavioral responses. We suggest that future work with oceanic
66	delphinid species explore baseline vocal rates a-priori and use information on the rate of change
67	in vocal behavior to inform the analysis time-window over which behavioral responses are
68	measured.

69	•	Formatted: Indent: First line: 0.5", Don't add space
70		between paragraphs of the same style
71	Introduction	Formatted: Font: 18 pt
72	Sound production and reception play a critical role in the lives of cetaceans, aiding in \bullet	Formatted: Indent: First line: 0.5"
73	important life-history events, including maintenance of social relationships, coordination of	
74	group movement, foraging, and evasion of predators [(1]). Consequently, substantial effort has	
75	been directed toward describing cetacean acoustic behavior [(2,3]) and evaluating how it is	
76	impacted by human-generated disturbance [(4-8]). There are many sources of anthropogenic	
77	noise pollution (e.g., vessel noise, oil and gas exploration, construction and facilities	
78	maintenance, fisheries and aquaculture, military activity) which Many sources of anthropogenic	
79	noise pollution (e.g., vessel noise, oil and gas exploration, renewable energy, coastal construction	Formatted: Font: Italic
80	and maintenance, fisheries and aquaculture, and military activity) can have varying short and	
81	long-term impacts on marine mammal <u>behavior and health and behavior [(4, 9-11])</u> .	
82	Concentrated research efforts aimed at characterizing these impacts have led to the systematic	
83	development of acoustic exposure criteria, informing and improving effective management	
84	strategies for both to characterize these impacts have led to the systematic development of	
85	acoustic exposure criteria, informing and improving effective management strategies for	
86	regulators and industries (for reviews on auditory and behavioral criteria, see 12). Such	
87	assessments and criteria have also highlighted species and noise exposure contexts for which	
88	information is sparse or unavailable.	
89		
90	Among cetaceans, oceanic delphinids represent an importantan essential and logistically	Formatted: Indent: First line: 0.5"
91	challenging group of species for which _to evaluate the impact of anthropogenic noise on vocal	

92	behavior. These animals are highly soniferous, abundant, and often extremely gregarious (pods
93	of > 500 individuals are common for some species). Sound production has been demonstrated to
94	play a particularly important <u>a vital</u> role in the regulation of the maintenance of social interactions
95	relationships and cohesion among group members (e.g., [2,3]). Oceanic delphinids are ubiquitous
96	around some U.S. Navy operational areas where mid-frequency active sonar (MFAS; 1-10 kHz)
97	is commonly used for submarine detection in training exercises and warfare, resulting in
98	associated large numbers of sonar exposures for these federally protected species. Some of the
99	most powerful MFAS systems (e.g., <u>AN/</u> SQS-53C) use <u>emit</u> repeated pings with fundamental
100	frequencies in the 3-4 kHz range, ping lengths of approximately 1-3 seconds, and effective
101	nominal source levels as high as 235 dB <u>dB re 1 μPa at 1 m root-mean-square (RMS)</u> re 1μPa
102	that may be transmitted for several <u>minutes minutemins</u> to hours at high duty cycles (more than 1
103	ping/min) [(13]). Aside from the elevated background noise and potential disturbance that may
104	result from these training exercises $[(e.g., 14)]$, MFAS signals overlap with the frequencies that
105	oceanic dolphins commonly rely on for social sound (whistle) production. Delphinid whistles are
106	narrowband tonal sounds with most of the acoustic energy concentrated below 20 kHz [(14-
107	16 <u>15]</u>).
108	
109	While MFAS has been linked to mass stranding events of cetaceans $[(13,167])$ and its
110	effect on cetaceans has been experimentally evaluated in a handful of species (for a recent
111	review, see [179]) the effects impact of sonar on the acoustic behavior of oceanic delphinids
112	have not been systematically explored. This is due in large partmainly due to the logistical
113	challenges of applying previously developed methods used in other behavioral response studies

Formatted: Font: (Default) Times New Roman, 12 pt

Commented [SF1]: I would leave this spelled out here vs when it comes after a number leave it short. I think that still addresses their comment but is consistent

Formatted: Indent: First line: 0.5"

of individual animals to large aggregations of dolphins. Much of the prior research on cetacean

115	behavioral responses to noise has capitalized on the use of <u>using</u> suction-cup attached <u>suction-cup-</u>
116	attached motion-sensing and acoustic recording tags to characterize responses following
117	controlled exposure to MFAS [(e.g., 21-2318-20]). Unfortunately, such tags are challenging to
118	deploy and are easily shed by small dolphins due to the tag size relative to the smaller body
119	surface of dolphins, and high drag due to fast swimming speeds, and frequent physical social
120	contact. Additionally, oceanic delphinids commonly occur in large groups that display
121	remarkable coordination, making the collective vocal behavior of the group perhaps a more
122	appropriate focus of analysis [(210]). Opportunistic passive acoustic studies relying on large,
123	cabled hydrophone arrays have been used to quantify changes in vocal activity and thus act as a
124	proxy for the presence of or absence of multiple animals before, during, and after exposure to
125	MFAS $[(2\underline{2}4,2\underline{3}5)]$. Such experiments are valuable but require extensive, high-cost moored
126	hydrophone arrays with restricted spatial coverage.
127	

128 Previous studies on acoustic responses of oceanic dolphins to Navy sonar have observed 129 Findings from previous studies of acoustic responses to Navy sonar in oceanic delphinids include 130 shifting specific frequency components of whistle contours, increasing or decreasing calling rate, 131 increasing call amplitude, and even mimicry of MFAS elements [(14, 236-258). For example, 132 tagged orcas killer whales (Orcinus orca) adjust the high-frequency component of their whistles 133 during sonar exposure, and increase the number and amplitude of their calls following each ping 134 [(247]). False killer whales (*Pseudorca crassidens*) appear to increase their whistle rate and 135 produce more MFAS-like whistles after exposure to simulated sonar [(256]). 136

Formatted: Font: (Default) Times New Roman, 12 pt Formatted: Indent: First line: 0.5"

137	One opportunistic study provided initial insights into the behavioral responses of some	Formatted: Indent: First line: 0.5"
138	social oceanic delphinids to MFAS. Bottlenose dolphins (Tursiops truncatus), common dolphins	
139	(Delphinus sp.), Pacific white-sided dolphins (Lagenorhynchus obliquidens), and Risso's	
140	dolphins (Grampus griseus) exposed to incidentalincidentally exposed to MFAS showed a	
141	cessation of vocalizations, an increase in the intensity of vocalizations, or a combination of both	
142	[(14]). Of all delphinid species, common dolphins displayed the widestbroadest range of	
143	responses, including changing their behavioral state or direction of travel when sonar stopped,	
144	increasing the intensity of vocalizations when sonar began, vocalizing very little or not at all	
145	during sonar <u>exposure</u> , or a combination of these observations [(14]). These results are consistent	
146	with a more recent opportunistic evaluation of delphinid responses to an underwater explosionan	
147	underwater detonation, which showed that whistle rate, complexity, and frequency content all	
148	varied in response to the explosive event [26](30). Depending upon the frequency, intensity, and	
149	consistency of these kinds of noise exposures, such behavioral changes could result in	
150	physiological consequences that impact overall population health [(2731]). Unfortunately,	
151	information on baseline variability or and the frequency of vocal state-switching during	
152	undisturbed conditions is lacking among free-ranging, social, oceanic delphinids, making it	
153	challenging to interpret the responses observed. While opportunistic studies of delphinid acoustic	
154	responses to sonar are insightful, a detailed assessment under controlled experimental conditions	
155	is needed to understand the extent to which delphinids are impacted by this kind of	
156	disturbance <u>MFAS impacts oceanic delphinids</u> .	
157		
158	Quantifying vocal behavior in these taxa is complicated by the fact that dolphin acoustic \leftarrow	Formatted: Indent: First line: 0.5"
159	behavior is dynamic, variable, and influenced by a myriad of social and environmental factors	

lent: First line: 0.5"

160	[28](32). Measurements of acoustic behavior and how it changes in response to disturbance must	
161	be made Acoustic behavior and how it changes in response to disturbance must be measured	
162	across some predetermined interval of time <u>time interval</u> . In previous cetacean behavioral	
163	response studies using a conventional controlled exposure experimental (CEE) design, this	
164	temporal window was often dictated by logistical limitations of the technology being used (e.g.,	
165	battery power of tags, the feasibility of continuous behavioral observations, etc.), or designed to	
166	match the duration of anthropogenic noise source being evaluated. However, averaging vocal	
167	behavior over long time windows may result in missing instantaneous or shorter duration	
168	responses that occur at the onset of exposure or at scales that are more biologically meaningful to	
169	the individuals exposed. One way to address this is to examine acoustic metrics computed over a	
170	variety of various time windows to determine if and/orand when we can attribute a change in	
171	vocal behavior to a known, controlled disturbance.	
172		
173	For this study, different broad and fine-scale analytical approaches were used to investigate	Formatted: Font: (Default) Times New Roman, 12 pt
174	the Here, we apply and compare different broad and fine-scale analytical approaches to	Formatted: Indent: First line: 0.25"
175	analyzing delphinid vocal behavior and effects of experimental controlled MFAS on whistle	
176	production using experimental methods in short-beaked (Delphinus delphis delphis) and long-	
177	beaked common dolphins (Delphinus delphis bairdii) in southern California. By assessing group-	
178	level vocal behavior across different time scales, we aimed to:	
170		
1/9	1. Describe the variability in baseline vocal behavior of common doiphin aggregations	
180	during control conditions.	
181	<u>1.</u>	Formatted: Font color: Black
I		Formatted: Numbered + Level: 1 + Numbering Style: 1, 2, 3, + Start at: 1 + Alignment: Left + Aligned at: 0.25" + Indent at: 0.5"

182	2. Characterize <u>Compare</u> the types of vocal responses detected during a controlled exposure	
183	to MFAS using broad and fine-scale temporal resolution. across broad and fine temporal	
184	scales.	
185	Given the need to establish sampling regimes that can be applied and compared across studies,	
186	our objective isour objective is to provide an informative framework for assessing the complex	
187	acoustic behavior exhibited by group-living species. We highlight how using different	
188	sized <u>different-sized</u> temporal windows - tuned to key aspects of baseline vocal behavior as well	
189	as experimental parameters related to MFAS exposure - impacts the detection of behavioral	
190	responses.	
191		
192	Materials and methods	F
193	A. General Methods	
194	Controlled exposure experiments (CEEs)CEEs were conducted with two subspecies of common	
195	dolphins. This study was as part of a broader effort aimed at quantifyingto quantify group-level	
196	responsiveness of oceanic delphinids to military sonar using CEEs. Common dolphins occur as	
197	two separate species within our study area (33), around Santa Catalina Island, located off the	
198	coast of southern California, USA. Since they regularly occur in mixed-species_groups, we	
199	pooled data for the two species subspecies to describe baseline vocal data and included	
200	species <u>subspecies</u> as a potential explanatory variable in our models. The project integrate <u>d</u> s	
201	multiple different data streams, including shore-based tracking of dolphin schoolspods, passive	
202	acoustics to record vocal activity, and photogrammetry to measure fine-scale behavior [29](34).	
203	This work was conducted between 2017-2021. We chose our study area because it lies near the	
204	Southern California Offshore Range (SCORE) – a tactical training area for the U.S. Navy Pacific	

Formatted: Font: 18 pt

Fleet located off the west side of San Clemente Island – where animals regularly encounter the
types of signals we used in our experiment.

207

208 CEEs were composed of<u>comprised</u> three discrete phases: pre-exposure (baseline), 209 exposure using intermittent simulated MFAS signals, and post-exposure. In a subset of 210 experiments, no MFAS signals were broadcast during the exposure phase, serving as controls.In 211 control trials, the equipment was lowered into the water from the exposure boat but no MFAS 212 signals were broadcast. For details about the experimental source and sound source 213 characteristics – including calculations of received levels – see Durban et al. 2022 [29]. 2022 214 (34). Each experimental phase was 10 minutemins in duration. During exposure phases, MFAS 215 'pings' of 1.6 s in duration consisting of three tonal and frequency modulated elements between 216 3.5-4 kHz were transmitted (see:frequency-modulated elements between 3.5-4 kHz were 217 transmitted Southall et al., 2012 (35) for additional details on the sound source and signal 218 parameters). Pings were emitted at a broadband source level of 212 dB re 1µPa RMS every 25 219 seconds, which is similar in repetition rate, duty cycle, and the absence of a ramped-up source 220 level (as used in some previous MFAS CEEs) to some certain active Navy MFAS systems (e.g., 221 helicopter-dipped sonar systems). Up to 24 total pings were emitted per 10-minutemin exposure 222 phase, provided that no permit-mandated shutdowns occurred for animals occurring no permit-223 mandated shutdowns were implemented for animals within 200 m of the active sound source 224 (this occurred<u>happened</u> in only one playback<u>CEE</u>). The sound source was positioned relative to 225 focal animal groups using noise sound propagation modeling to ensure received levels at focal 226 animals occurred at maximum levels of were no greater than 140-160 dB dB re 1µPa RMSRMS. 227

Formatted: Indent: First line: 0.5"
228 For every CEE, speciessubspecies identity (based on differences in genetics, morphology, 229 and pigmentation) was determined using a combination of aerial images obtained from drone 230 footage, genetic sequencing from biopsy samples, and visual observation. Additionally, group 231 size was characterized by experienced shore-based observers using strong magnification 232 binoculars or a binocular scope located at elevated locations (~70 m) that enabled, enabling a 233 broad overview of the research area (up to 20 km from shore). Shore-based tracking of animals 234 could be conducted for groups up to 7 km from shore. Focal follows included estimation 235 ofestimating low, best, and high group size, the number of subgroups (defined as all individuals 236 in closer proximity to each other than to closer to each other than other individuals in the area), 237 the range of inter-individual spacings within subgroups, and distances between subgroups. These 238 observations were taken continuously throughout the experiment at 2-minutemin intervals. For a 239 fullcomplete description of each of these methods, see Visser et al., 2014 (36) and Durban et al., 240 2022 (34).[29,30]

242 **B. Acoustic dData <u>c</u>Collection and pProcessing**

244 **1. Passive aAcoustic mMonitoring**

241

243

Passive acoustic recordings were obtained from each target group of dolphins using three drifting, remote-deployed acoustic recording units. Up to three separate recording units were tactically positioned and recovered from a single small (~6 m) rigid-hull inflatable boat, with the objective of placing one recording unit within 500 m of the predicted trajectory of the dolphins during each CEE phase (Fig. 1). Each recording unit consisted of a surface buoy and flag with an underwater recorder suspended by 10 m of line. The recorder was either a SoundTrap ST300

 Formatted: Font: 16 pt

 Formatted: Font: 14 pt, Not Italic

 Formatted: Level 2

 Formatted: Font: 14 pt, Not Italic

 Formatted: Font: 14 pt

 Formatted: Indent: First line: 0.5"

