OMTON, Volume 32

Supplemental information

Enhanced therapeutic efficacy for glioblastoma

immunotherapy with an oncolytic herpes simplex virus armed with anti-

PD-1 antibody and IL-12

Lei Wang, Xusha Zhou, Xiaoqing Chen, Yuanyuan Liu, Yue Huang, Yuan Cheng, Peigen Ren, Jing Zhao, and Grace Guoying Zhou

*U: Undetectable

Figure S1. Construction and Identification of C8282. (A). Virus genome schematic. Schematic representation of the virus genome, including wild-type HSV-1(F), C1212 (control), and C8282 (murine version of C5252). C8282 contains an expression cassette for the murine IL-12 heterodimer and an antigenbinding fragment (Fab) of anti-murine PD-1Ab, with the IR region replaced. (B). Growth Curves. Vero cells exposed to 0.1 PFU of HSV-1(F), C1212, or C8282 per cell. Virus progeny collected at various time points (3, 6, 12, 24, and 48 h) and titered using Vero cells (*p < 0.05). (C). Accumulation of Viral Protein. Vero cells infected with 1.0 PFU of HSV-1(F), C1212, or C8282 per cell for 6, 12, and 24 h. Cell samples collected at specified hours post-infection. Proteins separated on 10% denaturing gels and analyzed via immunoblotting with antibodies against specific viral and cellular proteins. (D). Expression of Murine IL-12 p70 and Anti-PD-1 Ab.

Figure S2. Standard Curves for IL-12 p70 and Anti-PD-1 Antibody.

Figure S3

Figure S3. Virus replication and cytotoxicity in glioblastoma cells. (A). Viral Yields in Glioblastoma Cells. A172, D54, and U138 glioblastoma cells were exposed to 1.0 PFU of HSV-1(F), R3616, or C5252 per cell. After 2 hours, the inoculum was replaced with fresh medium. Virus progeny was harvested at 24 hpi and quantified using Vero cells. Data presented as mean \pm SD. (B). Virus Cytotoxicity in Glioblastoma Cells. Cytotoxicity of HSV-1(F), R3616, and C5252 in A172, D54, and U138 glioblastoma cells assessed using a CCK8 assay. Cells infected with 1.0 PFU/cell, and cell inhibition rates were measured at 24 hpi. Assays conducted in triplicate, and data represented as mean \pm SD. Statistical differences analyzed with a two-tailed Student's t-test (*p < 0.05, **p < 0.01, ^{N.S} p > 0.05).

Figure S4

Figure S4. (A). Upregulation of CNTFRa. A172, D54, and U87 cells were transfected with Pc-CNTFRa with a Flag tag and Pc-DNA3.1 plasmid for 48 hours. Cell samples collected at specified hours post-infection. Proteins separated on 10% denaturing gels and analyzed via immunoblotting with antibodies against Flag or GAPDH. **(B). Downregulation of CNTFRa**. A172, D54, U138, and U87 cells were transfected with si-CNTFRa and si-NT for 72 hours. Cell samples collected at specified hours post-infection. Proteins separated on 10% denaturing gels and analyzed via immunoblotting with antibodies against CNTFRa or GAPDH.

```
Figure S5
```


Figure S5. (A). The Luciferase (Luc) Image in the U-87MG-Luc Orthotopic Tumor Model. In U-87MG-Luc tumor model, luciferase (Luc) imaging was performed to visualize and monitor tumor growth. The emitted bioluminescent signal from luciferase-expressing tumor cells was captured and presented in the image. (B). The Luciferase (Luc) Image in the CT-2A-GFP-Luc Orthotopic Tumor Model. In the CT-2A-GFP-Luc tumor model, luciferase (Luc) imaging was conducted to visualize and monitor tumor progression. The emitted bioluminescent signal from luciferase-expressing tumor cells was captured and depicted in the image, providing insights into tumor growth dynamics.

Figure S6

Figure S6. Dissection of CT-2A Murine Model. After the conclusion of the murine tumor model experiment, mice were euthanized, and tumor dissections were carried out. Tumor samples were carefully collected.