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Peer Review File

Fine-mapping analysis including over 254,000 East Asian and
European descendants identifies 136 putative colorectal

cancer susceptibility genes



REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

The study employs a comprehensive fine-mapping and functional annotation approach with 

a large cohort to investigate CRC risk. Authors identify 238 independent association signals 

and credible causal variants. Functional exploration, including transcriptome and 

methylome data, reveals 136 putative CRC susceptibility genes, 56 of which are novel. 

Single-cell RNA-seq data and whole exome sequencing data was also included. The study 

extensively employs in silico data for fine-mapping and functional annotation, lacking 

experimental validation. While miRNA genes and pseudogenes are identified, there is no in-

depth analysis. Some clarifications are needed: 

(1) A conditional P < 1 × 10-6 threshold is chosen, deviating from the common GWAS 

threshold of 10-8. This may contribute to the increased number of independent association 

signals. Comparisons with the original GWAS, particularly with the 47 newly identified 

signals, warrant exploration by lowering the GWAS threshold. 

(2) The identification of 198 and 45 independent association signals in European and East 

Asian descendants, respectively, requires further discussion. How does this compare to the 

original GWAS? Are these population-specific or due to the smaller East Asian sample size? 

The differences between East Asian and European populations and the reliability of 

combined (trans-ancestry) analysis need clarification. 

(3) For the identification of CCV in trans-ancestry analysis, how the LD was estimated? 

Wouldnt it be useful to consider LD blocks from other available population to reduce the 

number of CCV rather than using it just from two populations? 

(4) The use of different minor allele frequency (MAF) thresholds (e.g., 0.005, 0.1, and 0.5) 

needs normalization or explanation across analyses. 

(5) The overlap with previous eQTL and mQTL studies isn't clearly stated. 



(6) The significance and power of differential expression analysis in specific cell types 

require clarification. 

Minor comment: The mapping of 136 credible target genes to 126 pathways, with 

overlapping pathways and multiple tools, should be presented more distinctly. Separating 

tools and highlighting common pathways would enhance clarity. 

Reviewer #2 (Remarks to the Author):

This paper begins with fine-mapping of a previous GWAS conducted by the same group 

(PMID: 36539618 Fernandez-Rozadilla et al, 2022). The methods are appropriate and appear 

to be based on approaches used by the Breast Cancer Consortium to fine-map and identify 

target gene of breast cancer GWAS. This paper has refined the target gene predictions for 

their 2022 paper and outlined the evidence associated with each prediction. This will 

become an important reference set for colorectal cancer researchers. Pathway analyses 

were re-performed with the more refined predictions which confirmed previous enriched 

pathways known to play a role in colorectal cancer development. 

Of note, a conditional analyses was performed in Fernandez-R et al . In regards to the fine-

mapping performed in this paper, what was done different in this study. 

“13 independent new risk SNPs in conditional analysis” were identified in Fernandez-R et al. 

Is there overlap between these 13 SNPs and the SNPs identified in this paper? 

eQTLs that did not colocalize with GWAS signals should not be considered evidence of 

“putative” or “credible” target genes. Please confirm that this was the case. 

For Line 459 “9 genes as putative targets of eight signals “. Please confirm what you mean 

by putative vs credible. 

Line 444. Of the “84 genes from the mQTL analysis”, how many are supported by eQTL 

colocalization? It is not clear why an association with methylation without expression would 

be evidence for a target gene? In these cases, it is possible that the variant effects 



methylation but the methylation has no functional significance on the gene. Is mQTL/GWAS 

colocalization considered to be supportive evidence in Figure 3 and 4?. If so, please justify. 

The results sections are brief. Important experimental details are required in the results 

section so that the reader doesn’t have to constantly refer to the methods. 

Examples. 

1. How were the sets of CCVs defined. 

2. eQTL analyses – what tissue type was the transcriptome data derived from? 