251	(Ocean Instruments NZ, Auckland, New Zealand) or a SNAP Recorder (Loggerhead	
252	Instruments, Sarasota, FL, USA). Both recorded via a single omnidirectional calibrated	
253	hydrophone (SoundTrap: integrated hydrophone, frequency response 0.02–60 kHz \pm 3 dB <u>re</u>	
254	<u>1μPa</u> , end-to-end sensitivity -178 dB re 1μPa/V; SNAP: HTI-96-MIN hydrophone, frequency	
255	response 1.0-20 kHz \pm 3 dB re 1µPa, end-to-end sensitivity -164 dB re 1µPa/V, frequency	
256	response 1.0-20 kHz \pm 3 dB) which was suspended by a shock-mounted cable at a depth of 10 m.	
257	All recording units had a Global Positional System (GPS) tracking device (Trace, SPOT LLC,	
258	Chantilly, VA, USA) that recorded the location of the instrument once every minutemin (Fig. 1).	
259	Five-minutemin WAV files were continuously recorded at either 96 kHz sampling rate with 16-	
260	bit resolution (SoundTrap) or <u>a 96 kHz sampling rate with 44.1 kHz sampling rate with a 16-bit</u>	
261	resolution (SoundTrap) or a 44.1 kHz sampling rate with a 16-bit resolution (SNAP).	
262		
262 263	Figure 1. A schematic representation of the placement of acoustic recorders (see inset for	
262 263 264	Figure 1. A schematic representation of the placement of acoustic recorders (see inset for floating acoustic recording unit) relative to the track of the focal group of dolphins. <u>A single</u>	
262 263 264 265	Figure 1. A schematic representation of the placement of acoustic recorders (see inset for floating acoustic recording unit) relative to the track of the focal group of dolphins. <u>A single</u> buoy and associated hydrophone were placed within 500 m of the animals during the pre-	
262 263 264 265 266	Figure 1. A schematic representation of the placement of acoustic recorders (see inset for floating acoustic recording unit) relative to the track of the focal group of dolphins. <u>A single</u> buoy and associated hydrophone were placed within 500 m of the animals during the pre- exposure, exposure, and post-exposure period. The first buoy is placed within 500m of the	
262 263 264 265 266 267	Figure 1. A schematic representation of the placement of acoustic recorders (see inset for floating acoustic recording unit) relative to the track of the focal group of dolphins. A single buoy and associated hydrophone were placed within 500 m of the animals during the pre- exposure, exposure, and post-exposure period. The first buoy is placed within 500m of the animals during the pre-exposure, the second during the exposure, and the third during the post-	
262 263 264 265 266 267 268	Figure 1. A schematic representation of the placement of acoustic recorders (see inset for floating acoustic recording unit) relative to the track of the focal group of dolphins. A single buoy and associated hydrophone were placed within 500 m of the animals during the pre- exposure, exposure, and post-exposure period. The first buoy is placed within 500m of the animals during the pre-exposure, the second during the exposure, and the third during the post- exposure period. The sound source is located at approximately 1 km from the dolphins at the	
262 263 264 265 266 267 268 269	Figure 1. A schematic representation of the placement of acoustic recorders (see inset for floating acoustic recording unit) relative to the track of the focal group of dolphins. A single buoy and associated hydrophone were placed within 500 m of the animals during the pre- exposure, exposure, and post-exposure period. The first buoy is placed within 500m of the animals during the pre-exposure, the second during the exposure, and the third during the post- exposure period. The sound source is located at approximately 1 km from the dolphins at the onset of the exposure period. Note that the source vessel was idling in neutral and was not	
262 263 264 265 266 267 268 269 270	Figure 1. A schematic representation of the placement of acoustic recorders (see inset for floating acoustic recording unit) relative to the track of the focal group of dolphins. A single buoy and associated hydrophone were placed within 500 m of the animals during the pre- exposure, exposure, and post-exposure period. The first buoy is placed within 500m of the animals during the pre-exposure, the second during the exposure, and the third during the post- exposure period. The sound source is located at approximately 1 km from the dolphins at the onset of the exposure period. Note that the source vessel was idling in neutral and was not moving throughout the duration of the exposure period. The dashed line with associated arrows	
262 263 264 265 266 267 268 269 270 271	Figure 1. A schematic representation of the placement of acoustic recorders (see inset for floating acoustic recording unit) relative to the track of the focal group of dolphins. A single buoy and associated hydrophone were placed within 500 m of the animals during the pre- exposure, exposure, and post-exposure period. The first buoy is placed within 500m of the animals during the pre-exposure, the second during the exposure, and the third during the post- exposure period. The sound source is located at approximately 1 km from the dolphins at the onset of the exposure period. Note that the source vessel was idling in neutral and was not moving throughout the duration of the exposure period. The dashed line with associated arrows represents the movement path of the focal group. Note the The shore station monitoring the group	
262 263 264 265 266 267 268 269 270 271 272	Figure 1. A schematic representation of the placement of acoustic recorders (see inset for floating acoustic recording unit) relative to the track of the focal group of dolphins. A single buoy and associated hydrophone were placed within 500 m of the animals during the pre- exposure, exposure, and post-exposure period. The first buoy is placed within 500m of the animals during the pre-exposure, the second during the exposure, and the third during the post- exposure period. The sound source is located at approximately 1 km from the dolphins at the onset of the exposure period. Note that the source vessel was idling in neutral and was not moving throughout the duration of the exposure period. The dashed line with associated arrows represents the movement path of the focal group. Note the The shore station monitoring the group was positioned on landb and is denoted by the theodolite symbol. presence of the shore station	

Formatted: Font: Not Bold

Formatted: Font: Not Bold

Formatted: Font: Not Bold

273	positioned on land. The map was inspired by images from the NASA Earth Observatory (public
274	domain) and was not drawn to scale (for illustrative purposes only).

275 276 To evaluate which PAM recording unit was closest to the focal group given the dolphins' 4 277 frequently unpredictable course, the relative proximity of each hydrophone to the animals was 278 determined *post-hoc*Given the dolphins' frequently unpredictable course, the relative proximity 279 of each hydrophone to the animals was determined post-hoc to evaluate which PAM recording 280 unit was closest to the focal group. The animals' location was known from an associated 281 octocopter drone flight (APO-42, Aerial Imaging Solutions) that utilized a micro 4/3 digital 282 camera (Olympus E-PM2) and 25 mm lens (Olympus M. Zuiko F1.8) mounted to a gimbal. 283 centered over the focal The octocopter flew group at approximately 60 m directly above the 284 dolphins to provide sufficient pixel resolution while decreasing the potential for disturbance [(see 285 2934 for details]). The relative distances (in meters) between the focal group (from the drone's 286 GPS) and each recorder (from their flag-mounted GPS units) were estimated for every 287 minutemin of the 30-minutemin experiment using the Haversine formula and linear interpolation 288 in in a custom MATLAB script (Mathworks, Natick, MA, USA, Fig. 2). Recordings from the 289 buoy closest to the focal group at 1-minutemin intervals were used for all subsequent analyses. 290 Any recordings made when a recorder s that exceeded 1600 meters 1.6 km from the focal group 291 (even if ththe recorder was the closest available ey were the closest recorder deployed) were 292 excluded. This threshold was selected based on a previous assessment of detection ranges of 293 playbacks of odontocete whistles (10-20 kHz) by bottom-mounted hydrophones in southern 294 California, which demonstrated a 95% probability of detection of a 135 dB re 1 µPa dolphin

Formatted: Indent: First line: 0.5"

whistle at 1.600 meters km with an SNR of 2.2 dB re 1µPa [31](37). This assessment was

296	supported by the drop-off in whistle amplitude observed in the spectrograms (<i>post-hoc</i>) when
297	any buoy surpassed 1600-1800 <u>1.6-1.8 km</u> distance from the focal group (Fig. 2). <u>After</u>
298	accounting for this distance cut-off, 9.25 total hours of recordings remained and were used in
299	subsequent analysis.
300	
301	Figure 2. Spectrograms of each of the three recorders strategicallystrategically placed on
302	the tracklinetrack line of a moving group of dolphins and associated whistle
303	counts detections from the buoy closest to the animals at each minute. from each of the
304	three recorders <u>that were</u> strategically placed on the track-line <u>track line</u> of a moving
305	group of dolphins. The solid white line represents the distance between the recorder and the
306	drone_flight centered over the focal group (units on the right y-axis), the red dashed vertical lines
307	denote the experimental period, and the horizontal white dashed line marks the 1600 m1.6 km
308	threshold. Estimates of the relative distance between the focal group and each of the
309	recordersrecorder werewere produced assessed every minutemin of the 30-minutemin
310	experiment. The bottom panel shows the number of whistles detected on the closest recorder
311	using the PAMGuard Whistle and Moan Detector. Times when the closest buoy switched is
312	indicated by the blue dashed lines and associated blue numbers The blue dashed lines and
313	associated blue numbers indicate times when the closest buoy switched and which buoy was
314	closest. The grey area denotes where whistle detections were excluded due to the recorder
315	distance exceeding 1.6 km.MFAS pings denoted by the vertical lines on the spectrogram during
316	the experimental period.
317	

318 **2. Quantifying whistle production and variability**

Formatted: Font: 14 pt, Not Italic

Formatted: Font: 14 pt

319	While common dolphins are known to emit buzzes, echolocation clicks, and whistles, we 🔶	Formatted: Indent: First line: 0.5"
320	focused our efforts on characterizing whistle production since they are the key <u>critical</u> signal for	
321	long distancelong-distance communication and play a majorsignificant role in group cohesion	
322	and coordination [(2], 38). Extraction of whole whistle contours in high background noise with	
323	overlapping whistles is extremely exceptionally challenging and results in high rates of missed	
324	detections, irrespective of methodology. To create a dataset in which error rates were kept	
325	constant across different phases of the experiment <u>experimental phases</u> , we used the Whistle and	
326	Moan Detector (WMD) module in PAMGuard (v 2.01.05), 39)[32]. The WMD deals with	
327	uncertainties by only detecting parts of whistles that clearly stand out above noise using	
328	standardized settings across extractions. It is important to note that this often leads to a	
329	fragmentation of whistles, with one whistle being split into several independent sections. Thus,	
330	whistle counts detections reported here are not comparable to ones obtained with whole whistle	
331	extraction in other studies. However, for our assessment of changes in vocal activity between	
332	different experimental phases, it was more important to keep error rates constant to allow for	
333	relative comparisons. A qualitative assessment of detector performance within each CEE	Formatted: Font color: Text 1
334	ensured that variation in whistle detections accurately reflected variation in whistle activity	Formatted: Font: Times New Roman, 12 pt, Font color: Text 1
335	observed in the spectrograms.	Formatted: Font color: Text 1
336		
337	The WMD operates on the spectrogram output of the PAMGuard Fast Fourier Transform	Formatted: Indent: First line: 0.5"
338	(FFT) Engine module. We optimized settings for the FFT Engine to provide comparable	
339	frequency and temporal resolution of the calculated spectrograms across the two recorders and	
340	sampling rates. For the SoundTrap recorders, which had a sampling rate of 96 kHz, the FFT	
341	Engine module calculated computed spectrograms with an FFT length 1024, hop size of 1024,	

342	hop size of 512, and a Hann window. This resulted in providing a frequency resolution of 93.75	
343	Hz and time resolution of 10.67 ms. For the SNAP recorders, which had a sampling rate of 44.1	
344	kHz, spectrograms were calculated with a Hann window, FFT length 512 and hop size 256, and	
345	hop size 256, resulting resulting in a frequency resolution of 86.13 kHz and time resolution of	
346	11.61 ms. The WMD was set to detect whistles between 5 kHz and 20 kHz to exclude detection	
347	of the tonal sounds from the simulated mid-frequency sonar playbacks source (below 5 kHz) and	
348	to standardize the upper detection limit across the two sampling rates and avoid any possible	
349	edge effects near the Nyquist frequency of the lower sampling rate. The detection threshold was	
350	set at 6.0 dB <u>re 1µPa</u> . Full WMD settings can be found <u>are</u> in the supplementary materials (S1	
351	AppendixFig). While the fundamental sonar tonals were excluded by the 5 kHz low-pass	Commented [SF2]: This would be high-pass, correct? Or just 'low cut off?
352	cuthigh-pass cut-off for detections, the high source level of the simulated MFAS resulted in the	Just tow cut-on :
353	presence of harmonics in some of the recordings. All harmonics were manually annotated in	
354	PAMGuard Viewer using the Spectrogram Annotation module for later removal.	
355		
356	Detected wWhistles were automatically exported from the PAMGuard detection database	Formatted: Indent: First line: 0.5"
357	using the PAMGuard MATLAB tools (https://github.com/PAMGuard/PAMGuardMatlab).	
358	Annotated MFAS harmonics were removed using and R package `PAMmiscPal` in R version	
359	4.3.1 [33,3432,33](40). MFAS harmonics were removed, and Wwhistles were quantified at 1	
360	second resolution: Bbecause whistles are were often longer than 1-second 1 s in duration, the	
361	total number of whistles starting within a 1-second bin was counted, providing a metric for	
362	whistle activity as detected whistles detections per second. For brevity, this is referred to as	
363	whistle count throughout the remainder of this manuscript.	
364		

365	C. Characterization of baseline vocal behavior	Formatted: Font: 16 pt
366	1. Overall whistle count	Formatted: Font: 14 pt, Not Italic
		Formatted: Font: 14 pt
367	To assess common dolphin vocal behavior in control conditions, we calculated the mean \checkmark	Formatted: Indent: First line: 0.5"
368	and median whistle count per second for the full 30-minute experiment for each control CEEWe	
369	calculated the mean and median whistle count per second for the entire 30-min experiment for	
370	each control CEE to assess common dolphin vocal behavior under control conditions. These data	
371	were evaluated with reference to concurrent data collectgroup size estimates collecteded by	
372	experienced shore-based focal follow observations that quantified group size. observers.	
373		
374	2. Changepoint analysis	Formatted: Font: 14 pt, Not Italic
375	To describe the natural variability in yocal behavior during control conditions, we applied	Formatted: Font: 14 pt
575	To describe the natural variability in vocal behavior during control conditions, we applied	Formatted: Indent: First line: 0.5"
376	a changepoint analytical approach to the control CEE data collected for both common dolphin	
377	speciesWe applied a changepoint analytical approach to the control CEE data collected for both	
378	common dolphin subspecies to describe the natural variability in vocal behavior during control	
379	conditions. Change point detection is used to pinpoint times when the probability distribution of	
380	a time series changes (<i>i.e.</i> , vocal state changes). The aim is to identify times at which when either	
381	the mean or variance deviates from the expected trends in the dataset and estimate the number	
382	and position of all changepoints. Effectively, this approach detects points in time when a	
383	significant change in whistle count occurs. First, a 5 ₋ -second smoothing window was applied to	
384	the raw 1-second whistle count data. Then, changepoints in both mean whistle count and whistle	
385	count variance were detected using the 'changepoint' package in R version 2.2.4 [(34-35]41).	
386	The "BinSeg" (Binary Segmentation) algorithm was used. This provided the number and	

387	locations of all state changes in both the mean and the variance of whistle count over the total <u>the</u>	
388 389	mean and the variance of whistle count over the 30-minutemin sampling period.	
390	D. Assessing the impact of disturbance on vocal behavior	Formatted: Font: 14 pt
391	We employed a hierarchical approach to characterizing the types of vocal responses that	Formatted: Indent: First line: 0.5"
392	might be detected during controlled exposure to MFAS using broad and fine-scale time windows	
393	Using broad and fine-scale time windows, we employed a hierarchical approach to	
394	characterizing the types of vocal responses that might be detected during controlled exposure to	
395	MFAS (Fig. 3). All statistical analyses were carried out using R version 4.3.1 [34](R Core Team	
396	2023).	
397		
398	Figure 3. Flowchart of methods implemented to assess changes in common dolphin vocal	
399	behavior during controlled exposure to MFAS. Methods include pre-processing of acoustic	
400	data and to baseline vocal behavior analysis and as well as a hierarchical assessment of	
401	disturbance on vocal behavior at four three temporal scales. Alpha-numeric references	
402	corresponds to the sub-heading in the methods section.	
403		
404	1. Difference in changepoints by period across CEEs	Formatted: Font: 14 pt, Not Italic
105	We conducted a charge point analysis on all CEEs (both controls and MEAS) to evaluate t	Formatted: Font: 14 pt
403	we conducted a changepoint analysis on an CEEs (both controls and WFAS) to evaluate	Formatted: Indent: First line: 0.5"
406	whether common dolphins change the frequency of vocal state switching as a result of exposure	
407	to MFAS. We used the same general method as in Section C.2 <u>described above</u> but quantified the	
408	number of changepoints in the 10-minutemin pre-exposure and 10-minutemin exposure periods	
409	separately. Changepoints were detected for both the mean and variance of the whistle count data.	

