HGGA, Volume 5

Supplemental information

MRBEE: A bias-corrected multivariable Mendelian randomization method

Noah Lorincz-Comi, Yihe Yang, Gen Li, and Xiaofeng Zhu

Supplementary material 1 of MRBEE: simulation and data analysis

Noah Lorincz-Comi, Yihe Yang, Gen Li, Xiaofeng Zhu

Contents

1	Sup	plemental Multivariable Simulations	2
	1.1	Simulation settings for MVMR analysis in the main body	2
	1.2	Root Mean Square Error	3
	1.3	Standard Error Evaluation	4
	1.4	Coverage Frequency	5
	1.5	Summary Table	6
	1.6	Replication of Lin et al	18
	1.7	Replication of Wu et al	19
	1.8	Bias-correction terms: Correlation matrix estimation from insignificant GWAS statistics $\ . \ .$	20
2	Sup	pplemental Univariable Simulations	22
	2.1	Overlapping Fraction	22
	2.2	Sample size	24
	2.3	Type-I error	26
	2.4	Winner's curse	27
	2.5	Outlier test	29
	2.6	Verification of Asymptotic Theroy	31
	2.7	Larger numbers of IVs	33
	2.8	Additional pleiotropy simulation	34
3	Rea	l Data Analysis	34
	3.1	Myopia data: heritability, genetic correlation matrix, and estimation error correlation matrix	34
	3.2	SCZ data: heritability, genetic correlation matrix, and estimation error correlation matrix	34
	3.3	CAD data: heritability, genetic correlation matrix, and estimation error correlation matrix .	34

1 Supplemental Multivariable Simulations

1.1 Simulation settings for MVMR analysis in the main body

We consider the following statistical model which has the same representation as Lin (2023):

$$\boldsymbol{U} = \mathbf{G}\boldsymbol{\gamma}_U + \boldsymbol{e}_U, \tag{1}$$

$$\boldsymbol{X}_{k} = \mathbf{G} \boldsymbol{\gamma}_{X_{k}} + 0.25 \boldsymbol{U} + \boldsymbol{e}_{X_{j}}, \quad j = 1, ..., 4$$
⁽²⁾

$$Y = \sum_{k=1}^{4} \theta_j X_k + \mathbf{G} \alpha + U + e_Y.$$
(3)

To make $\gamma_{X_1}, ..., \gamma_{X_4}$ to have correlation, we generate it from the Gaussian-Uniform copula model:

$$\begin{pmatrix} z_{j1} \\ z_{j2} \\ z_{j3} \\ z_{j4} \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0.5 & -0.5 & 0.5 \\ 0.5 & 1 & -0.5 & 0.5 \\ -0.5 & -0.5 & 1 & -0.5 \\ 0.5 & 0.5 & -0.5 & 1 \end{pmatrix} \right),$$
(4)

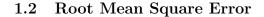
$$\gamma_{X_k,j} = \Phi(z_{jk}) \times 0.22,\tag{5}$$

where $\Phi(\cdot)$ is the CDF of standard normal distribution. In this simulation, we consider the compound symmetric structure with a correlation $\operatorname{cor}(z_{jk}, z_{js}) = 0.5$ for all $k \neq s$. As for γ_u , each element γ_{uj} are independently generated from

$$\gamma_{uj}^* \sim 0.3 \text{Unif}(0, 0.1) + 0.7\delta$$
 (6)

where δ is a point mass at zero. As for α , each element α_j are independently generated from

$$\alpha_j \sim 0.3 \mathcal{N}(0.1, 0.2^2) + 0.7\delta \tag{7}$$


where δ is a point mass at zero. The next part is fixing the heritability, which is achieved by

$$\sigma_e^2 = \frac{\operatorname{var}(\mathbf{G}\boldsymbol{\gamma}_{X_k})}{h^2} - 1,\tag{8}$$

where $h^2 = 0.1$ in this simulation. Finally, the random error is generated from