3. What is meant by functional genomic evidence in Line 450 “Of these, 45 (21.9%) genes 

were supported by the functional genomic evidence.” Is this the target gene prediction from 

INQUISIT?? 

4. Line 470 – Please define ABS. 

5. In Figure 3 and 4. Please define which colocalization analyses were considered evidence.



Authors’ Responses to Reviewers’ Comments 

Reviewer #1 (Remarks to the Author): 

The study employs a comprehensive fine-mapping and functional annotation approach with a large 

cohort to investigate CRC risk. Authors identify 238 independent association signals and credible causal 

variants. Functional exploration, including transcriptome and methylome data, reveals 136 putative CRC 

susceptibility genes, 56 of which are novel. Single-cell RNA-seq data and whole exome sequencing data 

was also included. The study extensively employs in silico data for fine-mapping and functional 

annotation, lacking experimental validation. While miRNA genes and pseudogenes are identified, there 

is no in-depth analysis. Some clarifications are needed:  

(1) A conditional P < 1 × 10-6 threshold is chosen, deviating from the common GWAS threshold of 10-8. 

This may contribute to the increased number of independent association signals. Comparisons with the 

original GWAS, particularly with the 47 newly identified signals, warrant exploration by lowering the 

GWAS threshold. 

Response: We appreciate the reviewer’s comments. In this study, we aimed to identify secondary 

independent association signals within each risk locus. Because this is not a search for novel association 

signals across the genome, it would be too stringent to use the significance threshold of 5 × 10-8 that is 

conventionally used for genome-wide association studies. Indeed, it has been shown that using p-value 

of 5 × 10-8 in fine-mapping analyses can miss many secondary independent signals (PMID: 33978749). 

We selected 1 × 10-6 as the significance threshold in our study primarily based on a large fine-mapping 

study conducted for breast cancer (PMID: 31911677). In that study, a different significant threshold was 

tested initially (1 × 10-4, 1 × 10-5, 1 × 10-6, 1 × 10-7, and 1 × 10-8), and a threshold of 1 × 10-6 was finally 

used, as it minimizes both Type 1 and 2 errors. This threshold was used in multiple subsequent fine-

mapping analyses. We have clarified this issue in the manuscript, as shown below:

In page 15, paragraph 2: “We considered the threshold of conditional P < 1 × 10-6 to determine 

independent significant associations to balance both Type 1 and 2 errors, as recommended by a previous 

fine-mapping study in breast cancer 12.” 

(2) The identification of 198 and 45 independent association signals in European and East Asian 

descendants, respectively, requires further discussion. How does this compare to the original GWAS? 

Are these population-specific or due to the smaller East Asian sample size? The differences between 

East Asian and European populations and the reliability of combined (trans-ancestry) analysis need 

clarification.  

Response: We thank the reviewer for their comments. In the Methods section of the revised 
manuscript, we included a description comparing the independent association signals identified in 
population-specific analyses with those identified in trans-ancestry analysis and previous GWAS. We 
believe that the difference in the number of independent association signals identified in these two 
analyses is largely due to the difference in study sample size. We also added some discussions regarding 
population-specific association signals in the revised manuscript, as shown below: 



In page 27, paragraph 3: “For independent association signals identified in ancestry-specific analyses, 
we compared them with those from trans-ancestry analyses by assessing correlations between their lead 
variants within each risk region. If a signal was consistently found in both ancestry-specific and trans-
ancestry analyses (i.e., the same lead variant or correlated lead variants with LD r2 >0.1 in each 
corresponding population), we considered it as a sharing signal between Asian and European-ancestry 
populations. Otherwise, they were defined as ancestry-specific signals.”