411	unpaired t-test was used to evaluate any significant differences between controls and MFAS	
412	experiments.	
413		
414	2. Characterize the impact of MFAS exposure on whistle count: 10-minutemin	Formatted: Font: 14 pt. Not Italic
		Formatted: Font: 14 pt, Not Italic
415	time scale	Formatted: Font: 14 pt
416	To identify potential broad scale changes in whistle count in response to a simulated MFAS	
417	exposurebroad-scale changes in whistle count in response to simulated MFAS exposure, we	
418	pooled and analyzed all CEEs (both controls and MFAS exposures) and analyzed them using a	
419	Generalized Linear Mixed Model (GLMM) approach, implemented using R package	
420	`glmmTMB` [(<u>365</u> 42]). We modeled the absolute difference in median whistle count between	
421	the 10-minutemin pre-exposure period and the 10-minutemin exposure period (periodDiff) as a	Formatted: Font: Italic
422	function of CEE type (<i>ceeType</i> ; either control or simulated MFAS), a random identity variable	Formatted: Font: Italic
423	(ceeNum), dolphin species subspecies (subSspecies), the best estimate of total group size from the	Formatted: Font: Italic
424	shore basedshore-based observers (<i>groupSize</i>), and the mean distance between the focal group	Formatted: Font: Italic
.2.	shore bused biote bused boser fors group size), and the mean distance between the rocal group	Formatted: Font: Italic
425	and the closest buoy for the full <u>entire</u> CEE (<i>buoyDistance</i>). Using the absolute value for	Formatted: Font: Italic
426	difference in median whistle count enabled us to explore the magnitude of a potential response.	
427	We modeled the relationship using a negative binomial distribution, which fit the count-type data	
428	after the transformation. Our full model was:	
429		
430	periodDiff_~_ceeType_+_ceeNum_+_ <u>subS</u> species+_groupSize_+_buoyDist	Formatted: Font: Italic

The difference in the number of changepoints between the two periods was calculated, and an

	· · · · · · · · · · · · · · · · · · ·
433	model. We used backward elimination and resulting AIC scores to select our final model and
434	present the results of the final model below.
435	
436	3. Characterize the impact of MFAS exposure on whistle count: 20-second

We used backward elimination, ΔAIC , and analysis of variance (ANOVA) to select the best

432

time scale 437 438 To characterize more instantaneous changes in whistle production in response to MFAS 439 exposure, we compared dolphin whistle counts detections in the 20 seconds before and 20 440 seconds after each individual ping (n = 24 1-second pings per 10-minute experimental period, 441 \sim 25 seconds between each ping) for both MFAS experiments and controls. We selected this time 442 window to capture sustained variation in whistling behavior within a single ping cycle, without 443 overlap between cycles. Differences between these two sequential time bins were calculated by 444 subtracting the mean whistle count for the first bin from the mean whistle count of the second 445 bin (Fig. 4B). The first ping started at time 0, the second ping at timeat 25 seconds, and so on. 446 Because no actual pings were present in the control experiments, we calculated the change in 447 whistle count surrounding 'ghost pings' which were chosen to be timed at the same time as when 448 real pings would have occurred during atime points placed at the same time as when actual pings 449 would have occurred during an MFAS CEE. 450 451 Figure 4. Example plots of (A) raw whistle counts detections over time, (B) changes in

whistle count between 20 second duration sequential bins, and (C) changes in whistle count
between 5 second duration sequential bins, for the pre-exposure, exposure, <u>20-s duration</u>
sequential bins, and (C) changes in whistle count between 5-s duration sequential bins for

Formatted: Font: 14 pt, Not Italic

Formatted: Font: 14 pt

455	the pre-exposure, exposure, and post-exposure period within one CEE. The dashed vertical	Formatted: Font: Not Bold
456	red line indicates the onset of exposure, and the sequential gray dashed lines represent each ping	
457	within the exposure period, _Pre-exposure and postPost-exposure periods were not included in	Formatted: Font: Not Bold
458	the modeling analysis but are presented here for reference. The grey shaded area denotes where	
459	whistle detections were excluded due to the recorder distance exceeding 1.6 km.	
460		
461	Similar to <u>Like</u> the analysis at the 10-minute <u>min</u> time scale, we used a generalized linear	Formatted: Indent: First line: 0.5"
462	mixed modelGLMM approach (using R package `glmmTMB`) to identify potential significant	
463	differences immediately following pings (pingChange) in MFAS experiments compared to	
464	controls where no pings were present. In addition to the previous fixed effects included at the 10-	
465	minutemin scale (ceeType, ceeNum, subSspecies, buoyDistance, and groupSize), we also	
466	included median whistle count per second for the entire experimental period to account for the	
467	varied baseline whistling activity across CEEs (medWhist).	
468		
469	pingChange_~_ceeType_+_ceeNum_+_ <u>subS</u> species <u>subspecies</u> +_groupSize_+_buoyDist_+_medWhist	Formatted: Font: Italic
470		
471	Binned ping change data were generally normally distributed, but were zero- inflated, so	Formatted: Indent: First line: 0.5"
472	we used a Gaussian distribution for the primary model and additionally modeled the zero	
473	inflation as a function of median whistle count (medWhist). We used backward elimination,	
474	Δ AIC, and analysis of variance (ANOVA) to select the best model.	
475		
476	4. Characterize the impact of MFAS exposure on whistle count: 5-second time	Formatted: Font: 14 pt, Not Italic
477	scale	

478	We repeated the analysis conducted <u>above</u> in section D3, but over a shorter 5 second $5-s$	Formatted: Indent: First line: 0.5"
479	time window to investigate potential shorter durationinstantaneous changes immediately	
480	following pings (Fig. 4C).	
481		
482	Similar toLike the above analysis, we used a generalized linear mixed modelGLMM approach to	
483	identify potential significant differences in whistle count changes in the 5 seconds following	
484	compared to the 5 seconds before each ping (pingChange) for MFAS experiments compared to	
485	controls. We used the same fixed effects implemented at the 20-second scale (ceeType, ceeNum,	
486	[subSspecies, buoyDistance, and groupSize, medWhist) but also included an autocorrelation	
487	structure to this analysis $AR(1)$ to account for clear <u>apparent</u> temporal lag effects in exploratory	
488	plots.	
489		
490	pingChange_~_ceeType_+_ceeNum_+ <u>subS</u> species+_groupSize_+_buoyDist_+_medWhist_+_AR(1)	Formatted: Font: Italic
491		
492	Like the 20-second scale, binned ping change data were normally distributed and zero_ inflated;	
493	a Gaussian distribution was used for the conditional model and zero-inflation was modeled as a	
494	function of median whistle count (<i>medWhist</i>). We used backward elimination, ΔAIC , and	
495	ANOVA to select the final model.	
496		
497	5. CEE-by-CEE analysis	Formatted: Font: 14 pt, Not Italic
		Formatted: Font: 14 pt
498	We assessed each playback individually at each time scale to better contextualize the	Formatted: Indent: First line: 0.5"
499	severity and, persistence of responses and whether dolphins increased or decreased their whistle	
500	behavior following sonar exposure., and directionality (i.e., increase or decrease in whistle	

501	count) of responses, which were not measured by either the modeling approach or changepoint		
502	analysis. The methods and results for the CEE-by-CEE analysis can be found in the		
503	supplementary materials (S12 File Appendix).		
504			
505	Ethics Statement		
506	Animal research was conducted under authorization of the United States National Marine	(Formatted: Don't add space between paragraphs of the same style
507	Fisheries Service marine mammal research permits 19116 and 19091.		
508			
509	Results and discussion	1	Formatted: Font: 18 pt
		ſ	
510	A		Formatted: Font: 18 pt
511	A. Characterization of baseline vocal behavior		Formatted: Font: 16 pt
512	1. Basic dDescription	\langle	Formatted: Font: 14 pt, Not Italic
513	This analysis includes nine control experiments, each conducted on separate days. Four	\square	Formatted: Font: 14 pt, Not Italic
515			Formatted: Font: 14 pt Formatted: Indent: First line: 0.5"
514	<u>control</u> of these experiments were conducted with <i>Delphinus delphisshort-beaked common</i>	l	
515	dolphins, and five were conducted with Delphinus bairdiilong-beaked common dolphins (Table		Formatted: Font: Not Italic
516	1). This resulted in 270 minutemins of baseline acoustic data for both species subspecies		
517	(pooled). The average group size across species subspecies was 190 individuals (range 45-300		
518	animals). The dispersion of of animals varied considerably within and between control		
519	experiments, including small to large groups (55-300 individuals) in tight to looselose		
520	organization, joint (in a single group with no subgroups), or spread out over several subgroups		
521	(range: 2-6) at tens to several hundreds of meters apart (range: 10-800 m).		
522			

523	Whistles were successfully detected across all control experimental deployments. Mean
524	(SD) and Median (IQR) whistle count per second varied between control CEEs (Table 1). In our
525	assessment of the control experiments, we found the total number of whistles varied between
526	0.3-4.6 whistles/second. Note_, however, that the inherent uncertainty error in our group size
527	assessment for large groups did not allow us to calculate accurate whistle rates/individual (see
528	<u>T</u> table 1 for group size estimates and whistle counts <u>detections</u>).
529	

Table 1. Summary of each controlled exposure experiment, including controls (no sound
 emitted) and 'simMFAS'MFAS (playback of simulated mid-frequency active sonar).

							Median [IQR]				
							whistles per	# cChangepoints			
		species <u>Ssubspe</u>	Eestimated group				secondecond	(mean, pre-	C# changepoints	#C changepoints -	C# chan ep
CEI	ID	cies	size	Type	RL (mMax)	RL (Range)	Median [IOR]	exposure) - mean	- mean	wariance - pre-	- van no
							(6.11.20 min		exposure	exposure	exposu
							(Iun 30 Ium	- pre-exposure			
							period)				//
20	9_01	Db	260	simMFAS	147 dB re 1µPa RMS	140-147 dB re 1µPa RMS	6.96 [6.39]	26	39	5	4 /)
20	9_02	Dd	350	control	n/a	n/a	4.80 [5.19]	37	29	0	45
20	9 04	Db	200	control	n/a	n/a	0.25 [0.77]	2	0	4	-2/
20	9_06	Db	45	control	n/a	n/a	0.32 [1.38]	5	0	4	
20	9_07	Db	300	simMFAS	154 dB re 1µPa <u>RMS</u>	150-154 dB re 1µPa RMS	3.11 [3.81]	36	20	3	
20	9_08	Db	250	simMFAS	142 dB re 1µPa RMS	131-142 dB re 1µРа <mark>.RMS</mark>	1.50 [3.91]	30	12	4	44
20	9_09	Dd	250	control	n/a	n/a	4.21 [5.38]	46	44	2	
20	9_10	Dd	30	simMFAS	149 dB re 1µPa RMS	146-149 dB re 1µРа <mark>.RMS</mark>	0.091 [0.38]	0	0	3	•7
20	1_01	Db	150	control	n/a	n/a	3.14 [4.47]	3	51	1	43
20	1_02	Db	200	control	n/a	n/a	4.68 [3.89]	18	29	0	
20	1_03	Dd	150	control	n/a	n/a	0.99 [2.01]	11	0	2	-4
20	1_04	Db	150	control	n/a	n/a	4.66 [4.20]	27	37	4	
20	1_05	Dd	250	control	n/a	n/a	0.36 [1.87]	0	5	8	
20	1_08	Db	30	simMFAS	153 dB re 1µРа <u>RMS</u>	145-153 dB re 1µРа <mark>.RMS</mark>	14.13 [7.85]	50	49	2	
20	1_09	Db	200	simMFAS	157 dB re 1µPa <mark>RMS</mark>	152-157 dB re 1µPa <u>RMS</u>	1.17 [2.17]	3	6	2	
20	1_10	Db	300	simMFAS	159 dB re 1µPa <u>RMS</u>	150-159 dB re 1µPa RMS	15.34 [9.16]	42	61	3	
20	1_11	Db	10	simMFAS	153 dB re 1µPa RMS	150-153 dB re 1µPa RMS	0.0029 [0.063]	0	0	0	
20	1_12	Dd	150	simMFAS	152 dB re 1µPa RMS	149-152 dB re 1µPa <u>RMS</u>	2.85 [3.07]	7	24	4	
20	1_13	Dd	200	simMFAS	147 dB re 1µPa <u>RMS</u>	139-147 dB re 1µРа <mark>.RMS</mark>	2.21 [4.73]	2	2	9	-

Formatted [... Formatted (... Formatted ... Formatted [... Formatted ... Formatted Formatted ... Formatted ... **Formatted Table** ... Formatted Formatted ... Formatted ... <u>...</u> Formatted Formatted ... Formatted ... Formatted (... Formatted (... Formatted ... Formatted (... Formatted [... Formatted (... [... Formatted Formatted (... <u>...</u> Formatted Formatted ... Formatted ſ., Formatted Formatted Formatted Formatted (... Formatted (... Formatted ... Formatted (... Formatted ... Formatted ... Formatted (... Formatted [... Formatted (... Formatted ... Formatted (... Formatted ... Formatted ... Formatted (... Formatted ... Formatted (... Formatted ... Formatted ... Formatted ... Formatted Formatted (... Formatted ... Formatted

333		
534	Table 1. Summary of each controlled exposure experiment including controls (no sound	
535	emitted) and 'simMFAS' (playback of simulated mid-frequency active sonar). CEEID	
536	contains denotes the year and the CEE number. Species abbreviations are Db for D. bairdii and	
537	Dd for <i>D. delphis</i> and Subspecies abbreviations are Db for <i>D. d. pairdii</i> and Dd for <i>D. d. delphis</i> ,	Formatted: Font: Italic
538	and the estimated group size is taken from shore observations. Received sound levels (RLs) are	Formatted: Font: Italic Formatted: Font: Italic
539	reported fromby Durban et al. 2022 [29]. Median The median and interquartile range (IQR, 25-	Formatted: Font: Italic
540	75th percentiles) are given for the raw whistle counts detections per second nd of the entire 30-	
541	minutemin CEE. Changepoints were calculated on for both the mean whistle count and the	
542	variance in whistle count, separately for the pre-exposure and exposure periods. Note that	
543	"exposures" in controls were quiet periods for comparison <u>compared</u> to sound exposure in MFAS	
544	trials.	
545		
546	2. Baseline Changepoint Analysis	Formatted: Font: 14 pt, Not Italic
547	The baseline changemoint analysis revealed that mean detected whictle counts over the	Formatted: Font: 14 pt
047	The baseline changepoint analysis revealed that mean detected whistle counts over the	Formatted: Indent: First line: 0.5"
548		
0.10	30-minutemin control sampling periods changed once every minutemin, and variance in detected	
549	30-minute <u>min</u> control sampling periods changed once every minute <u>min</u> , and variance in detected whistle count <u>counts</u> changed once every 3.5 minute <u>min</u> s in control conditions.	
549 550	30-minute <u>min</u> control sampling periods changed once every minute <u>min</u> , and variance in detected whistle count <u>counts</u> changed once every 3.5 minute <u>min</u> s in control conditions.	
549 550 551	 30-minute<u>min</u> control sampling periods changed once every minute<u>min</u>, and variance in detected whistle count<u>counts</u> changed once every 3.5 minute<u>min</u>s in control conditions. B. Assessing the impact of disturbance on whistle behavior 	Formatted: Font: 16 pt
549 550 551 552	30-minute <u>min</u> control sampling periods changed once every minute <u>min</u> , and variance in detected whistle count <u>counts</u> changed once every 3.5 minute <u>min</u> s in control conditions. B. Assessing the impact of disturbance on whistle behavior A total of 10 MFAS CEEs were conducted <u>–</u> - eight <u>seven</u> of which included Delphinus	Formatted: Font: 16 pt Formatted: Indent: First line: 0.5"
549 550 551 552	30-minute <u>min</u> control sampling periods changed once every minute <u>min</u> , and variance in detected whistle count <u>counts</u> changed once every 3.5 minute <u>min</u> s in control conditions. B. Assessing the impact of disturbance on whistle behavior A total of 10 MFAS CEEs were conducted <u>-</u> - eight <u>seven</u> of which included Delphinus	Formatted: Font: 16 pt Formatted: Indent: First line: 0.5" Formatted: Font: Not Italic
549 550 551 552 553	30-minute <u>min</u> control sampling periods changed once every minute <u>min</u> , and variance in detected whistle count <u>counts</u> changed once every 3.5 minute <u>min</u> s in control conditions. B. Assessing the impact of disturbance on whistle behavior A total of 10 MFAS CEEs were conducted <u>–</u> - eight <u>seven</u> of which included <u>Delphinus</u> bairdii, <u>long-beaked common dolphins</u> and two <u>three</u> of which included <u>Delphinus delphisshort-</u>	Formatted: Font: 16 pt Formatted: Indent: First line: 0.5" Formatted: Font: Not Italic Formatted: Font: Not Italic
549 550 551 552 553 554	 30-minute<u>min</u> control sampling periods changed once every minute<u>min</u>, and variance in detected whistle count<u>counts</u> changed once every 3.5 minute<u>min</u>s in control conditions. B. Assessing the impact of disturbance on whistle behavior A total of 10 MFAS CEEs were conducted <u>–</u> eight<u>seven</u> of which included Delphinus bairdii,<u>long-beaked common dolphins</u> and two <u>three</u> of which included Delphinus delphis<u>short-beaked common dolphins</u>. The calculated average received level across all experiments was 151	Formatted: Font: 16 pt Formatted: Indent: First line: 0.5" Formatted: Font: Not Italic Formatted: Font: Not Italic Formatted: Font: Not Italic
549 550 551 552 553 554 555	30-minute <u>min</u> control sampling periods changed once every minute <u>min</u> , and variance in detected whistle count <u>counts</u> changed once every 3.5 minute <u>min</u> s in control conditions. B. Assessing the impact of disturbance on whistle behavior A total of 10 MFAS CEEs were conducted <u>–</u> - eight <u>seven</u> of which included Delphinus bairdii, <u>long-beaked common dolphins</u> and two <u>three</u> of which included Delphinus delphis <u>short- beaked common dolphins</u> . The calculated average received level across all experiments was 151 dB re 1μPa <u>RMS</u> (range 142-159 dB re 1μPa <u>RMS</u> , Table 1). The average group size for MFAS	Formatted: Font: 16 pt Formatted: Indent: First line: 0.5" Formatted: Font: Not Italic Formatted: Font: Not Italic Formatted: Font: Not Italic