$$\begin{pmatrix} \boldsymbol{e}_{U} \\ \boldsymbol{e}_{X_{1}} \\ \boldsymbol{e}_{X_{2}} \\ \boldsymbol{e}_{X_{3}} \\ \boldsymbol{e}_{X_{4}} \\ \boldsymbol{e}_{Y} \end{pmatrix} \sim \mathcal{N} \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \sigma_{e}^{2} \begin{pmatrix} 1 & 0.5 & 0.5 & -0.5 & 0.5 & 0.5 \\ 0.5 & 1 & 0.5 & -0.5 & 0.5 & 0.5 \\ 0.5 & 0.5 & 1 & -0.5 & 0.5 & 0.5 \\ -0.5 & -0.5 & -0.5 & 1 & -0.5 & -0.5 \\ 0.5 & 0.5 & 0.5 & -0.5 & 1 & 0.6 \\ 0.5 & 0.5 & 0.5 & -0.5 & 0.5 & 1 \end{pmatrix})$$
(9)

In Lin (2023), they did not consider the correlations among $\{\gamma_{X_k}\}$ and the error terms, and did not fix the heritability. These are two major adjustments me made.

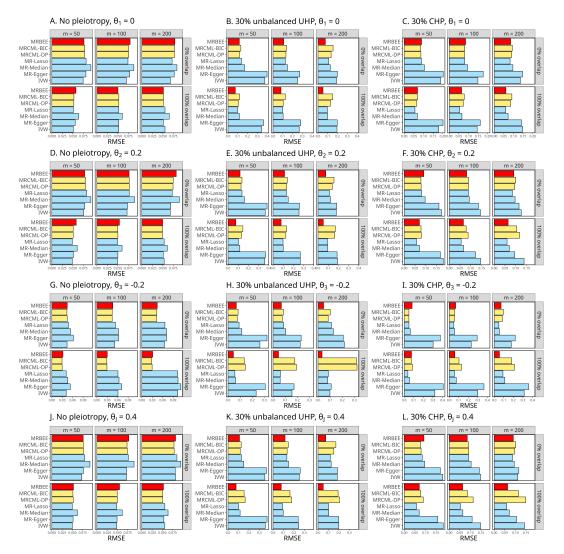


Figure S1: Barplot of the square-root of mean square error (RMSE). Panel A - L displays the barplots of the values of RMSE from seven methods in the MVMR simulation. The four rows represent the four causal effects θ_j , j = 1, 2, 3, 4. Each column corresponds to one of the three scenarios. The x-axis indicates the value of RMSE, while the y-axis lists the seven methods.

1.3 Standard Error Evaluation

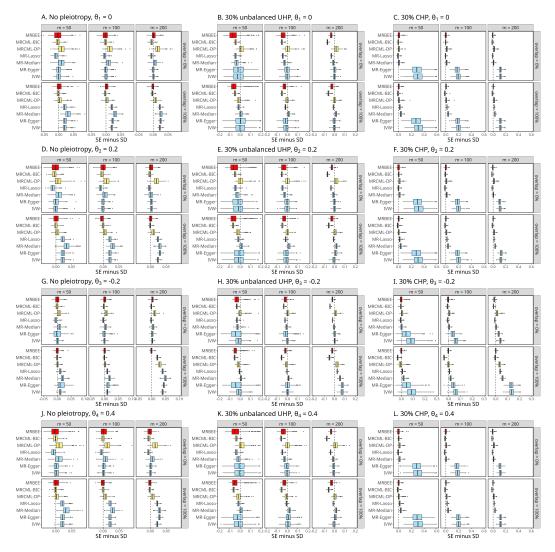


Figure S2: Boxplot of SE minus SD. Panel A - L displays the boxplots of the values of SE minus SD from seven methods in the MVMR simulation. The four rows represent the four causal effects θ_j , j = 1, 2, 3, 4. Each column corresponds to one of the three scenarios. The x-axis indicates the value of SE minus SD, while the y-axis lists the seven methods. If SE is correctly estimated, the mean of SE minus SD should be close to zero, which is indicated by a dashed line.