In pages 24-25: “The trans-ancestry and ancestry-specific fine-mapping analyses conducted in this study 
not only enabled the discovery of independent association signals that are shared across populations of 
European and East Asian ancestry, but also revealed ancestry-specific signals. The larger sample size of 
the European-ancestry study enabled us to identify a larger number of independent association signals 
than the study conducted in Asians. However, there are some ancestry-specific signals identified in this 
study, which is most likely due to differences in LD structures and allele frequency between these two 
populations. Indeed, we observed distinct differences in the allele frequency for most ancestry-specific 
signals, as shown in Supplementary Tables 4 and 5. For instance, the lead variant of 24 European 
ancestry-specific signals (40%, 24/60) is not detected among East Asian-ancestry populations. On the 
other hand, fine-mapping analyses capitalizing on ancestry differences in LD structure can substantially 
reduce the credible set size compared to European ancestry-specific analysis. This highlights the value of 
multi-ancestry fine-mapping over single-ancestry analysis. Our analysis is limited to two ancestry groups. 
Further studies should increase the diversity of genetic data, including those from other racial groups.” 

(3) For the identification of CCV in trans-ancestry analysis, how the LD was estimated? Would’nt it be 

useful to consider LD blocks from other available population to reduce the number of CCV rather than 

using it just from two populations? 

Response:  In our trans-ancestry analysis, to account for differences in the LD structure, we conducted 
conditional analysis in each population and then meta-analyzed conditioned results using the fixed-
effects inverse variance weighted model with METAL. We used genotyping data from 6,684 unrelated 
samples of Asian descent and from 503 European samples in the 1000 Genome project as the reference 
for LD estimation. To identify CCVs for each independent signal, the conditional analyses were 
conducted by adjusting for the lead variants of the other signals from the trans-ancestral summary 
statistics within the same risk region. We included detailed descriptions for the conditional analyses in 
trans-ancestry in the revised manuscript. We agree with the reviewer that it would be helpful to add 
other populations in the fine-mapping analyses. However, currently, we only have data from two 
populations and acknowledge that this is a limitation of our study. 

In page 15, paragraph 2: “We used forward stepwise conditional analyses to identify independent 
association signals in each region in each population, conditioning on the most significant association 
signal from the trans-ancestral summary statistics (Supplementary Figure 1, Methods). We then meta-
analyzed the conditioned data using the fixed-effects inverse variance weighted model.”  

In pages 16, paragraph 3: “To identify CCVs for each independent association signal, we conducted 
conditional analysis with adjustment of the lead variants for other signals in the same risk region. We 
conducted this analysis for trans-ancestral independent signals separately for each population to 
account for differences in the LD structure and then combined conditioned results.”  

In page 25, paragraph 1: “On the other hand, fine-mapping analyses capitalizing on ancestry differences 
in LD structure can substantially reduce the credible set size compared to European-ancestry specific 



analysis. This highlights the value of multi-ancestry fine-mapping over single-ancestry analysis. Our 
analysis is limited to two ancestry groups. Further studies should increase the diversity of genetic data, 
including those from other racial groups.”  

(4) The use of different minor allele frequency (MAF) thresholds (e.g., 0.005, 0.1, and 0.5) needs 
normalization or explanation across analyses. 

Response: We thank the reviewer for the comment. Two MAF thresholds (0.005 and 0.01) were 
mentioned in our original manuscript. The threshold of MAF=0.005 was used in the previous GWAS 
paper, while MAF=0.01 was used in our study. To avoid confusion, we rephrased the description 
regarding GWAS datasets and removed the threshold of 0.005 in the revised manuscript.   

In pages 25-26: “GWAS data and meta-analysis: The GWAS data used in this study comprised 100,204 
CRC cases and 154,587 controls (Supplementary Table 1), which were grouped into 31 GWAS analytical 
units based on study or genotyping platform as consistent with the original reports. Of them, 17 datasets 
were derived from populations of European descent and 14 were from populations of Asian descent. 
These 31 GWAS datasets were meta-analyzed under the fixed-effects inverse variance weighted model 
implemented in METAL 30. Further details regarding each analytical unit and meta-analysis were 
described previously 7.”  

(5) The overlap with previous eQTL and mQTL studies isn't clearly stated.