556	CEEs was ~173 individuals (range 10-300, Table 1). For the changepoint analysis, all 10 MFAS
557	experiments were included. However, for the assessment of changes in whistle behaviors across
558	different time scales, we excluded CEE 2021_11 (conducted with long-beaked common Formatted: Font: Not Italic
559	dolphins) had to be excluded because the overall lack of detected whistles could not be
560	successfully modeleddue to the lack of detected whistles, which prohibited its inclusion in the
561	modeling. Consequently, the modeling results include nine controls and nine MFAS
562	experiments.
563	
564	1. Number of changepoints in pre-exposure vs exposure
	Formatted: Font: 14 pt
565	Changepoint analysis was run for all control (9) and MFAS (10) experiments. The Formatted: Indent: First line: 0.5"
566	number of changepoints detected in both the mean and variance of whistle count during the pre-
567	exposure and exposure periods are is presented in Table 1 for both controls and MFAS
568	experiments. There was no significant increase or decrease in the mean and variance of detected
569	whistle counts following MFAS exposure when compared to the natural variance present during
570	control conditions. The difference (Δ) in change points in variance in <u>of</u> whistle <u>detections</u> count
571	between the pre-exposure and exposure period did not differ significantly between controls and
572	MFAS CEEs (controls: M = 3.1, SD = 1.4; MFAS: M = 2.5, SD = 2.3; t(17) = 0.69, p = 0.5). The
573	same was true when comparing the mean whistle count between both experimental types
574	(controls: $M = 11.3$, $SD = 14.2$; MFAS, $M = 8.7$, $SD = 8.5$; t(17) = 0.5, p = 0.63).
575	
576	2. Impact of MFAS exposure on whistle count: 10-minutemin time scale Formatted: Font: 14 pt, Not Italic
	Formatted: Font: 14 pt, Not Italic
577	Whistle counts detections did not change between the pre-exposure and exposure period Formatted: Font: 14 pt
578	during MFAS experiments at the 10-min time scale. At the 10-minute time scale, the The

579	preferred model was the simplest model with the absolute value of the change in median whistle
580	count as a function of only CEE type (either MFAS or control). There was no significant effect
581	of CEE type on the change in median whistle count <u>detections</u> (negative binomial GLMM, n =
582	18, p = 0.8). The full model (Δ AIC 5.4) indicated that no proposed predictor variables (CEE
583	type, CEE number, speciessubspecies, buoy distance, or group size) had a significant effect on
584	the change in median whistle count between the pre-exposure and exposure periods for both
585	MFAS and control CEEs (negative binomial GLMM, $n = 19$: $P > 0.05$ for all variables, <u>T</u> table
586	2).

588 Table 2. Overview of GLMMs used at three time-scales<u>time scales</u> -_ 10_ minute<u>min</u>s, 20_

589 seconds, and 5- seconds.

							Formatted	
-		Zzero-inflation	DIAN	1.110	Ddegrees of	Ddispersion	Formatted	
		model	Ddistribution	ΔAIC	freedom	(g^2)	Formatted	
-	10-minute <u>min</u> scale					-	Formatted	
-	abs(wr <u>period</u> Diff) ~ <u>c</u> eeType	n/a	nbinom2	0	3	◄ 5.44	Formatted	
	$abs(periodDiffwrDiff) \sim ceeType + (1 ceeNum)$	n/a	nbinom2	2	4	▲ 1.04	Formatted	
	abs(<u>periodDiff</u> wrDiff) ~ ceeType + (1 ceeNum) + <u>subS</u> species + <u>buoyDist</u> +					•	Formatted	
	groupSize	n/a	nbinom2	5.4	7	1 48	Formatted	
_	20-second scale						Formatted	
_							Formatted	[
	pingDdiff ~ ceeType + medWhistexpMed	~ <u>medWhist</u> expMed	gaussian	0	6	1 //	Formatted	
	pingDiffdiff ~ ceeType	~medWhistexpMed	gaussian	5.1	5	1 ,23	Formatted	
	<pre>pingDiffdiff ~ ceeType + subSpeciesspecies + groupSize + buoyDist +</pre>	madWhistexpMed	asuccian	53	0	7.00	Formatted	
	<u>medWhist</u> expMed	~ <u>meawmsn</u> expiried	gaussian	5.5	2	1.03	Formatted	
	<pre>pingDiffdiff ~ ceeType + (1 ceeNum)</pre>	~medWhistexpMed	gaussian	7.1	6	1.23	Formatted	
	pingDiffdiff ~ ceeType	none	gaussian	28.3	3	• 6.71	Formatted	
_	5-second scale					•	Formatted	
_	$\underline{pingDiff}diff \sim ceeType + groupSize + \underline{medWhist}expMed + ar1(\underline{times} + 0)$					•	Formatted	
	ceeNum)	~medWhistexpMed	gaussian	0	9	10.1	Formatted	
	▲						Formatted	
							lomatica	l

.... Formatted Formatted Formatted Formatted Formatted Formatted Formatted

....

....

Formatted

Formatted

<u>pii</u>	ngDiffdiff ~ ceeType + (1 ceeNum) + subSpeciesspecies + groupSize +	~medWhistexpMed	gaussian	2.6	12	10.1	Formatted: Font: Italic
	puoyDist + medWhistexpMed + ar1(times + 0 ceeNum)		8				Formatted: Font: Italic
	$pingDiffdiff \sim ceeType + ar1(times + 0 ceeNum)$	~medWhistexpMed	gaussian	13.8	7	● 9.83	Formatted: Font: Italic
	$\underline{pingDiff}diff \sim \underline{ceeType} + (1 \underline{ceeNum}) + ar1(\underline{times} + 0 \underline{ceeNum})$	~medWhistexpMed	gaussian	15.8	8	● 9.83	Formatted: Font: Italic
	pingDiffdiff ~ ceeType	none	gaussian	207.8	3	4 10.9	Formatted: Don't add space between paragraphs of the same style, Line spacing: Double
590	Model formulas (conditional and zero-inflation	n if included) ar	e listed for	each time so	cale of		Formatted: Font: Italic
591	analysis, and within each time scale are given	in ascending or	der of ΔAIC	C relative to	the best		Formatted: Font: Italic
							Formatted: Font: Italic
592	$2 \underline{\text{model}(\Delta \text{AIC} = 0)}.$						Formatted: Don't add space between paragraphs of the same style, Line spacing: Double
593	3						Formatted: Font: Italic
594	4 3. Characterize the impact of MFAS	exposure on v	whistle co	ount: 20-s	econd		Formatted: Font: Italic
							Formatted: Font: Italic
595	5 time scale						Formatted: Don't add space between paragraphs of the same style, Line spacing: Double
596	5 Whistle counts <u>detections</u> did not differ	r significantly o	ver the 20-	second time	windows		Formatted: Font: Italic
		0					Formatted: Font: Italic
597	7 surrounding each ping. The preferred model at	the 20 second $\frac{2}{2}$	<u>0-s</u> scale in	cluded only	predictor		Formatted: Font: Italic
598	8 variables for CEE type and median whistle cou	unt (Ttable 2). T	he results o	of this mode	l showed		Formatted: Font: Italic
599	9 that CEE ceetType did not have a significant e	ffect on change	s in whistle	count in the	e 20-		Formatted: Don't add space between paragraphs of the same style, Line spacing: Double
		0					Formatted: Font: Italic
600) seconds <u>20 s</u> after each ping (GLMM, n=18, slo	ope = 0.47, SE =	= 0.27, P >	0.05, <u>T</u> table	2b), but		Formatted: Font: Not Bold
601	that the baseline median whistle count for that	experimental pe	eriod was a	significant	predictor fo	r	Formatted: Font: Not Bold
					r	- 1	Formatted: Font: 14 pt, Not Italic
602	2 the change in whistle count following a ping o	r ghost ping <u>con</u>	trol treatme	ent (GLMM	n = 19,		Formatted: Font: 14 pt
603	³ slope = 0.76, SE = 0.028, p = 0.0075).						Formatted: Indent: First line: 0.5"
604	4						
605	5 4. Characterize the impact of MFAS	exposure on v	whistle co	ount: 5-se	cond time	•	Formatted: Font: 14 pt, Not Italic
606	6 scale						Formatted: Font: 14 pt
607	The preferred model at the 5 second $5-s$	scale included	the tempor	al autocorre	lation	•	Formatted: Indent: First line: 0.5"
608	3 structure and three explanatory variables, CEE	type, group siz	e, and med	ian whistle o	count, all of		

609	which had a significant effect on the change in whistle count in the 5 seconds immediately
610	following a ping compared to the 5 seconds immediately before a ping. When accounting for all
611	other variables, the magnitude of the change in whistle count in the 5 seconds following a truean
612	actual MFAS ping was 1.4 times greater than any change in whistle count following ghost pings
613	in control CEEs <u>control treatments</u> (GLMM, n=18, slope = 1.43, SE = 0.47, p = 0.002, <u>T</u> table
614	2c). The results of the CEE by CEE analysis (S2 Appendix <u>S1 File</u>) showed that in four <u>five</u> of
615	the nine MFAS experiments in which sound was broadcasted, detected whistle counts were
616	significantly elevated dolphins exhibited a significant elevation in whistle production) in the 5-
617	seconds <u>5 s</u> after each ping <u>for</u> throughout _the entire 10-minute exposure period, while in three
618	of the nine MFAS exposures, animals showed an initial response to the first ping, with vocal
619	responses slowly abating over the course of the experiment (plots of all raw whistles are
620	provided in <u>S2 Fig</u> S3 Appendix). The effect was particularly pronounced (outside the 75 th
621	percentile; Appendix S2 Fig. S2.1 <u>S3 Fig</u>) in the first ping of \underline{six} 6 of the MFAS CEEs; whistle
622	activity increased in the 5 seconds following the first MFAS ping up to 15 times the whistle
623	count in the 5 seconds before the first MFAS ping (mean of all MFAS CEEs 3.9, SD
624	5.2), compared to increases of only up to 1.4 times (mean 0.46, SD 0.88) at the first ghost ping of
625	controls <u>at the start of control treatments</u> (Fig. 5, Appendix S2.1 <u>S3 Fig</u>). Additionally, group size
626	and median whistle count for the exposure period were found to be significant predictor
627	variables. Larger groups showed larger <u>more extensive</u> changes in whistle count following pings
628	and ghost pings <u>control treatments</u> (GLMM, n=18, slope = 0.007, SE = 0.003, p = 0.008, <u>T</u> table
629	2c), and when the median background whistle count was higher, so too were the changes
630	following pings or <u>and ghost pings</u> control treatments (GLMM, $n=18$, slope = 0.25, SE = 0.048, p
631	= < 0.005, <u>T</u> table 2).
1	

633 Figure 5. (A) Spectrogram example of 5 seconds before and 5 seconds after the first ping 634 for MFAS CEE 2021_08, illustrating illustrates the largesignificant increase in whistle 635 count immediately following the cessation of the ping. The grey area denotes where whistle 636 detections were excluded due to the recorder distance exceeding 1.6 km. FocalThe focal group 637 was comprised of approximately 30 long-beaked common dolphins. The MFAS signal can be 638 seen between 3 and 4 kHz. (B) Boxplot of the change in whistle count from the 5 seconds before 639 to the 5 seconds following each of the 24 pings for CEE 2021_08. Boxplot shows median, 25th, 640 and 75th percentiles, with raw whistle count changes as open gray circles. The change following 641 the first ping is shown as a red star.

642

643 **Discussion**DiscussionConclusions

644 We present a hierarchical approach to quantifying the vocal response of large groups of 645 common dolphins to Navy Sonar and find that the most pronounced acoustic response occurs 646 within the 5-seconds following each ping during MFAS exposure. As in previous observational 647 studies evaluating delphinid acoustic behavior (14), determining a singular behavioral response 648 to MFAS presents several challenges. Multiple factors - including rapid changes in the 649 behavioral state over the course of throughout the experiment and variation in group size and 650 composition – make it difficult to assess whether ascribe changes in vocal behavior are due to 651 disturbance or versus natural variability. To better understand typical acoustic variation among 652 common dolphins, we assessed vocal behavior during control conditionsWe assessed vocal 653 behavior during control conditions to understand typical acoustic variation among common 654 dolphins and found. We found that they dolphins exhibited natural vocal state changes (identified **Commented [SF3]:** I think ok to still call this Discussion and above just Results. The example in the formatting website has 'Results and discussion' but then the balloon on the side lists the possible sections as Results, Discussion

Formatted: Font: 18 pt

Formatted: Font: 18 pt

655	by the changepoint analysis) in whistle production approximately once every minutemin. This
656	rapid acoustic state switching informed our analytical approach, which utilized a range of
657	temporal windows to test for changes in whistle count ($\frac{5 \text{ s} - 10 \text{ min}}{10 \text{ minutes}}$ - 5 seconds)
658	before and after MFAS exposure. Across the larger longer time windows selected, selected; we
659	did not detect a changeshift in whistle behavior that was attributable to MFAS. However, CEE
660	type did have a significant effect on significantly affected the change in whistle count in the 5-
661	seconds immediately following a ping compared to the 5-seconds 5 s following a ping compared
662	to the 5 s immediately before a ping.