1.4 Coverage Frequency

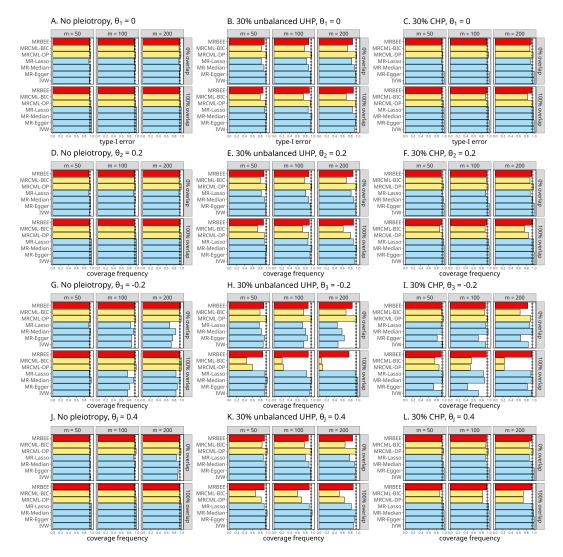


Figure S3: Boxplot of the coverage frequency. Panel A - L displays the boxplots of the values of coverage frequency from seven methods in the MVMR simulation. The four rows represent the four causal effects θ_j , j = 1, 2, 3, 4. Each column corresponds to one of the three scenarios. The x-axis indicates the coverage frequency, while the y-axis lists the seven methods. If SE is correctly estimated, the mean of coverage frequency should be around 95