Response: We compared genes identified both in our eQTL and mQTL and previous studies and added 

the results to the revised manuscript.  

In page 18, paragraph 2: “At Bonferroni-corrected P < 0.05, we identified 153 genes associated with the 

lead variants, including 127 genes in 65 independent association signals and 30 genes in 15 signals 

identified from trans-ancestry and European-ancestry specific analyses, respectively. We also identified 

the PPP1R21 gene in an Asian-specific risk signal (lead variant rs77272589) (Supplementary Table 13). 

Out of these 153 genes, 37 had been previously identified by eQTL analysis 5,10,11”  

In page 19, paragraph 1: “We found that DNA methylation levels at CpG sites for 84 genes were 

associated with 71 independent association signals, including 14 genes identified in previous mQTL 

analysis 11(Supplementary Table 14).”  

(6) The significance and power of differential expression analysis in specific cell types require 

clarification. 

Response: In the revised manuscript, we added the significant threshold to determine genes with 

significantly differential expression between cell types in single-cell RNA-seq analysis.  

In page 36, paragraph 1: “The criteria |log2 fold change (FC)| > 1 and P < 0.05 were applied to 

determine genes with significantly differential expression between cell types.”  

Minor comment: The mapping of 136 credible target genes to 126 pathways, with overlapping pathways 

and multiple tools, should be presented more distinctly. Separating tools and highlighting common 

pathways would enhance clarity. 



Response: We thank the reviewer for the comments. We reorganized the results of the pathway 

analysis according to pathway databases and highlighted the common pathways by colors. The updated 

results are exhibited in Supplementary Table 22 in the revised Supplementary Tables file. 

Reviewer #2 (Remarks to the Author): 

This paper begins with fine-mapping of a previous GWAS conducted by the same group (PMID: 

36539618 Fernandez-Rozadilla et al, 2022). The methods are appropriate and appear to be based on 

approaches used by the Breast Cancer Consortium to fine-map and identify target gene of breast cancer 

GWAS. This paper has refined the target gene predictions for their 2022 paper and outlined the 

evidence associated with each prediction. This will become an important reference set for colorectal 

cancer researchers. Pathway analyses were re-performed with the more refined predictions which 

confirmed previous enriched pathways known to play a role in colorectal cancer development.  

Of note, a conditional analyses was performed in Fernandez-R et al . In regards to the fine-mapping 

performed in this paper, what was done different in this study.  

“13 independent new risk SNPs in conditional analysis” were identified in Fernandez-R et al. Is there 

overlap between these 13 SNPs and the SNPs identified in this paper?  

Response: We thank the reviewer for the positive comments on our work. The major purpose of our 

previous GWAS (PMID: 36539618, Fernandez-Rozadilla et al, 2022) was to identify novel risk loci for CRC, 

while the major purpose of this current fine-mapping analysis is to identify putative causal variants and 

genes. Therefore, different strategies were used in these two studies. In the paper by Fernandez-

Rozadilla et al, we performed conditional analyses within 1 Mb of each CRC risk loci conditioning on only 

index SNP, and we did not call it a fine-mapping analysis. In the current study, however, we performed 

forward stepwise conditional analyses in each of the 142 GWAS-identified regions for CRC risk. As a 

result, we identified 47 additional association signals that were not reported previously. More 

importantly, the conditional analysis was just to set the stage for multiple subsequent analyses we 

performed to identify putative causal variants and genes and biological pathways involved in CRC 

development.  

eQTLs that did not colocalize with GWAS signals should not be considered evidence of “putative” or 

“credible” target genes. Please confirm that this was the case. 

Response: We have carefully checked the terms “putative” and “credible” throughout the manuscript 

and removed “putative” for “target genes” in the context of QTL analysis without colocalization 

evidence. 

For Line 459 “9 genes as putative targets of eight signals “. Please confirm what you mean by putative vs 

credible.  