664	The initial selection of the <u>time_time-periodperiod</u> over which behavior was assessed in
665	response to Navy sonar (10minutes) for this project was influenced by multiple factors,
666	including the flight endurance of the drone used for calculating animal distance to our recording
667	buoys (34), our ability to consistently track large groups of fast-moving dolphins, and other
668	previous BRS methods studies using MFAS (e.g., 18, 37643, 21]). Many of the
669	aforementioned aforementioned constraints are imposed by the logistics of field workfieldwork.
670	An informed approach to identifyidentifying behavioral responses to anthropogenic disturbances
671	sources also requires some prior knowledge of the timing of behavioral state switching in the
672	study species. For example, previous work with blue whales (Balaenoptera musculus) evaluated
673	several behavioral metrics (e.g., maximum depth, dive time, ascent/descent rate) in responses to
674	simulated MFAS exposure over a 30-minute time window [376](43). This exposure duration
675	(which included a 30-minutemin pre-exposure period) was adequate to capture a behavioral
676	change given the typical duration of their dive cycles ((5-8 minutemins) [387], 44). In contrast,
677	beaked whales are known to exhibit extremely <u>incredibly</u> long, deep foraging dives that often last

678	over an hour, followed by long periods of recovery [($e.g.$, $39845,403946$). Consequently, studies	
679	focused on direct measurements of behavioral response by Cuvier's beaked whales to MFAS	
680	extended their pre-exposure baseline period up to 9.3 hours and to perform sound exposure	
681	during foraging dives and evaluated their response to sonar for up to 1.7 hours after the exposure	
682	period [410](47).	
683		
684	While the 10-minutemin exposure period seemed appropriate given the fast-paced lifestyle of	Formatted: Indent: First line: 0.25"
685	common dolphins, neither the aggregate model nor the individual assessment of each CEE	
686	detected a change in acoustic behavior that could be ascribed to sonar exposure at this time scale.	
687	Even when we explored variation in whistle production during the 20-seconds surrounding each	
688	ping, the experimental period was not a significant predictor of changes in whistle count in either	
689	the MFAS or control experiments, as vocal state switching often occurs within a 40 second ^{20-s}	
690	surrounding each ping, the experimental period was not a significant predictor of changes in	
691	whistle count in either the MFAS or control experiments, as vocal state switching often occurs	
692	within a 40-s time window under natural baseline conditions. While the impacts of sonar may be	
693	evident over the 10-minute exposure period for other behavioral metrics (<i>i.e.</i> , changes in	Formatted: Font: Italic
694	behavioral state, group composition, diving behavior), our analysis reveals that changes in	
695	acoustic behavior are limited to an extremely narrow time-window <u>time window</u> in these two	
696	species <u>subspecies</u> .	
697		
698	It was only at the 5-second time scale surrounding each ping that we observed dolphins	Formatted: Indent: First line: 0.25"
699	exhibiting an acute acoustic response, which often included a rapid increase in whistle	
700	production relative to the 5 seconds immediately prior tobefore sound exposure. On average,	

701	dolphins increased their whistle count 4 <u>four</u> times the average count in the 5 seconds preceding
702	the first ping of the exposure. In one MFAS experiment, dolphins increased their whistle
703	production 15 times compared to the whistle count in the 5 seconds immediately before the first
704	ping (S3 Fig) (Appendix S2.1). This elevated vocal response following the first ping of the
705	exposure was seen in six of the nine MFAS exposures where whistles were present.
706	

707 Elevations in whistle counts detections did not occur during the sonar signal transmission 708 itself - which lasted for 1.6 seconds. Rather, the elevated increased vocal production occurred 709 once the signal had been transmitted, often abating within ~ 10 seconds. The lack of whistle 710 production occurring during the sonar transmission may be a tactic for reducing acoustic 711 interference and masking, which has been shown to impact the detection, discrimination, and 712 localization of relevant signals [412](48). If the interfering signal is predictable (as is the case in 713 our experiment), then animals should be able to adjust the timing of sound production to limit 714 communication to periods in which noise is reduced [(e.g., 4214-4458-50]). The ability of 715 dolphins to learn the timing of intermittent noise has previously been demonstrated by Finneran 716 et al., 2023 [421](51), who showed that individuals can modify their hearing sensitivity prior 717 tobefore the onset of predictably timed impulses, presumably to mitigate negative adverse 718 auditory impacts. Surprisingly, little is known about their capacity to modifyalter the timing of 719 vocal production in response to interfering signals under natural baseline conditions. 720

The sudden increase in vocal behavior following the first ping could be an example of the amplification of <u>the</u> behavior of group members through recruitment or reinforcement (*i.e.*, positive feedback), [45652]). In this scenario, one dolphin may whistle in response to a Formatted: Indent: First line: 0.25"

724	surprising, salient stimuli and others <u>, and others may</u> follow suit. As this recruitment response	
725	continues, the number of dolphins producing whistles will increase s further, and information is	
726	spread rapidly throughout the group $[(\underline{4}57\underline{6}3])$. In such cases, a few key individuals could	
727	catalyze the collective behavior of the rest of the group. While it would be difficult to evaluate	
728	this process using acoustic data alone, concurrent video data collected from the associated drone	
729	flights is currently being assessed to explore the spatial movement patterns of the group and	
730	identify those individuals that successfully initiate changes in group movement. Alternatively, it	
731	the rapid increase in vocal behavior following each ping could be an indicator that multiple	
732	animals are exchangingindicate that multiple animals exchange whistles to contact their closest	
733	social partners within the group in the presence of an unknown stimulus. This could be expected	
734	given the role of whistles in group cohesion and coordination $[(2, 48754])$	Formatted: Font color: Black
735		
736	Surprisingly, in the playbacks when dolphins showed a significant increase in vocal behavior	Formatted: Indent: First line: 0.25"
737	in the 5-sec following the first ping (6 of 9 CEEs, S3 Fig), the severity of their acoustic response	
738	did not abate over the course of the exposure Whether animals continued to show an elevated	
739	acoustic response immediately following each ping varied between MFAS exposures. In four of	
740	the nine experiments in which sound was broadcasted, dolphins exhibited a significant elevation	
741	in whistle production in the 5-seconds after each ping throughout the entire 10-minute exposure	
742	period (S $\underline{2}2$ Appendix <u>Fig</u>). This suggests that in these cases, dolphins did not habituate to	
743	successive pings (<i>i.e.</i> , show <u>a progressive</u> decrease in the amplitude of a vocal behavioral	
744	response after repeated exposure). This observation is surprising given that However, in three of	Formatted: Not Highlight
745	the nine MFAS exposures, animals showed an initial response to the first ping, with vocal	
746		
740	responses slowly abating over the course of the experiment (S2 Appendix). The <u>the</u> population of	Formatted: Not Highlight

747	dolphins tested in this study likely live a large portion of their lives in areas that are regularly	
748	ensonified by Navy sonar, and thus may. <u>Continued work is needed to confirm these initial</u>	Formatted: Not Highlight
749	findings; for example, future studies exhibit an attenuated response when compared to	
750	individuals not regularly exposed to MFAS. Future work could compare the responsiveness of	
751	animalsanimals' responsiveness in the Southern California Bight to nearby populations that occur	
752	in areas where Navy sonar is not regularly present (e.g., Monterey Bay). Considering whether	
753	dolphins may be learning to modify their vocal behavior in response to repeated noise exposure	
754	may provide foundational evidence to support using vocal rates as a measure of sensitization or	
755	habituation to anthropogenic stimuli, as has been done in terrestrial species <u>[as in</u>	Formatted: Not Highlight
756	(<u>45985,50,4596]</u>),	Formatted: Font color: Black
757		
758	Future management decisions mitigating the impact of sonar on oceanic delphinids should	Formatted: Indent: First line: 0.25"
759	consider our reported results of clear responses during CEEs when analyses were conducted at	
760	the appropriate temporal resolution . With respect to Concerning the most recent methodology for	
761	assessing the relative response severity for free-ranging marine mammals to acoustic disturbance	
762	[(51057]) – had the acoustic response of animals to MFAS been pooled across the 10-minutemin	
763	time window – common dolphins likely would have been assigned a behavioral response	
764	severity score of 0 (no response detected). However, when evaluating vocal behavior across a	
765	shorter <u>time</u> -time 5-second time window, this species' response would be elevated to a category	
766	3 severityanimal's response would be elevated to a category three severity, which includes an	
767	increase in <u>possible</u> contact or alarm calls $[(51057])$. Ultimately, continued work with this (and	
768	other closely related) species should also consider how observed behavioral responses vary with	
769	respect to other contextual parameters, including behavioral state, group composition (e.g.,	
1		

770	presence or absence of calves), seasonality, and environmental covariates. Concurrent efforts
771	from this project aim to integrate passive acoustics with other remotely sensed datasets (i.e.,
772	shore-based group tracking, <u>and</u> aerial photogrammetry) to identify group-level behavioral
773	changes and quantify exposure-response relationships [498](58). Paired with energetic modeling
774	methods [(e.g., $2731,53259,54360$]), these data can be used to link these observed short-term
775	behavioral responses to long-term fitness outcomes in this species and inform the
776	implementation of effective mitigation strategies.
777	
778	Our study has some limitations that can be addressed in future work. Given the close
779	phylogenetic relationship between short-beaked (Delphinus delphis) and long-beaked common
780	dolphins (<i>Delphinus bairdii</i>), [(55461,56562]), the basic description of baseline vocal behavior
781	(<i>i.e.</i> , whistle count data) was combined across species subspecies in our analysis. However,
782	recent work by Oswald et al. discovered unique species-specific whistle frequency contours in
783	short-beaked common dolphins both subspecies, D. delphis and D. bairdii and
784	suggestedsuggesting that these distinctive acoustic signals could help facilitate recognition
785	between these two <i>Delphinus</i> species subspecies [576](38). An increase in sample size for both
786	long-beaked and short-beaked common dolphins would provide a more detailed understanding of
787	their baseline vocal behavior and allow for the exploration <u>enable the exploration</u> of whether each
788	speciessubspecies shows a differential or similar response in whistle type whistle-type usage to
789	MFAS. Additionally, photo-identification photo identification of individuals within these large,
790	ephemeral groups is extremely difficultchallenging. Consequently, it is unknown whether
791	individual dolphins around Catalina Island were exposed more than once to the experimental
792	treatmentwhether individual dolphins around Catalina Island were exposed more than once to the
I	

experimental treatment is unknown. Future research could direct effort towards<u>efforts toward</u>
other oceanic delphinids with smaller group sizes <u>sizes</u> where photo-identification is feasible
and reliable (*e.g.*, bottlenose <u>or rough-toothed dolphins</u> dolphins).

796

797 In any behavioral experiment, the response of the individual or group that is tested should be -798 measured and interpreted over a time-window time window that is informed by their natural behavior. We suggest that future work with other oceanic delphinid species explore baseline 799 800 vocal rates a-priori and use information on vocal state-switching to inform the analysis time-801 windowtime window over which behavioral responses are measured. Given these species' 802 susceptibility to frequent MFAS exposure in Navy operational areas, it is of particular interest to evaluate how repeated exposure influences responsesanimals' susceptibility to frequent MFAS 803 804 exposure in Navy operational areas, evaluating how repeated exposure influences responses is of 805 particular interest. Future work should continue to explore keycritical factors that are likely to 806 influence the probability of response among these large groups, including their behavioral state 807 and their likely to affect the probability of response among these large groups, including their 808 behavioral state and proximity to the sound source and received level at the onset of exposure. 809

810 AcknowledgementsAcknowledgments

Funding for this project was provided by the U.S. Navy's Office of Naval Research (Award
Numbers N000141713132, N0001418IP-00021, N000141712887, N000141912572). Animal
observations, octocopter flights over dolphins, close approaches and CEEs were conducted under
NMFS permit, and CEEs were conducted under NMFS permits 19116 and 19091. Additionally,
all activities reported in this study were reviewed and approved by the Institutional Animal Care

Formatted: Indent: First line: 0.25"

Formatted: Font: 18 pt Formatted: Font: 18 pt

816	and Use Committee (IACUC Protocol No: CRC-2021-AUP-06, CRC-2021-AUP-08). We thank	
817	the <i>M/V Magician</i> and Captain Carl Mayhugh for support in the field, as well as the University	
818	of Southern California's Wrigley Institute for their hospitality throughout the duration of <u>and the</u>	
819	University of Southern California's Dornsife Wrigley Institute for Environment and	
820	Sustainability for their hospitality throughout this project. This project would not have been	
821	possible without the dedicated contribution of all members of the Tagless-BRS team. Thank you	
822	to Stacy DeRuiter for extensive advice on statistical modeling and analysis. Additionally, we	
823	appreciate the thoughtful feedback provided by Dr. Ari Friedlaender, Dr. Colleen Reichmuth, Dr.	
824	Peter Cook, and Dr. John Durban during analysis and manuscript preparation. We also thank	
825	Ryan Jones, who created the line drawings for Fig. 1.	
826		
827	References	
828	1. Tyack PL. Acoustic <u>c</u> Communication <u>u</u> Under the Ssea. In: Hopp SL, Owren MJ, Evans CS,	
829	editors. Animal <u>a</u> Acoustic <u>c</u> Communication. Springer Berlin / Heidelberg: Springer;	
830	1998.	
831	2. Janik VM. Acoustic <u>c</u> Communication in <u>d</u> Delphinids. Adv Study Behav. 2009 <u></u> ;40: <u>123</u> –	
832	157.	
833	3. Lammers MO, Oswald JN. Analyzing the acoustic communication of dolphins. In: Herzing	
834	DL, Johnson CM, editors. Dolphin communication and cognition: Past, present, and	
835	future. <u>Cambridge:</u> MIT Press; 2015. pp. 107-130.	
836	4. Erbe C, Dunlop R, Dolman S. Effects of <u>n</u> Noise on <u>m</u> Marine <u>m</u> Mammals. In: Slabbekoorn H,	
837	Dooling R, Popper A, Fay R, editors. Effects of <u>a</u> Anthropogenic <u>n</u> Noise on <u>a</u> Animals.	
838	New York : Springer; 2018.	
1		