1.5 Summary Table

	Table S1.	0% sample o	verlap, theta1:	=0, number of	IVs = 50	
Scenario	Method	Bias	SD	SE	CovFreq	RJF
	IVW	0.003	0.074	0.075	0.940	0.060
کر ا	MR-Egger	0.003	0.081	0.082	0.952	0.048
no pleiotropy	MR-Median	0.001	0.093	0.102	0.970	0.030
eio	MR-Lasso	0.006	0.081	0.072	0.908	0.092
lq o	MRCML-DP	0.002	0.078	0.089	0.964	0.036
Ĕ	MRCML-BIC	0.003	0.078	0.075	0.940	0.060
	MRBEE	0.008	0.081	0.079	0.942	0.058
30% unbalanced UHP	IVW	0.096	0.366	0.351	0.932	0.068
Пр	MR-Egger	0.058	0.397	0.381	0.944	0.056
nce	MR-Median	0.031	0.169	0.135	0.896	0.104
ala	MR-Lasso	0.021	0.136	0.093	0.830	0.170
qun	MRCML-DP	0.005	0.119	0.134	0.966	0.034
2%	MRCML-BIC	0.008	0.132	0.089	0.828	0.172
30	MRBEE	0.004	0.204	0.146	0.904	0.096
	IVW	0.094	0.165	0.479	1.000	0.000
0	MR-Egger	-0.097	0.178	0.471	1.000	0.000
30% CHP	MR-Median	0.011	0.105	0.112	0.966	0.034
%0	MR-Lasso	0.000	0.090	0.080	0.924	0.076
ñ	MRCML-DP	-0.001	0.087	0.095	0.964	0.036
	MRCML-BIC	0.000	0.086	0.080	0.932	0.068
	MRBEE	0.005	0.080	0.087	0.940	0.060
		.00% sample	overlap, theta	1=0, number c	of IVs = 50	
Scenario	Table S2. 1 Method	Bias	overlap, theta: SD	SE	of IVs = 50 CovFreq	RJF
Scenario	Method IVW	Bias 0.012				RJF 0.008
	Method IVW MR-Egger	Bias 0.012 0.008	SD 0.050 0.055	SE 0.070 0.077	CovFreq 0.992 0.994	0.008 0.006
	Method IVW MR-Egger MR-Median	Bias 0.012 0.008 0.012	SD 0.050 0.055 0.063	SE 0.070 0.077 0.095	CovFreq 0.992 0.994 0.998	0.008 0.006 0.002
	Method IVW MR-Egger MR-Median MR-Lasso	Bias 0.012 0.008 0.012 0.012	SD 0.050 0.055 0.063 0.050	SE 0.070 0.077 0.095 0.070	CovFreq 0.992 0.994 0.998 0.992	0.008 0.006 0.002 0.008
	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP	Bias 0.012 0.008 0.012 0.012 0.002	SD 0.050 0.055 0.063 0.050 0.052	SE 0.070 0.077 0.095 0.070 0.056	CovFreq 0.992 0.994 0.998 0.992 0.976	0.008 0.006 0.002 0.008 0.024
Scenario pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC	Bias 0.012 0.008 0.012 0.012 0.002 0.003	SD 0.050 0.055 0.063 0.050 0.052 0.053	SE 0.070 0.077 0.095 0.070 0.056 0.051	CovFreq 0.992 0.994 0.998 0.992 0.976 0.946	0.008 0.006 0.002 0.008 0.024 0.054
no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE	Bias 0.012 0.008 0.012 0.012 0.002 0.003 -0.002	SD 0.050 0.055 0.063 0.050 0.052 0.053 0.051	SE 0.070 0.077 0.095 0.070 0.056 0.051 0.054	CovFreq 0.992 0.994 0.998 0.992 0.976 0.946 0.950	0.008 0.006 0.002 0.008 0.024 0.054 0.050
no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW	Bias 0.012 0.008 0.012 0.012 0.002 0.003 -0.002 0.071	SD 0.050 0.055 0.063 0.050 0.052 0.053 0.051 0.337	SE 0.070 0.077 0.095 0.070 0.056 0.051 0.054 0.342	CovFreq 0.992 0.994 0.998 0.992 0.976 0.946 0.950 0.942	0.008 0.006 0.002 0.008 0.024 0.054 0.050 0.058
d UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger	Bias 0.012 0.008 0.012 0.012 0.002 0.003 -0.002 0.071 0.037	SD 0.050 0.055 0.063 0.050 0.052 0.053 0.051 0.337 0.363	SE 0.070 0.077 0.095 0.070 0.056 0.051 0.054 0.342 0.372	CovFreq 0.992 0.994 0.998 0.992 0.976 0.946 0.950 0.942 0.946	0.008 0.006 0.002 0.008 0.024 0.054 0.050 0.058 0.054
d UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Egger MR-Median	Bias 0.012 0.008 0.012 0.012 0.002 0.003 -0.002 0.071 0.037 0.020	SD 0.050 0.055 0.063 0.050 0.052 0.053 0.051 0.337 0.363 0.115	SE 0.070 0.077 0.095 0.070 0.056 0.051 0.054 0.342 0.342 0.372 0.124	CovFreq 0.992 0.994 0.998 0.992 0.976 0.946 0.950 0.942 0.946 0.968	0.008 0.006 0.002 0.008 0.024 0.054 0.050 0.058 0.058 0.054 0.032
d UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso	Bias 0.012 0.008 0.012 0.002 0.003 -0.002 0.071 0.037 0.020 0.012	SD 0.050 0.055 0.063 0.050 0.052 0.053 0.051 0.337 0.363 0.115 0.098	SE 0.070 0.077 0.095 0.070 0.056 0.051 0.054 0.342 0.372 0.124 0.085	CovFreq 0.992 0.994 0.998 0.992 0.976 0.946 0.950 0.942 0.946 0.946 0.968 0.912	0.008 0.002 0.008 0.024 0.054 0.054 0.055 0.058 0.054 0.032 0.088
d UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP	Bias 0.012 0.008 0.012 0.012 0.002 0.003 -0.002 0.071 0.037 0.020 0.012 -0.012	SD 0.050 0.055 0.063 0.050 0.052 0.053 0.051 0.337 0.363 0.115 0.098 0.107	SE 0.070 0.077 0.095 0.070 0.056 0.051 0.054 0.342 0.342 0.372 0.124 0.085 0.099	CovFreq 0.992 0.994 0.998 0.992 0.976 0.946 0.950 0.942 0.946 0.968 0.912 0.938	0.008 0.002 0.008 0.024 0.054 0.054 0.058 0.058 0.054 0.032 0.088 0.088 0.062
d UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-DP	Bias 0.012 0.008 0.012 0.012 0.002 0.003 -0.002 0.071 0.037 0.020 0.012 -0.012 -0.013	SD 0.050 0.055 0.063 0.050 0.052 0.053 0.051 0.337 0.363 0.115 0.098 0.107 0.118	SE 0.070 0.077 0.095 0.070 0.056 0.051 0.054 0.342 0.372 0.124 0.085 0.099 0.069	CovFreq 0.992 0.994 0.998 0.992 0.976 0.946 0.950 0.942 0.946 0.968 0.912 0.938 0.798	0.008 0.002 0.008 0.024 0.054 0.050 0.058 0.054 0.032 0.088 0.062 0.202
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE	Bias 0.012 0.008 0.012 0.012 0.002 0.003 -0.002 0.071 0.037 0.020 0.012 -0.012 -0.013 -0.004	SD 0.050 0.055 0.063 0.050 0.052 0.053 0.051 0.337 0.363 0.115 0.098 0.107 0.118 0.152	SE 0.070 0.077 0.095 0.070 0.056 0.051 0.054 0.342 0.372 0.124 0.085 0.099 0.069 0.100	CovFreq 0.992 0.994 0.998 0.992 0.976 0.946 0.950 0.942 0.946 0.968 0.912 0.938 0.798 0.872	0.008 0.002 0.008 0.024 0.054 0.050 0.058 0.054 0.032 0.032 0.088 0.062 0.202 0.128
d UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-DP MRCML-BIC MRBEE IVW	Bias 0.012 0.008 0.012 0.002 0.003 -0.002 0.071 0.037 0.020 0.012 -0.012 -0.013 -0.004 0.099	SD 0.050 0.055 0.063 0.050 0.052 0.053 0.051 0.337 0.363 0.115 0.098 0.107 0.118 0.152 0.150	SE 0.070 0.077 0.095 0.070 0.056 0.051 0.054 0.372 0.372 0.124 0.085 0.099 0.069 0.100 0.470	CovFreq 0.992 0.994 0.998 0.992 0.976 0.946 0.950 0.942 0.946 0.946 0.968 0.912 0.938 0.798 0.872 1.000	0.008 0.002 0.008 0.024 0.054 0.054 0.058 0.054 0.032 0.088 0.062 0.202 0.128 0.000