Response: The new sentence reads like this:  

In page 20, paragraph 1: “Among them, 56 genes were newly identified as potential targets for CRC risk 

associations, including nine genes in eight novel association signals in this study (Figure 3)”.  



Line 444. Of the “84 genes from the mQTL analysis”, how many are supported by eQTL colocalization? It 

is not clear why an association with methylation without expression would be evidence for a target 

gene? In these cases, it is possible that the variant effects methylation but the methylation has no 

functional significance on the gene. Is mQTL/GWAS colocalization considered to be supportive evidence 

in Figure 3 and 4?. If so, please justify. 

Response: We thank the reviewer for the comments. In our revised manuscript, we compared genes 

identified in mQTL and eQTL analyses. Our result show that 34% (29/84) genes from the mQTL analysis 

were also identified in the eQTL analysis, sharing the same lead variant. This fraction is not large, which 

is likely due to a smaller sample size in the mQTL analysis (n=321) when compared with the eQTL 

analysis (n=1299). Nevertheless, our result is in line with previous observations showing about 27% of 

GWAS hits colocalizing with both mQTL and eQTL in the same tissue (PMID: 36510025).  

Recent studies provided strong evidence that mQTLs explain large fractions of GWAS-identified signals 

(PMID: 36510025, PMID: 37601976) and mQTLs are strongly enriched in distal enhancers and insulators, 

which are important for gene regulation (PMID: 36510025). Furthermore, the link between DNA 

methylation and GWAS signal involves additional molecular phenotypes other than gene expression. A 

recent study showed that some mQTLs are also associated with other molecular phenotypes, such as 

histone modification and chromatin accessibility. Notably, 29 of the 55 genes with evidence of mQTL but 

no eQTL in our study were supported by other layers of evidence, including functional genomic data, 

and their associations with CRC risk through TWAS and eQTL colocalization. We included the results in 

the revised manuscript. We also updated Figures 3 and 4.   

“Of these, 29 genes were identified in both mQTL and eQTL analyses, and 45 (21.9%) genes were also 

identified as targets of CCVs in the in-silico analyses based on functional genomic data as described 

above.” (page 19, paragraph 2) 

In page 19, paragraph 2: “Of these, 45 (21.9%) genes were also identified as targets of CCVs by in-silico 

analyses based on functional genomic data as described above, and 29 genes were identified in both 

mQTL and eQTL analyses that is in line with previous observations in the overlap fraction between mQTL 

and eQTL 14. We considered genes with evidence of only mQTL colocalization, as the enrichment of 

mQTLs in gene regulatory elements, as well as their implications in other molecular phenotypes, such as 

chromatin accessibility 14,15. Notably, of the 55 genes only identified in the mQTL analysis, seven genes 

were supported by the above in silico analyses with functional genomic data, and 22 genes showed 

association with CRC risk in previous TWAS and eQTL colocalization analysis 7,11,16,17.” 

The results sections are brief. Important experimental details are required in the results section so that 

the reader doesn’t have to constantly refer to the methods. 

Response: We thank the reviewer for the comments. We added details of the methods to the Results 

section in the revised manuscript as detailed below. 

Examples. 

1. How were the sets of CCVs defined.  

In pages 16-17: “To identify CCVs for each independent association signal, we conducted conditional 

analyses with adjustment of the lead variants for other signals in the same risk region. We conducted 

this analysis for trans-ancestral independent signals separately for each population to account for 



differences in the LD structure and then combined conditioned results. Using the same approach 

described in a previous fine-mapping study for breast cancer 12, we defined a variant as CCV if it has a 

conditional P value within two orders of magnitude of the most significant association, conditioning on 

all other independent association signals.” 

2. eQTL analyses – what tissue type was the transcriptome data derived from? 