Formatted: Font: Italic

839	5. Williams R, Wright AJ, Ashe E, Blight LK, Bruintjes R, Canessa R, et al. Impacts of
840	anthropogenic noise on marine life: Publication patterns, new discoveries, and future
841	directions in research and management. Ocean Coast Manag. 2015;115: 17–24.
842	6 Southall BL Finneran II Baichmuth C Nachtigall DE Kattan DP Bowles AF at al Marina
042	0. Southan BE, Finneran JJ, Ketchindun C, Nachtigan TE, Ketten DK, Bowles AE, et al. Marine
843	mammal noise exposure criteria: Updated scientific recommendations for residual hearing
844	effects. Aquat Mamm. 2019;45(2):_125-232.
845	7. Hatch LT, Wahle CM, Gedamke Jason, Harrison Jolie, Laws Benjamin, Moore SE, et al. Can
846	you hear me here? Managing acoustic habitat in US waters. Endanger Species Res.
847	2016:30(1): 171-86
047	2010,50(1)1/1-60.
848	8. Tyack PL, Janik VM. Effects of <u>n</u> Noise on <u>a</u> Acoustic <u>s</u> Signal <u>p</u> Production in <u>m</u> Marine
849	<u>m</u> Mammals. In: Brumm H, editor. Animal <u>c</u> Communication and <u>n</u> Noise Animal Signals
850	and Communication. <u>New York:</u> Springer; 2013. pp. 251-271.
850 851	 and Communication. <u>New York:</u> Springer; 2013. pp. <u>251-271.</u> 9. Nowacek DP, Thorne LH, Johnston DW, Tyack PL. Responses of cetaceans to anthropogenic
850 851 852	 and Communication. <u>New York:</u> Springer; 2013. pp. <u>251-271</u>. 9. Nowacek DP, Thorne LH, Johnston DW, Tyack PL. Responses of cetaceans to anthropogenic noise. Mamm Pay. 2007;37(2): 81–115.
850 851 852	 and Communication. <u>New York:</u> Springer; 2013. pp. <u>251-271</u>. 9. Nowacek DP, Thorne LH, Johnston DW, Tyack PL. Responses of cetaceans to anthropogenic noise. Mamm Rev. 2007;37(2):<u>81–115</u>.
850 851 852 853	 and Communication. <u>New York:</u> Springer; 2013. pp. 251-271. 9. Nowacek DP, Thorne LH, Johnston DW, Tyack PL. Responses of cetaceans to anthropogenic noise. Mamm Rev. 2007;37(2):_81–115. 10. Hastie G, Merchant ND, Götz T, Russell DJF, Thompson P, Janik VM. Effects of impulsive
850 851 852 853 854	 and Communication. <u>New York:</u> Springer; 2013pp. <u>251-271.</u> 9. Nowacek DP, Thorne LH, Johnston DW, Tyack PL. Responses of cetaceans to anthropogenic noise. Mamm Rev. 2007;37(2):<u>81-115.</u> 10. Hastie G, Merchant ND, Götz T, Russell DJF, Thompson P, Janik VM. Effects of impulsive noise on marine mammals: <u>l</u>investigating range-dependent risk. Ecol Appl 2019;29:
850 851 852 853 854 855	 and Communication. <u>New York:</u> Springer; 2013pp. 251-271. 9. Nowacek DP, Thorne LH, Johnston DW, Tyack PL. Responses of cetaceans to anthropogenic noise. Mamm Rev. 2007;37(2):_81–115. 10. Hastie G, Merchant ND, Götz T, Russell DJF, Thompson P, Janik VM. Effects of impulsive noise on marine mammals: <u>l</u>investigating range-dependent risk. Ecol Appl 2019;29: e01906.
850 851 852 853 854 855 855	 and Communication. <u>New York:</u> Springer; 2013pp. 251-271. 9. Nowacek DP, Thorne LH, Johnston DW, Tyack PL. Responses of cetaceans to anthropogenic noise. Mamm Rev. 2007;37(2):_81–115. 10. Hastie G, Merchant ND, Götz T, Russell DJF, Thompson P, Janik VM. Effects of impulsive noise on marine mammals: <u>I</u>investigating range-dependent risk. Ecol Appl 2019;29: e01906. 11. Harris CM, Sadykova D, DeRuiter SL, Tyack PL, Miller PJO, Kvadsheim PH. et al. Dose
850 851 852 853 854 855 856 856	 and Communication. <u>New York:</u> Springer; 2013pp. <u>251-271</u>. 9. Nowacek DP, Thorne LH, Johnston DW, Tyack PL. Responses of cetaceans to anthropogenic noise. Mamm Rev. 2007;37(2):<u>81-115</u>. 10. Hastie G, Merchant ND, Götz T, Russell DJF, Thompson P, Janik VM. Effects of impulsive noise on marine mammals: <u>I</u>investigating range-dependent risk. Ecol Appl 2019;29: e01906. 11. Harris CM, Sadykova D, DeRuiter SL, Tyack PL, Miller PJO, Kvadsheim PH, et al. Dose response severity functions for accurate disturbance in actaceans using response response severity functions for accurate disturbance in actaceans using response to the severe term.
850 851 852 853 854 855 856 857	 and Communication. <u>New York:</u> Springer; 2013pp. 251-271. 9. Nowacek DP, Thorne LH, Johnston DW, Tyack PL. Responses of cetaceans to anthropogenic noise. Mamm Rev. 2007;37(2):_81–115. 10. Hastie G, Merchant ND, Götz T, Russell DJF, Thompson P, Janik VM. Effects of impulsive noise on marine mammals: <u>linvestigating range-dependent risk</u>. Ecol Appl 2019;29: e01906. 11. Harris CM, Sadykova D, DeRuiter SL, Tyack PL, Miller PJO, Kvadsheim PH, et al. Dose response severity functions for acoustic disturbance in cetaceans using recurrent event
850 851 852 853 854 855 856 857 858	 and Communication. <u>New York:</u> Springer; 2013pp. <u>251-271</u>. 9. Nowacek DP, Thorne LH, Johnston DW, Tyack PL. Responses of cetaceans to anthropogenic noise. Mamm Rev. 2007;37(2):_81–115. 10. Hastie G, Merchant ND, Götz T, Russell DJF, Thompson P, Janik VM. Effects of impulsive noise on marine mammals: <u>I</u>investigating range-dependent risk. Ecol Appl 2019;29: e01906. 11. Harris CM, Sadykova D, DeRuiter SL, Tyack PL, Miller PJO, Kvadsheim PH, et al. Dose response severity functions for acoustic disturbance in cetaceans using recurrent event survival analysis. Ecosphere. 2015;6(11):_1–14.
 850 851 852 853 854 855 856 857 858 859 	 and Communication. <u>New York:</u> Springer; 2013pp. <u>251-271</u>. 9. Nowacek DP, Thorne LH, Johnston DW, Tyack PL. Responses of cetaceans to anthropogenic noise. Mamm Rev. 2007;37(2):_81–115. 10. Hastie G, Merchant ND, Götz T, Russell DJF, Thompson P, Janik VM. Effects of impulsive noise on marine mammals: <u>linvestigating range-dependent risk</u>. Ecol Appl 2019;29: e01906. 11. Harris CM, Sadykova D, DeRuiter SL, Tyack PL, Miller PJO, Kvadsheim PH, et al. Dose response severity functions for acoustic disturbance in cetaceans using recurrent event survival analysis. Ecosphere. 2015;6(11):_1–14. 12. Southall EBL, Finneran JJ, Reichmuth C, Nachtigall PE, Ketten DR, Bowles AE, et al.
 850 851 852 853 854 855 856 857 858 859 860 	 and Communication. <u>New York:</u> Springer; 2013. pp. 251-271. 9. Nowacek DP, Thorne LH, Johnston DW, Tyack PL. Responses of cetaceans to anthropogenic noise. Mamm Rev. 2007;37(2):_81–115. 10. Hastie G, Merchant ND, Götz T, Russell DJF, Thompson P, Janik VM. Effects of impulsive noise on marine mammals: <u>linvestigating range-dependent risk</u>. Ecol Appl 2019;29: e01906. 11. Harris CM, Sadykova D, DeRuiter SL, Tyack PL, Miller PJO, Kvadsheim PH, et al. Dose response severity functions for acoustic disturbance in cetaceans using recurrent event survival analysis. Ecosphere. 2015;6(11):_1–14. 12. Southall EBL, Finneran JJ, Reichmuth C, Nachtigall PE, Ketten DR, Bowles AE, et al. Marine mammal noise exposure criteria: Updated scientific recommendations for residual
850 851 852 853 854 855 855 856 857 858 859 860 861	 and Communication. <u>New York:</u> Springer; 2013. pp. 251-271. 9. Nowacek DP, Thorne LH, Johnston DW, Tyack PL. Responses of cetaceans to anthropogenic noise. Mamm Rev. 2007;37(2):_81–115. 10. Hastie G, Merchant ND, Götz T, Russell DJF, Thompson P, Janik VM. Effects of impulsive noise on marine mammals: linvestigating range-dependent risk. Ecol Appl 2019;29: e01906. 11. Harris CM, Sadykova D, DeRuiter SL, Tyack PL, Miller PJO, Kvadsheim PH, et al. Dose response severity functions for acoustic disturbance in cetaceans using recurrent event survival analysis. Ecosphere. 2015;6(11):_1–14. 12. Southall EBL, Finneran JJ, Reichmuth C, Nachtigall PE, Ketten DR, Bowles AE, et al. Marine mammal noise exposure criteria: Updated scientific recommendations for residual hearing effects. Aquat Mamm. 2019:45(2): 125–232.

862	13. D'Amico A, Pittenger R. A brief history of active sonar. Aquat Mamm. 2009 Dec;35(4):
863	426–34.
864	14. Henderson EE, Smith MH, Gassmann M, Wiggins SM, Douglas AB, Hildebrand JA.
865	Delphinid behavioral responses to incidental mid-frequency active sonar. J Acoust Soc
866	Am. 2014;136(4):_2003-2014. Available from: http://dx.doi.org/10.1121/1.4895681
867	156. Oswald JN, Rankin S, Barlow J. The effect of recording and analysis bandwidth on acoustic
868	identification of delphinid species. J Acoust Soc Am. 2004 Nov 1;116(5): 3178-3185.
869	16. Filadelfo R, Mintz J, Michlovich E, D'Amico A, Tyack PL, Ketten DR. Correlating military
870	sonar use with beaked whale mass strandings: What do the historical data show? Aquat
871	Mamm. 2009;35(4): 435–444.
872	17. Guan S, Brookens T. An overview of research efforts to understand the effects of underwater
873	sound on cetaceans. Vol. 2, Water Biology and Security. 2023;2: 100141.
874	1821. Southall BL, DeRuiter SL, Friedlaender A, Stimpert AK, Goldbogen JA, Hazen E, et al.
875	Behavioral responses of individual blue whales (Balaenoptera musculus) to mid-
876	frequency military sonar. Journal of Experimental Biology J Exp Biol. 2019;222: (5).
877	1922. Sivle LD, Kvadsheim PH, Fahlman A, Lam FPA, Tyack PL, Miller PJO, et al. Changes in
878	dive behavior during naval sonar exposure in killer whales, long-finned pilot whales, and
879	sperm whales. Frontiers in PhysiologyFront Physiol. 2012; 11;3: 400. Available from:
880	www.frontiersin.org
881	20. Deruiter SL, Boyd IL, Claridge DE, Clark CW, Gagnon C, Southall BL, et al. Delphinid
882	whistle production and call matching during playback of simulated military sonar. Mar
883	Mamm Sci. 2013;29(2): E46-E59.

884	21. Ioannou CC, Laskowski KL. A multi-scale review of the dynamics of collective behaviour:
885	from rapid responses to ontogeny and evolution. Philos Trans R Soc Lond, B.
886	<u>2023;10(378): 20220059.</u>
887	22. Durbach IN, Harris CM, Martin C, Helble TA, Henderson EE, Ierley G, et al. Changes in the
888	mMovement and cCalling bBehavior of mMinke wWhales (Balaenoptera acutorostrata)
889	in Response to Navy Training. Front Mar Sci. 2021;8: 660122.
890	23. Rendell LE, Gordon JCD. Vocal response of long-finned pilot whales (Globicephala melas)
891	to military sonar in the Ligurian Sea. Mar Mamm Sci. 1999;15(1): 198–204.
892	24. Miller PJO, Antunes RN, Wensveen PJ, Samarra FIP, Catarina Alves A, Tyack PL, et al.
893	Dose-response relationships for the onset of avoidance of sonar by free-ranging killer
894	whales. J Acoust Soc Am. 2014;135(2): 975-93.
895	25. DeRuiter SL, Boyd IL, Claridge DE, Clark CW, Gagnon C, Southall BL, et al Tyack PL.
896	Delphinid whistle production and call matching during playback of simulated military
897	sonar. Mar Mamm Sci. 2013;2: 46-59.
898	26. Lara G, Bou-Cabo M, Llorens S, Miralles R, Espinosa V. Acoustical behavior of delphinid
899	whistles in the presence of an underwater explosion event in the Mediterranean coastal
900	waters of spain. J Mar Sci. 2023;11(4): 780.
901	27. Keen KA, Beltran RS, Pirotta E, Costa DP. Emerging themes in population consequences of
902	disturbance models. Proc R Soc B. 2021;288(1957): 20210325.
903	28. King SL, Connor RC, Montgomery SH. Social and vocal complexity in bottlenose dolphins.
904	Trends Neursci. 2022; 45: 881-883.

ho-		
905 906	29. Durban JW, Southall BL, Calambokidis J, Casey C, Fearnbach H, Joyce TW, et al. Integrating remote sensing methods during controlled exposure experiments to quantify	
907	group responses of dolphins to navy sonar. Mar Pollut Bull. 2022;174: 113194.	
908	30. Visser, F. Moving in concert: Social and migratory behaviour of dolphins and whales in the	
909	North Atlantic Ocean. PhD dissertation, University of Amsterdam. 2014.	
910	31. Hager CA. Assessment of the performance of the near-bottom hydrophones of the US Navy	
911	Southern California offshore range in detecting, localizing and reconstructing 10-20KHZ	
912	odontocete whistles. PhD dissertation, Naval Postgraduate School. 2008.	
913	32. Gillespie D, Mellinger DK, Gordon J, McLaren D, Redmond P, McHugh R, et al.	
914	PAMGUARD: Semiautomated, open-source software for real- time acoustic detection	
915	and localization of cetaceans. J Acoust Soc Am. 2009;125(4): 2547-2547.	
916	•	Formatted: Indent: Left: 0", First line: 0"
916 917	<u>332. Sakai T, Barlow, J, Griffiths, E, Oswald, J, Schmidt, V. et al. R Package 'PAMpal'.</u>	Formatted: Indent: Left: 0", First line: 0"
916 917 918	 <u>332. Sakai T, Barlow, J, Griffiths, E, Oswald, J, Schmidt, V. et al. R Package 'PAMpal'.</u> <u>2022. PAMmisc: Miscellaneous functions for passive acoustic analysis. 2023.</u> 	Formatted: Indent: Left: 0", First line: 0"
916 917 918 919	 <u>332. Sakai T, Barlow, J, Griffiths, E, Oswald, J, Schmidt, V. et al. R Package 'PAMpal'.</u> <u>2022. PAMmisc: Miscellaneous functions for passive acoustic analysis. 2023.</u> <u>https://CRAN.R-project.org/package=PAMmisc</u> 	Formatted: Indent: Left: 0", First line: 0" Field Code Changed
916 917 918 919 920	 <u>332. Sakai T, Barlow, J, Griffiths, E, Oswald, J, Schmidt, V, et al. R Package 'PAMpal'.</u> <u>2022. PAMmisc: Miscellaneous functions for passive acoustic analysis. 2023.</u> <u>https://CRAN.R-project.org/package=PAMmisc</u> <u>34. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for</u> 	Formatted: Indent: Left: 0", First line: 0" Field Code Changed
916 917 918 919 920 921	 332. Sakai T, Barlow, J, Griffiths, E, Oswald, J, Schmidt, V. et al. R Package 'PAMpal'. 2022. PAMmisc: Miscellaneous functions for passive acoustic analysis. 2023. https://CRAN.R-project.org/package=PAMmisc 34. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2023. https://www.R-project.org/ 	Formatted: Indent: Left: 0", First line: 0" Field Code Changed
916 917 918 919 920 921 922	 332. Sakai T, Barlow, J, Griffiths, E, Oswald, J, Schmidt, V. et al. R Package 'PAMpal'. 2022. PAMmisc: Miscellaneous functions for passive acoustic analysis. 2023. https://CRAN.R-project.org/package=PAMmisc 34. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2023. https://www.R-project.org/ 33. Gillespie D, Mellinger DK, Gordon J, David McLaren, et al. PAMGUARD: Semiautomated, 	Formatted: Indent: Left: 0", First line: 0" Field Code Changed
 916 917 918 919 920 921 922 923 	 332. Sakai T, Barlow, J, Griffiths, E, Oswald, J, Schmidt, V. et al. R Package 'PAMpal'. 2022. PAMmisc: Miscellaneous functions for passive acoustic analysis. 2023. https://CRAN.R-project.org/package=PAMmisc 34. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2023. https://www.R-project.org/ 33. Gillespie D, Mellinger DK, Gordon J, David McLaren, et al. PAMGUARD: Semiautomated, open-source software for real- time acoustic detection and localization of cetaceans. J 	Formatted: Indent: Left: 0", First line: 0" Field Code Changed
 916 917 918 919 920 921 922 923 924 	 332. Sakai T, Barlow, J, Griffiths, E, Oswald, J, Schmidt, V. et al. R Package 'PAMpal'. 2022. PAMmisc: Miscellaneous functions for passive acoustic analysis. 2023. https://CRAN.R-project.org/package=PAMmisc 34. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2023. https://www.R-project.org/ 33. Gillespie D, Mellinger DK, Gordon J, David McLaren, et al. PAMGUARD: Semiautomated, open-source software for real- time acoustic detection and localization of cetaceans. J Acoust Soc Am. 2009;125(4): 2547–2547. 	Formatted: Indent: Left: 0", First line: 0" Field Code Changed
 916 917 918 919 920 921 922 923 924 925 	 332. Sakai T, Barlow, J, Griffiths, E, Oswald, J, Schmidt, V. et al. R Package 'PAMpal'. 2022. PAMmisc: Miscellaneous functions for passive acoustic analysis. 2023. https://CRAN.R-project.org/package=PAMmisc 34. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2023. https://www.R-project.org/ 33. Gillespie D, Mellinger DK, Gordon J, David McLaren, et al. PAMGUARD: Semiautomated, open-source software for real- time acoustic detection and localization of cetaceans. J Acoust Soc Am. 2009;125(4): 2547–2547. 354. Killick R, Eckley I. changepoint: An R package for changepoint analysis. J Stat Softw. 	Formatted: Indent: Left: 0", First line: 0" Field Code Changed
 916 917 918 919 920 921 922 923 924 925 926 	 332. Sakai T, Barlow, J, Griffiths, E, Oswald, J, Schmidt, V. et al. R Package 'PAMpal'. 2022. PAMmisc: Miscellaneous functions for passive acoustic analysis. 2023. https://CRAN.R-project.org/package=PAMmisc 34. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2023. https://www.R-project.org/ 33. Gillespie D, Mellinger DK, Gordon J, David McLaren, et al. PAMGUARD: Semiautomated, open-source software for real- time acoustic detection and localization of cetaceans. J Acoust Soc Am. 2009;125(4): 2547–2547. 354. Killick R, Eckley I. changepoint: An R package for changepoint analysis. J Stat Softw. 2014;58(3): 1-9. 	Formatted: Indent: Left: 0", First line: 0" Field Code Changed