30% unbalanced UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger	Bias 0.012 0.008 0.012 0.002 0.003 -0.002 0.071 0.037 0.020 0.012 -0.012 -0.013 -0.004 0.099 -0.100	SD 0.050 0.055 0.063 0.050 0.052 0.053 0.051 0.337 0.363 0.115 0.098 0.107 0.118 0.152 0.150 0.150	SE 0.070 0.077 0.095 0.070 0.056 0.051 0.054 0.342 0.372 0.124 0.085 0.099 0.069 0.009 0.069 0.100 0.470 0.459	CovFreq 0.992 0.994 0.998 0.992 0.976 0.946 0.950 0.942 0.946 0.968 0.912 0.938 0.912 0.938 0.798 0.872 1.000 1.000	0.008 0.002 0.008 0.024 0.054 0.054 0.058 0.054 0.032 0.088 0.062 0.202 0.128 0.000 0.000
30% unbalanced UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Egger MR-Egger	Bias 0.012 0.008 0.012 0.002 0.003 -0.002 0.071 0.037 0.020 0.012 -0.012 -0.013 -0.004 0.099 -0.100 0.016	SD 0.050 0.055 0.063 0.050 0.052 0.053 0.051 0.337 0.363 0.115 0.098 0.107 0.118 0.152 0.150 0.175 0.066	SE 0.070 0.077 0.095 0.070 0.056 0.051 0.054 0.342 0.372 0.124 0.372 0.124 0.085 0.099 0.069 0.069 0.100 0.470 0.459 0.103	CovFreq 0.992 0.994 0.998 0.992 0.976 0.946 0.950 0.942 0.946 0.968 0.912 0.938 0.912 0.938 0.798 0.872 1.000 1.000 0.998	0.008 0.002 0.008 0.024 0.054 0.050 0.058 0.054 0.032 0.088 0.062 0.202 0.128 0.000 0.000 0.000
30% unbalanced UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MRCML-DP MRCML-DP MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso	Bias 0.012 0.008 0.012 0.012 0.002 0.003 -0.002 0.071 0.037 0.020 0.012 -0.013 -0.013 -0.004 0.099 -0.100 0.016 0.008	SD 0.050 0.055 0.063 0.050 0.052 0.053 0.051 0.337 0.363 0.115 0.098 0.107 0.118 0.152 0.150 0.175 0.066 0.055	SE 0.070 0.077 0.095 0.070 0.056 0.051 0.054 0.342 0.372 0.124 0.085 0.099 0.069 0.069 0.100 0.470 0.459 0.103 0.074	CovFreq 0.992 0.994 0.998 0.992 0.976 0.946 0.950 0.942 0.946 0.968 0.912 0.938 0.912 0.938 0.798 0.872 1.000 1.000 0.998 0.996	0.008 0.002 0.008 0.024 0.054 0.050 0.058 0.054 0.032 0.088 0.062 0.202 0.128 0.000 0.000 0.000 0.002 0.004
d UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP	Bias 0.012 0.008 0.012 0.002 0.003 -0.002 0.071 0.037 0.020 0.012 -0.012 -0.013 -0.004 0.099 -0.100 0.016 0.008 -0.011	SD 0.050 0.055 0.063 0.050 0.052 0.053 0.051 0.363 0.115 0.098 0.107 0.118 0.152 0.150 0.150 0.175 0.066 0.055 0.065	SE 0.070 0.077 0.095 0.070 0.056 0.051 0.054 0.372 0.124 0.372 0.124 0.085 0.099 0.069 0.069 0.100 0.470 0.459 0.103 0.074 0.073	CovFreq 0.992 0.994 0.998 0.992 0.976 0.946 0.950 0.942 0.946 0.968 0.912 0.938 0.798 0.872 1.000 1.000 0.998 0.996 0.978	0.008 0.002 0.008 0.024 0.054 0.050 0.058 0.054 0.032 0.088 0.062 0.202 0.128 0.000 0.000 0.000 0.002 0.004 0.002
30% unbalanced UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MRCML-DP MRCML-DP MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso	Bias 0.012 0.008 0.012 0.012 0.002 0.003 -0.002 0.071 0.037 0.020 0.012 -0.013 -0.013 -0.004 0.099 -0.100 0.016 0.008	SD 0.050 0.055 0.063 0.050 0.052 0.053 0.051 0.337 0.363 0.115 0.098 0.107 0.118 0.152 0.150 0.175 0.066 0.055	SE 0.070 0.077 0.095 0.070 0.056 0.051 0.054 0.342 0.372 0.124 0.085 0.099 0.069 0.069 0.100 0.470 0.459 0.103 0.074	CovFreq 0.992 0.994 0.998 0.992 0.976 0.946 0.950 0.942 0.946 0.968 0.912 0.938 0.912 0.938 0.798 0.872 1.000 1.000 0.998 0.996	0.008 0.002 0.008 0.024 0.054 0.050 0.058 0.054 0.032 0.088 0.062 0.202 0.128 0.000 0.000 0.000 0.002 0.004