In page 18, paragraph 2: “We also conducted cis-expression quantitative trait loci (cis-eQTL) analyses to 

identify putative target genes using four transcriptome datasets derived from either normal colon tissues 

or tumor-adjacent normal colon tissues from 1,298 individuals from the Genotype-Tissue Expression 

(GTEx) project (n=368 individuals predominantly of European ancestry), the BarcUVa-Seq project (n=144 

individuals of European ancestry), the Colonomics project (n=423 individuals of European ancestry), and 

the Asia Colorectal Cancer Consortium (ACCC) (n=363 individuals of East Asian ancestry) (Methods).”  

3. What is meant by functional genomic evidence in Line 450 “Of these, 45 (21.9%) genes were 

supported by the functional genomic evidence.” Is this the target gene prediction from INQUISIT??  

Yes, 45 genes identified in colocalization analysis of either mQTL or eQTL were predicted as targets of 

CCVs based on functional genomic data. We rephrased the description in the revised manuscript. 

In page 19, paragraph 2: “Of these, 45 (21.9%) genes were also identified as targets of CCVs by in-silico 

analyses based on functional genomic data as described above, and 29 genes were identified in both 

mQTL and eQTL analyses.” 

4. Line 470 – Please define ABS. 

We included the definition of nine cell types in the single-cell RNA-seq data analysis in the Methods and 

Results sections.  

In pages 35-36: “Nine cell types were defined: absorptive cells (ABS), adenoma-specific cells (ASC), crypt 

top colonocytes (CT), enteroendocrine cells (EE), goblet cells (GOB), stem cells (STM), serrated-specific 

cells (SSC), transit amplifying cells (TAC), and tuft cells (TUF). We identified differentially expressed genes 

(DEGs) by comparing each cell type with all other cell types and calculated a P-value for each gene using 

Wilcoxon's rank-sum test. The criteria |log2 fold change (FC)| > 1 and P < 0.05 were applied to determine 

genes with significantly differential expression between cell types.”  

In page 20, paragraph 2: “Nine of these genes (DIP2B, CIB1, HPGD, CDKN2B, TMEM258, MYL12A, 

MYL12B, CDKN1A, and TMBIM1) showed a distinct expression pattern in specific absorptive cells (ABS), 

underscoring the relevance of this cell type underlying CRC development.” 

5. In Figure 3 and 4. Please define which colocalization analyses were considered evidence. 

We revised Figures 3 and 4 by indicating the type of colocalization analysis for each gene in the revised 

manuscript. 



REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author):

I acknowledge the authors' efforts in addressing my previous comments, which have 

contributed to a clearer manuscript. However, I still encounter challenges in understanding 

the column headings in the supplementary table, hindering the interpretation of the data. 

(1) I kindly request a more detailed description of the Supplementary Tables to facilitate 

better comprehension. 

(2) It would be beneficial to consolidate all potential functional effects of the CVV into a 

single table. While STable 20 appears to align with this suggestion, it remains unclear 

whether this table incorporates data from all other analyses. Clarification on this matter 

would enhance the overall transparency of the information presented. 

Reviewer #2 (Remarks to the Author):

The authors have addressed all concerns adequately and have revised the manuscript 

accordingly.



Authors’ Responses to Reviewers’ Comments 

Reviewer #1 (Remarks to the Author): 

I acknowledge the authors' efforts in addressing my previous comments, which have contributed to a 

clearer manuscript. However, I still encounter challenges in understanding the column headings in the 

supplementary table, hindering the interpretation of the data. 

(1) I kindly request a more detailed description of the Supplementary Tables to facilitate better 

comprehension. 

Response: We appreciate the reviewer’s valuable comments and have updated all Supplementary 

Tables with modified column headings and footnotes.

(2) It would be beneficial to consolidate all potential functional effects of the CVV into a single table. 

While STable 20 appears to align with this suggestion, it remains unclear whether this table incorporates 

data from all other analyses. Clarification on this matter would enhance the overall transparency of the 

information presented. 

Response: The Supplementary Table 20 includes results from all analyses that we used to identify  

credible target genes. We have now made this clear in the revised Supplementary Table 20.  