927	365. Brooks ME, Kristensen K, Van Benthem KJ, Magnusson A, Berg CW, Nielsen A, et al.
928	glmmTMB balances speed and flexibility among packages for zero-inflated generalized
929	linear mixed modeling. The R Jjournal. 2017;9(2): 378-400.
0.20	
930	<u>367. Goldbogen JA, Southall BL, DeRuiter SL, Calambokidis J, Friedlaender AS, Hazen EL, et</u>
931	al. Blue whales respond to simulated mid-frequency military sonar. Proc R Soc B.
932	<u>2013;280: 20130657.</u>
933	387. Croll DA, Acevedo-Gutierrez A, Tershy BR, Urban-Ramirez J. The diving behavior of blue
934	and fin whales: Iis dive duration shorter than expected based on oxygen stores? Comp
935	Biochem Physiol, Part A Mol Integ. 2001;129(4): 797-809.
936	398. Baird RW, Webster DL, Schorr GS, McSweeney DJ, Barlow J. Diel variation in beaked
937	whale diving behavior. Mar Mamm Sci. 2008;24(3): 630-642.
	4020 Shaarar IM Quick NI Cieffi WP Paird PW Webster D. Foloy HI at al Diving
938	4059. Shearer JW, Quick NJ, Cloth WK, Ballu KW, Webster D, Poley HJ, et al. Diving
938 939	behaviour of Cuvier's beaked whales (Ziphius cavirostris) off Cape Hatteras, North
938 939 940	4039. Shearer JM, Quick NJ, Cloff WR, Balld RW, Webster D, Poley HJ, et al. Diving behaviour of Cuvier's beaked whales (<i>Ziphius cavirostris</i>) off Cape Hatteras, North Carolina. R Soc Open Sci. 2019;1(6) 26(2): 181728.
938 939 940 941	 <u>behaviour of Cuvier's beaked whales (<i>Ziphius cavirostris</i>) off Cape Hatteras, North</u> <u>Carolina. R Soc Open Sci. 2019;1(6) 26(2): 181728.</u> <u>410. Deruiter SL, Southall BL, Calambokidis J, Zimmer WMX, Sadykova D, Falcone EA, et al.</u>
938 939 940 941 942	 <u>behaviour of Cuvier's beaked whales (<i>Ziphius cavirostris</i>) off Cape Hatteras, North Carolina. R Soc Open Sci. 2019;1(6) 26(2): 181728.</u> <u>410. Deruiter SL, Southall BL, Calambokidis J, Zimmer WMX, Sadykova D, Falcone EA, et al.</u> First direct measurements of behavioural responses by Cuvier's beaked whales to mid-
938 939 940 941 942 943	 4039. Sheater JM, Quick NJ, Cloff WK, Bald KW, Webster D, Foley HJ, et al. Diving behaviour of Cuvier's beaked whales (<i>Ziphius cavirostris</i>) off Cape Hatteras, North Carolina. R Soc Open Sci. 2019;1(6) 26(2): 181728. 410. Deruiter SL, Southall BL, Calambokidis J, Zimmer WMX, Sadykova D, Falcone EA, et al. First direct measurements of behavioural responses by Cuvier's beaked whales to mid-frequency active sonar. Bio Lett. 2013;9: 20130223.
938 939 940 941 942 943 944	 4039. Sheater JM, Quick NJ, Ctoff WK, Bald KW, Webster D, Foley HJ, et al. Diving behaviour of Cuvier's beaked whales (<i>Ziphius cavirostris</i>) off Cape Hatteras, North Carolina. R Soc Open Sci. 2019;1(6) 26(2): 181728. 410. Deruiter SL, Southall BL, Calambokidis J, Zimmer WMX, Sadykova D, Falcone EA, et al. First direct measurements of behavioural responses by Cuvier's beaked whales to mid-frequency active sonar. Bio Lett. 2013;9: 20130223. 421. Finneran JJ, Schlundt CE, Bowman V, Jenkins K. Dolphins reduce hearing sensitivity in
938 939 940 941 942 943 944 945	 4039. Sheater JM, Quick NJ, Ctoff WK, Bald KW, Webster D, Foley HJ, et al. Diving behaviour of Cuvier's beaked whales (<i>Ziphius cavirostris</i>) off Cape Hatteras, North Carolina. R Soc Open Sci. 2019;1(6) 26(2): 181728. 410. Deruiter SL, Southall BL, Calambokidis J, Zimmer WMX, Sadykova D, Falcone EA, et al. First direct measurements of behavioural responses by Cuvier's beaked whales to mid-frequency active sonar. Bio Lett. 2013;9: 20130223. 421. Finneran JJ, Schlundt CE, Bowman V, Jenkins K. Dolphins reduce hearing sensitivity in anticipation of repetitive impulsive noise exposures. J Acoust Soc Am. 2023;153(6): 3372.
 938 939 940 941 942 943 944 945 946 	 4039. Sheater JM, Quick NJ, Ctoff WK, Bald KW, Webster D, Poley HJ, et al. Diving behaviour of Cuvier's beaked whales (<i>Ziphius cavirostris</i>) off Cape Hatteras, North Carolina. R Soc Open Sci. 2019;1(6) 26(2): 181728. 410. Deruiter SL, Southall BL, Calambokidis J, Zimmer WMX, Sadykova D, Falcone EA, et al. First direct measurements of behavioural responses by Cuvier's beaked whales to mid-frequency active sonar. Bio Lett. 2013;9: 20130223. 421. Finneran JJ, Schlundt CE, Bowman V, Jenkins K. Dolphins reduce hearing sensitivity in anticipation of repetitive impulsive noise exposures. J Acoust Soc Am. 2023;153(6): 3372. 432. Egnor SR, Wickelgren JG, Hauser MD. Tracking silence: adjusting vocal production to
 938 939 940 941 942 943 944 945 946 947 	 4039. Sheater JM, Quick NJ, Ctoff WK, Bald KW, Webster D, Poley HJ, et al. Diving behaviour of Cuvier's beaked whales (<i>Ziphius cavirostris</i>) off Cape Hatteras, North Carolina. R Soc Open Sci. 2019;1(6) 26(2): 181728. 410. Deruiter SL, Southall BL, Calambokidis J, Zimmer WMX, Sadykova D, Falcone EA, et al. First direct measurements of behavioural responses by Cuvier's beaked whales to mid-frequency active sonar. Bio Lett. 2013;9: 20130223. 421. Finneran JJ, Schlundt CE, Bowman V, Jenkins K. Dolphins reduce hearing sensitivity in anticipation of repetitive impulsive noise exposures. J Acoust Soc Am. 2023;153(6): 3372. 432. Egnor SR, Wickelgren JG, Hauser MD. Tracking silence: adjusting vocal production to avoid acoustic interference. J Comp Physiol. 2007;193: 477-483.
 938 939 940 941 942 943 944 945 946 947 948 	 4039. Shearer JM, Quick NJ, Clofff WK, Balid KW, Webster D, Poley HJ, et al. Diving behaviour of Cuvier's beaked whales (<i>Ziphius cavirostris</i>) off Cape Hatteras, North Carolina. R Soc Open Sci. 2019;1(6) 26(2): 181728. 410. Deruiter SL, Southall BL, Calambokidis J, Zimmer WMX, Sadykova D, Falcone EA, et al. First direct measurements of behavioural responses by Cuvier's beaked whales to mid- frequency active sonar. Bio Lett. 2013;9: 20130223. 421. Finneran JJ, Schlundt CE, Bowman V, Jenkins K. Dolphins reduce hearing sensitivity in anticipation of repetitive impulsive noise exposures. J Acoust Soc Am. 2023;153(6): 3372. 432. Egnor SR, Wickelgren JG, Hauser MD. Tracking silence: adjusting vocal production to avoid acoustic interference. J Comp Physiol. 2007;193: 477-483. 443. Kiai A, Clemens J, Kössl M, Poeppel D, Hechavarría Jet al. Flexible control of vocal timing
 938 939 940 941 942 943 944 945 946 947 948 949 	 4059. Sheater JM, Quick RJ, Ciolfi WK, Bahld KW, Webster D, Poley RJ, et al. Diving behaviour of Cuvier's beaked whales (<i>Ziphius cavirostris</i>) off Cape Hatteras, North Carolina. R Soc Open Sci. 2019;1(6) 26(2): 181728. 410. Deruiter SL, Southall BL, Calambokidis J, Zimmer WMX, Sadykova D, Falcone EA, et al. First direct measurements of behavioural responses by Cuvier's beaked whales to mid- frequency active sonar. Bio Lett. 2013;9: 20130223. 421. Finneran JJ, Schlundt CE, Bowman V, Jenkins K. Dolphins reduce hearing sensitivity in anticipation of repetitive impulsive noise exposures. J Acoust Soc Am. 2023;153(6): 3372. 432. Egnor SR, Wickelgren JG, Hauser MD. Tracking silence: adjusting vocal production to avoid acoustic interference. J Comp Physiol. 2007;193: 477-483. 443. Kiai A, Clemens J, Kössl M, Poeppel D, Hechavarría Jet al. Flexible control of vocal timing in bats enables escape from acoustic interference. bioRxiv. 2023: 2023-05.

950	454. Munoz-Santos I, Ríos-Chelén AA. Vermilion flycatchers avoid singing during sudden peaks	
951	of anthropogenic noise. aActa ethologica. 2022;26(3): 201-210.	
952	465. Bonabeau E, Theraulaz G, Deneubourg J.L, Aron S, Camazine S. Self-organization in social	Fo
953	insects. Trends Ecol Evol. 1997;12(188).	the
954	476. Sumpter DJT. The principles of collective animal behaviour. Philos Trans R Soc Lond, B.	
955	2005;361: 5–22.	
956	487. Caldwell MC, Caldwell DK. Vocalization of naive captive dolphins in small groups.	
957	Science. 1968;159(3819): 1121-1123.	
958	498. Francis CD, Ortega CP, Cruz A. Noise pollution changes avian communities and species	
959	interactions. Curr Biol 2009;19(16):1415-1419.	
960	5049. Brown CL, Hardy AR, Barber JR, Fristrup KM, Crooks KR, Angeloni LM.et al. The effect	
961	of human activities and their associated noise on ungulate behavior. PloS One.	
962	<u>2012;10;(7): e40505.</u>	
963	510. Southall BL, Tollit D, Amaral J, Clark CW, Ellison WT. Managing human activity and	
964	marine mammals: A biologically based, relativistic risk assessment framework. Front Mar	
965	<u>Sci. 2023;10.</u>	
966	521. Harris CM, Thomas L, Falcone EA, Hildebrand J, Houser D, Kvadsheim PH, et al. Marine	
967	mammals and sonar: Dose- response studies, the risk- disturbance hypothesis and the role	
968	of exposure context. J Appl Ecol. 2018;55:396-404.	
969	53.2. Harwood J, King S, Booth C, Donovan C, Schick RS, Thomas L, et al. Understanding the	
970	population consequences of acoustic disturbance for marine mammals. In Popper AN,	
971	Hawkins A, editors. The effects of noise on aquatic life II. New York: Springer; 2016. pp.	
972	<u>417-423.</u>	
1		

prmatted: Don't add space between paragraphs of e same style

973	543. McHuron EA, Adamczak S, Costa DP, Booth C. Estimating reproductive costs in marine	
974	mammal bioenergetic models: aA review of current knowledge and data availability.	
975	Conserv Physiol. 2023;11(1): coac080.	
976	554. Natoli A, Cañadas A, Peddemors VM, Aguilar A, Vaquero C, Fernandez-Piqueras P, et al.	
977	Phylogeography and alpha taxonomy of the common dolphin (Delphinus sp.). J Evol Biol.	
978	2006;19(3): 943-954.	
979	565. McGgowen MR, Tsagkogeorga G, Álvarez-Carretero S, Dos Reis M, Truebig M, Deaville	
980	R, et al. Reis M Dos, et al. Phylogenomic resolution of the cetacean tree of life using target	
981	sequence capture. Syst Biol. 2020;69(3): 479-501.	
982	576. Oswald JN, Walmsley SF, Casey C, Fregosi S, Southall BL, Janik VMet al. Species	Formatted: Indent: Left: 0", Hanging: 0.44", Don't add
983	information in whistle frequency modulation patterns of common dolphins. Phil Trans R	space between paragraphs of the same style
984	<u>Soc B. 2021;376: 20210046.</u>	
985	•	Formatted: Don't add space between paragraphs of
986	*	Formatted: Indent: Left: 0", First line: 0", Don't add
987	15. Richardson WJ, Thomson DH, Greene CR, Malme CI. Marine mammal sounds. In: Marine	space between paragraphs of the same style
988		
	Mammals and Noise. San Diego, CA: Academic Press; 1995.	
989	Mammals and Noise. San Diego, CA: Academic Press; 1995. 16. Oswald JN, Rankin S, Barlow J. The effect of recording and analysis bandwidth on acoustic	
989 990	Mammals and Noise. San Diego, CA: Academic Press; 1995. 16. Oswald JN, Rankin S, Barlow J. The effect of recording and analysis bandwidth on acoustic identification of delphinid species. J Acoust Soc Am. 2004 Nov 1;116(5):3178–85.	
989 990 991	 Mammals and Noise. San Diego, CA: Academic Press; 1995. 16. Oswald JN, Rankin S, Barlow J. The effect of recording and analysis bandwidth on acoustic identification of delphinid species. J Acoust Soc Am. 2004 Nov 1;116(5):3178–85. 17. Filadelfo R, Mintz J, Michlovich E, D'Amico A, Tyack PL, Ketten DR. Correlating military 	
989 990 991 992	 Mammals and Noise. San Diego, CA: Academic Press; 1995. 16. Oswald JN, Rankin S, Barlow J. The effect of recording and analysis bandwidth on acoustic identification of delphinid species. J Acoust Soc Am. 2004 Nov 1;116(5):3178–85. 17. Filadelfo R, Mintz J, Michlovich E, D'Amico A, Tyack PL, Ketten DR. Correlating military sonar use with beaked whale mass strandings: What do the historical data show? Aquat Mamm. 	
989 990 991 992 993	 Mammals and Noise. San Diego, CA: Academic Press; 1995. 16. Oswald JN, Rankin S, Barlow J. The effect of recording and analysis bandwidth on acoustic identification of delphinid species. J Acoust Soc Am. 2004 Nov 1;116(5):3178–85. 17. Filadelfo R, Mintz J, Michlovich E, D'Amico A, Tyack PL, Ketten DR. Correlating military sonar use with beaked whale mass strandings: What do the historical data show? Aquat Mamm. 2009;35(4):435–44. 	
989 990 991 992 993 994	 Mammals and Noise. San Diego, CA: Academic Press; 1995. 16. Oswald JN, Rankin S, Barlow J. The effect of recording and analysis bandwidth on acoustic identification of delphinid species. J Acoust Soc Am. 2004 Nov 1;116(5):3178–85. 17. Filadelfo R, Mintz J, Michlovich E, D'Amico A, Tyack PL, Ketten DR. Correlating military sonar use with beaked whale mass strandings: What do the historical data show? Aquat Mamm. 2009;35(4):435–44. 18. D'Amico A, Gisiner RC, Ketten DR, Hammock JA, Johnson C, Tyack PL, et al. Beaked 	
989 990 991 992 993 994 995	 Mammals and Noise. San Diego, CA: Academic Press; 1995. 16. Oswald JN, Rankin S, Barlow J. The effect of recording and analysis bandwidth on acoustic identification of delphinid species. J Acoust Soc Am. 2004 Nov 1;116(5):3178–85. 17. Filadelfo R, Mintz J, Michlovich E, D'Amico A, Tyack PL, Ketten DR. Correlating military sonar use with beaked whale mass strandings: What do the historical data show? Aquat Mamm. 2009;35(4):435–44. 18. D'Amico A, Gisiner RC, Ketten DR, Hammock JA, Johnson C, Tyack PL, et al. Beaked whale strandings and naval exercises. Aquat Mamm. 2009;35(4):452–72. 	

- 996 19. Guan S, Brookens T. An overview of research efforts to understand the effects of underwater
- 997 sound on cetaceans. Vol. 2, Water Biology and Security. Institute of Hydrobiology, Chinese
- Academy of Sciences; 2023; 2:100141.
- 20. Ioannou CC, Laskowski KL. A multi-scale review of the dynamics of collective behaviour:
- 1000 from rapid responses to ontogeny and evolution. Philosophical Transactions of the Royal Society
- 1001 B. 202310;378(1874):20220059.Available from: https://doi.org/10.1098/rstb.2022.0059
- 1002 21. Southall BL, DeRuiter SL, Friedlaender A, Stimpert AK, Goldbogen JA, Hazen E, et al.
- 1003 Behavioral responses of individual blue whales (*Balaenoptera musculus*) to mid-frequency
- 1004 military sonar. Journal of Experimental Biology. 2019;222(5).
- 1005 22. Sivle LD, Kvadsheim PH, Fahlman A, Lam FPA, Tyack PL, Miller PJO, et al. Changes in
- 1006 dive behavior during naval sonar exposure in killer whales, long-finned pilot whales, and sperm
- 1007 whales. Frontiers in Physiology. 2012; 11;3:400. Available from: www.frontiersin.org
- 1008 23. Deruiter SL, Boyd IL, Claridge DE, Clark CW, Gagnon C, Southall BL, et al. Delphinid
- 1009 whistle production and call matching during playback of simulated military sonar. Mar Mamm
- 1010 Sci. 2013;29(2).
- 1011 24. Tyack PL, Zimmer WMX, Moretti D, Southall BL, Claridge DE, Durban JW, et al. Beaked
- 1012 whales respond to simulated and actual navy sonar. PLoS One. 2011;6(3).
- 1013 25. Durbach IN, Harris CM, Martin C, Helble TA, Henderson EE, Ierley G, et al. Changes in the
- 1014 Movement and Calling Behavior of Minke Whales (*Balaenoptera acutorostrata*) in Response to
- 1015 Navy Training. Front Mar Sci. 2021;8.
- 1016 26. Rendell LE, Gordon JCD. Vocal response of long-finned pilot whales (*Globicephala melas*)
- 1017 to military sonar in the Ligurian Sea. Mar Mamm Sci. 1999;15(1):198–204.
- 1018 27. Miller PJO, Antunes RN, Wensveen PJ, Samarra FIP, Catarina Alves A, Tyack PL, et al.
- 1019 Dose-response relationships for the onset of avoidance of sonar by free-ranging killer whales. J
- 1020 Acoust Soc Am. 2014;135(2):975–93. Available from:
- 1021 http://asa.scitation.org/doi/10.1121/1.4861346
- 1022 28. DeRuiter SL, Boyd IL, Claridge DE, Clark CW, Gagnon C, Southall BL, Tyack PL.
- 1023 Delphinid whistle production and call matching during playback of simulated military sonar.
- 1024 Marine Mammal Science. 2013 Apr;29(2):E46-59.Available from:
- 1025 https://onlinelibrary.wiley.com/doi/10.1111/j.1748-7692.2012.00587.x
- 1026 30. Lara G, Bou-Cabo M, Llorens S, Miralles R, Espinosa V. Acoustical Behavior of Delphinid
- 1027 Whistles in the Presence of an Underwater Explosion Event in the Mediterranean Coastal Waters
- 1028 of Spain. Journal of Marine Science and Engineering. 2023;11(4):780. Available from:
- 1029 https://doi.org/10.3390/jmse11040780
- 1030 31. Keen KA, Beltran RS, Pirotta E, Costa DP. Emerging themes in population consequences of
- 1031 disturbance models. Proceedings of the Royal Society B. 2021;288(1957):20210325.
- 1032 32. King SL, Connor RC, Montgomery SH. Social and vocal complexity in bottlenose dolphins.
- 1033 Vol. 45, Trends in Neurosciences. Elsevier Ltd; 2022. p. 881–3.
- 1034 33. Cunha HA, Loizaga De Castro R, Secchi ER, Crespo EA, Lailson-Brito J, Azevedo AF, et al.
- 1035 Molecular and morphological differentiation of common dolphins (*Delphinus* sp.) in the
- 1036 Southwestern Atlantic: testing the two species hypothesis in sympatry. PloS one. 2015 Nov
- 1037 11;10(11):e0140251.
- 1038 34. Durban JW, Southall BL, Calambokidis J, Casey C, Fearnbach H, Joyce TW, et al.
- 1039 Integrating remote sensing methods during controlled exposure experiments to quantify group

- 1040 responses of dolphins to navy sonar. Mar Pollut Bull. 2022;174:113194. Available from:
- 1041 https://doi.org/10.1016/j.marpolbul.2021.113194
- 1042 35. Southall BL, Moretti D, Abraham B, Calambokidis J, Deruiter SL, Tyack PL. Marine
- 1043 mammal behavioral response studies in southern California: advances in technology and
- 1044 experimental methods. Marine Technology Society Journal. 2012 Jul 1;46(4):48-59
- 1045 36. Visser, F. (2014). Moving in concert: Social and migratory behaviour of dolphins and
- 1046 whalesin the North Atlantic Ocean. PhD dissertation. University of Amsterdam. 2014.
- 1047 37. Hager CA. Assessment of the performance of the near-bottom hydrophones of the US Navy
- 1048 Southern California offshore range in detecting, localizing and reconstructing 10-20KHZ
- 1049 odontocete whistles. PhD dissertation. Naval Postgraduate School. 2008.
- 1050 38. Oswald JN, Walmsley SF, Casey C, Fregosi S, Southall B, Janik VM. Species information in
- 1051 whistle frequency modulation patterns of common dolphins. Phil TransR Soc B.
- 1052 2021;376:20210046.
- 1053 39. Gillespie D, Mellinger DK, Gordon J, David McLaren, Redmond P, McHugh R, et al.
- 1054 PAMGUARD: Semiautomated, open source software for real- time acoustic detection and
- 1055 localization of cetaceans. J Acoust Soc Am. 2009;125(4):2547–2547.
- 1056 40. Sakai T et al. R Package 'PAMpal'. https://doi.org/10.1121/1.2743157;2022.
- 1057 41. Killick R, Fearnhead P, Eckley IA. Killick R, Fearnhead P, Eckley IA. Optimal detection of
- 1058 changepoints with a linear computational cost. Journal of the American Statistical Association.
- 1059 2012 Dec 1;107(500):1590-8.
- 1060 42. Brooks ME;, Kristensen K;, Van Benthem KJ;, Magnusson A;, Berg CW;, Nielsen A;, et al.
- 1061 glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear

- 1062 mixed modeling. The R journal. 2017;9(2):378-400. Available from:
- 1063 https://doi.org/10.3929/ethz-b-000240890
- 1064 43. Goldbogen JA, Southall BL, DeRuiter SL, Calambokidis J, Friedlaender AS, Haz EL, et al.
- 1065 Blue whales respond to simulated mid-frequency military sonar. Proceeding of the Royal Society
- 1066 B. 2013;280:20130657.
- 1067 44. Croll DA, Acevedo-Gutierrez A, Tershy BR, Urban-Ramırez J, Croll D. The diving behavior
- 1068 of blue and fin whales: is dive duration shorter than expected based on oxygen stores?
- Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2001 Jul
 1)70 1;129(4):797-809.
- 1071 45. Baird RW, Webster DL, Schorr GS, McSweeney DJ, Barlow J. Diel variation in beaked
- 1072 whale diving behavior. Mar Mamm Sci. 2008 Jul;24(3):630–42.
- 1073 46. Shearer JM, Quick NJ, Cioffi WR, Baird RW, Webster DL, Foley HJ, et al. Diving behaviour
- 1074 of Cuvier's beaked whales (Ziphius cavirostris) off Cape Hatteras, North Carolina. R Soc Open
- 1075 Sci. 2019 Feb 1;6(2).
- 1076 47. Deruiter SL, Southall BL, Calambokidis J, Zimmer WMX, Sadykova D, Falcone EA, et al.
- 1077 First direct measurements of behavioural responses by Cuvier's beaked whales to mid-
- 1078 frequency active sonar. 2013;9:20130223.
- 1079 48. Egnor SR, Wickelgren JG, Hauser MD. Tracking silence: adjusting vocal production to avoid
- 1080 acoustic interference. Journal of Comparative Physiology A. 2007 Apr;193:477-83.
- 1081
- 1082 49. Kiai A, Clemens J, Kössl M, Poeppel D, Hechavarría JC. Flexible control of vocal timing in

Formatted: Don't add space between paragraphs of the same style

Formatted: Indent: Left: 0", First line: 0", Don't add space between paragraphs of the same style

1083 bats enables escape from acoustic interference. bioRxiv. 2023:2023-05.

1085	50. Munoz-Santos I, Ríos-Chelén AA. Vermilion flycatchers avoid singing during sudden peaks
1086	of anthropogenic noise. acta ethologica. 2022 Dec 26:1-0.
1087	
1088	51. Finneran JJ, Schlundt CE, Bowman V, Jenkins K. Dolphins reduce hearing sensitivity in
1089	anticipation of repetitive impulsive noise exposures. The Journal of the Acoustical Society of
1090	America. 2023 Jun 1;153(6):3372.
1091	52. Bonabeau E, Theraulaz G, Deneubourg J.L, Aron S, Camazine S. Self-organization in social
1092	insects. Trends Ecol Evol. 1997;12(188).
1093	53. Sumpter DJT. The principles of collective animal behaviour. Philosophical Transactions of
1094	the Royal Society B. 2005;361:5-22. Available from: https://royalsocietypublishing.org/
1095	54. Caldwell MC, Caldwell DK. Vocalization of naive captive dolphins in small groups. Science.
1096	1968 Mar 8;159(3819):1121-3.
1097	55. Francis CD, Ortega CP, Cruz A. Noise Pollution Changes Avian Communities and Species
1098	Interactions. Current Biology. 2009 Aug 25;19(16):1415-9.
1099	56. Brown CL, Hardy AR, Barber JR, Fristrup KM, Crooks KR, Angeloni LM. Brown CL,
1100	Hardy AR, Barber JR, Fristrup KM, Crooks KR, Angeloni LM. The effect of human activities
1101	and their associated noise on ungulate behavior. PloS one. 2012 Jul 10;7(7):e40505.
1102	57. Southall BL, Tollit D, Amaral J, Clark CW, Ellison WT. Managing human activity and
1103	marine mammals: A biologically based, relativistic risk assessment framework. Front Mar Sci.
1104	2023;10.
1105	58. Harris CM, Thomas L, Falcone EA, Hildebrand J, Houser D, et al. Marine mammals and

1106 sonar: Dose- response studies, the risk- disturbance hypothesis and the role of exposure context.

1107	J Appl Ecol	. 2018;55:396-404.	Available from:
------	-------------	--------------------	-----------------

1	1	0	8	http	s://	besi	journa	ls.on	line	librar	y.wi	ley	.com/	do	i/1	0.	11	11/	/13	365	-26	64.	129:	55
												~												

- 1/109 59. Harwood J, King S, Booth C, Donovan C, Schick RS, Thomas L, et al. Understanding the
- 1110 population consequences of acoustic disturbance for marine mammals. In The effects of noise on
- aquatic life II 2016 (pp. 417-423). Springer New York.
- 1112 60. McHuron EA, Adamczak S, Costa DP, Booth C. Estimating reproductive costs in marine
- 1113 mammal bioenergetic models: a review of current knowledge and data availability. Conservation
- 1114 Physiology. 2023;11(1):coac080.

- 1115 61. Natoli A, Cañadas A, Peddemors VM, Aguilar A, Vaquero C, Fernandez- Piqueras P,
- 1/16 Hoelzel AR. Phylogeography and alpha taxonomy of the common dolphin (*Delphinus* sp.).
- Jurnal of Evolutionary Biology. 2006 May;19(3):943-54.
- 118 62. Mcgowen MR, Tsagkogeorga G, Álvarez-Carretero S, Reis M Dos, Struebig M, Deaville R,
- 1 19 et al. Phylogenomic resolution of the cetacean tree of life using target sequence capture.
- 1120 Systematic biology. 2020 May 1;69(3):479-501.

Α		Formatted: Font: Bold
Supporting information	•	Formatted: Font: 18 pt, Bold
		Formatted: Don't add space between paragraphs of the same style
S1 Fig. PAMGuard Whistle Detection Parameters. Detection settings for the PAMGuard	•	Formatted: Don't add space between paragraphs of the same style Line spacing: Double
Whistle and Moan Detector.		the same style, the spacing. Double
S1 File. CEE-by-CEE Analysis. The main manuscript presents methods and results for	•	Formatted: Don't add space between paragraphs of the same style
analyzing common dolphin vocal response to simulated mid-frequency sonar, pooling data		
acrossfrom all CEEs. We acknowledge that some readers may be interested in additional		
	Supporting information S1 Fig. PAMGuard Whistle Detection Parameters. Detection settings for the PAMGuard Whistle and Moan Detector. S1 File. CEE-by-CEE Analysis. The main manuscript presents methods and results for analyzing common dolphin vocal response to simulated mid-frequency sonar, pooling data acrossfrom all CEEs. We acknowledge that some readers may be interested in additional	Supporting information S1 Fig. PAMGuard Whistle Detection Parameters. Detection settings for the PAMGuard Whistle and Moan Detector. S1 File. CEE-by-CEE Analysis. The main manuscript presents methods and results for analyzing common dolphin vocal response to simulated mid-frequency sonar, pooling data acrossfrom all CEEs. We acknowledge that some readers may be interested in additional

1128	information about each of the 19 CEEs (10 MFAS exposures and nine controls), so we have		
1129	included additional methods and results for each CEE.		
1130	<u>S2 Fig. Plots of raw per-second whistle detections for all included CEEs. CEE-ID (year and</u>		Formatted: Font: Bold
1131	number) is given in the bottom right of each page. The red dashed line indicates the start of the	\sum	Formatted: Font: Bold
1132	exposure period, with dashed grey lines indicating the timing of each ping (in an MFAS	\mathbb{N}	Formatted: Don't add space between paragraphs of the same style, Line spacing: Double
1152	exposure period, while dashed grey miles indicating the timing of each ping (in an MTTIS		Formatted: Font: Bold
1133	exposure) or control treatment. The solid gray vertical line indicates the start of the post-		Formatted: Font: Bold
1134	exposure period.	(Formatted: Font: Not Bold
1135	<u>S3 Fig. Boxplots of the change in whistle count from the 5 s before to the 5 s following each</u>	$\langle \langle$	Formatted: Font: Bold
1136	of the 24 pings for all CEEs (MEAS and controls) Boxplot shows median 25th and 75th		Formatted: Line spacing: Double
1150	or the 24 pings for an OEEs (With the and controls). Doxplot shows median, 25th, and 75th	\mathbb{N}	Formatted: Font: Bold
1137	percentiles, with raw whistle count changes as open gray circles. The change following the first	//	Formatted: Font: Bold
1120	allow is allowing as a set of a		Formatted: Font: Bold
1158	ping is shown as a red star.) (Formatted: Font: Bold
1139	4	(Formatted: Don't add space between paragraphs of the same style, Line spacing: Double
1140			Formatted: Font: 18 pt, Bold
			Formatted: Don't add space between paragraphs of the same style
1141	Author contributions		
1142	BLS acquired the funding for this project, and BLS, CC, and SF conceived, designed, and		
1143	performed the experiment. CC and SF analyzed the data, while BLS, VMJ, and JNO provided		

analytical guidance. CC, SF, VMJ, JNO, and BLS wrote the manuscript.