	Table S3. (0% sample ov	erlap, theta2=	0.2, number o	f IVs = 50	
Scenario	Method	Bias	SD	SE	CovFreq	RJF
	IVW	-0.011	0.075	0.075	0.946	0.724
∕c	MR-Egger	-0.012	0.078	0.079	0.958	0.676
trol	MR-Median	-0.014	0.092	0.102	0.966	0.460
no pleiotropy	MR-Lasso	-0.013	0.082	0.072	0.914	0.726
lq c	MRCML-DP	-0.006	0.080	0.088	0.966	0.600
Ĕ	MRCML-BIC	-0.006	0.080	0.075	0.944	0.748
	MRBEE	-0.005	0.078	0.077	0.922	0.718
30% unbalanced UHP	IVW	0.043	0.362	0.348	0.934	0.124
Пр	MR-Egger	0.013	0.383	0.362	0.932	0.122
nce	MR-Median	-0.002	0.161	0.135	0.908	0.348
ala	MR-Lasso	-0.004	0.137	0.092	0.824	0.558
qun	MRCML-DP	-0.002	0.128	0.135	0.966	0.344
1 %(MRCML-BIC	-0.001	0.137	0.089	0.802	0.582
30	MRBEE	0.022	0.193	0.145	0.896	0.432
	IVW	0.084	0.151	0.476	1.000	0.002
0	MR-Egger	-0.036	0.157	0.462	1.000	0.002
Ë	MR-Median	0.009	0.096	0.111	0.978	0.490
30% CHP	MR-Lasso	0.002	0.080	0.079	0.946	0.730
30	MRCML-DP	0.006	0.078	0.094	0.982	0.618
	MRCML-BIC	0.005	0.077	0.080	0.950	0.742
	MRBEE	0.005	0.087	0.088	0.930	0.660
	Table S4. 10	00% sample c	overlap, theta2	=0.2, number	of IVs = 50	
Scenario	Table S4. 10 Method	00% sample c Bias	overlap, theta2 SD	=0.2, number SE	of IVs = 50 CovFreq	RJF
Scenario						RJF 0.928
	Method	Bias	SD	SE	CovFreq	
	Method IVW	Bias 0.008	SD 0.048	SE 0.070	CovFreq 0.998	0.928
	Method IVW MR-Egger	Bias 0.008 0.008	SD 0.048 0.051	SE 0.070 0.074	CovFreq 0.998 0.996	0.928 0.900
	Method IVW MR-Egger MR-Median	Bias 0.008 0.008 0.006	SD 0.048 0.051 0.060	SE 0.070 0.074 0.094	CovFreq 0.998 0.996 1.000	0.928 0.900 0.638
Scenario Deiotropy	Method IVW MR-Egger MR-Median MR-Lasso	Bias 0.008 0.008 0.006 0.008 -0.004 -0.002	SD 0.048 0.051 0.060 0.048 0.051 0.051	SE 0.070 0.074 0.094 0.070 0.055 0.051	CovFreq 0.998 0.996 1.000 0.998	0.928 0.900 0.638 0.928 0.950 0.964
no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE	Bias 0.008 0.008 0.006 0.008 -0.004 -0.002 0.000	SD 0.048 0.051 0.060 0.048 0.051	SE 0.070 0.074 0.094 0.070 0.055 0.051 0.054	CovFreq 0.998 0.996 1.000 0.998 0.962 0.944 0.946	0.928 0.900 0.638 0.928 0.950 0.964 0.940
no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC	Bias 0.008 0.008 0.006 0.008 -0.004 -0.002	SD 0.048 0.051 0.060 0.048 0.051 0.051	SE 0.070 0.074 0.094 0.070 0.055 0.051	CovFreq 0.998 0.996 1.000 0.998 0.962 0.944	0.928 0.900 0.638 0.928 0.950 0.964
d UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger	Bias 0.008 0.008 0.006 0.008 -0.004 -0.002 0.000 0.069 0.044	SD 0.048 0.051 0.060 0.048 0.051 0.051 0.053 0.353 0.365	SE 0.070 0.074 0.094 0.070 0.055 0.051 0.054 0.342 0.357	CovFreq 0.998 0.996 1.000 0.998 0.962 0.944 0.946 0.940 0.936	0.928 0.900 0.638 0.928 0.950 0.964 0.940 0.138 0.118
d UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Egger MR-Median	Bias 0.008 0.008 0.006 0.008 -0.004 -0.002 0.000 0.069 0.044 0.023	SD 0.048 0.051 0.060 0.048 0.051 0.051 0.053 0.353 0.365 0.114	SE 0.070 0.074 0.094 0.070 0.055 0.051 0.054 0.342 0.357 0.125	CovFreq 0.998 0.996 1.000 0.998 0.962 0.944 0.946 0.940 0.936 0.966	0.928 0.900 0.638 0.928 0.950 0.964 0.940 0.138 0.118 0.468
d UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Egger MR-Median MR-Lasso	Bias 0.008 0.006 0.008 -0.004 -0.002 0.000 0.069 0.044 0.023 0.010	SD 0.048 0.051 0.060 0.048 0.051 0.051 0.053 0.353 0.365 0.114 0.102	SE 0.070 0.074 0.094 0.070 0.055 0.051 0.054 0.342 0.357 0.125 0.085	CovFreq 0.998 0.996 1.000 0.998 0.962 0.944 0.946 0.940 0.936 0.966 0.904	0.928 0.900 0.638 0.928 0.950 0.964 0.940 0.138 0.118 0.468 0.682
d UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Egger MR-Median	Bias 0.008 0.008 0.006 0.008 -0.004 -0.002 0.000 0.069 0.044 0.023	SD 0.048 0.051 0.060 0.048 0.051 0.051 0.053 0.353 0.365 0.114 0.102 0.118	SE 0.070 0.074 0.094 0.070 0.055 0.051 0.054 0.342 0.357 0.125 0.085 0.101	CovFreq 0.998 0.996 1.000 0.998 0.962 0.944 0.946 0.940 0.936 0.966 0.904 0.902	0.928 0.900 0.638 0.928 0.950 0.964 0.940 0.138 0.118 0.468 0.682 0.364
d UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-DP	Bias 0.008 0.008 0.008 -0.004 -0.002 0.000 0.069 0.044 0.023 0.010 -0.063 -0.050	SD 0.048 0.051 0.060 0.048 0.051 0.051 0.053 0.353 0.365 0.114 0.102 0.118 0.137	SE 0.070 0.074 0.094 0.070 0.055 0.051 0.054 0.342 0.357 0.125 0.085 0.101 0.070	CovFreq 0.998 0.996 1.000 0.998 0.962 0.944 0.946 0.946 0.940 0.936 0.966 0.904 0.904 0.902 0.738	0.928 0.900 0.638 0.928 0.950 0.964 0.940 0.138 0.118 0.468 0.682 0.364 0.608
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE	Bias 0.008 0.008 0.008 -0.004 -0.002 0.000 0.069 0.044 0.023 0.010 -0.063 -0.050 -0.001	SD 0.048 0.051 0.060 0.048 0.051 0.051 0.053 0.353 0.365 0.114 0.102 0.118 0.137 0.157	SE 0.070 0.074 0.094 0.070 0.055 0.051 0.054 0.342 0.357 0.125 0.085 0.101	CovFreq 0.998 0.996 1.000 0.998 0.962 0.944 0.946 0.940 0.936 0.966 0.904 0.902 0.738 0.884	0.928 0.900 0.638 0.928 0.950 0.964 0.940 0.138 0.118 0.468 0.682 0.364 0.608 0.608
d UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-DP MRCML-BIC MRBEE IVW	Bias 0.008 0.006 0.008 -0.004 -0.002 0.000 0.069 0.044 0.023 0.010 -0.063 -0.050 -0.001 0.098	SD 0.048 0.051 0.060 0.048 0.051 0.051 0.053 0.365 0.114 0.102 0.118 0.137 0.157 0.152	SE 0.070 0.074 0.094 0.070 0.055 0.051 0.054 0.357 0.125 0.085 0.101 0.070 0.101 0.070	CovFreq 0.998 0.996 1.000 0.998 0.962 0.944 0.946 0.940 0.936 0.966 0.904 0.902 0.738 0.884 1.000	0.928 0.900 0.638 0.928 0.950 0.964 0.940 0.138 0.118 0.468 0.682 0.364 0.608 0.608 0.632 0.000
30% unbalanced UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW	Bias 0.008 0.008 0.006 0.004 -0.002 0.000 0.069 0.044 0.023 0.010 -0.063 -0.050 -0.001 0.098 -0.026	SD 0.048 0.051 0.060 0.048 0.051 0.051 0.053 0.353 0.365 0.114 0.102 0.118 0.137 0.157 0.152 0.166	SE 0.070 0.074 0.094 0.070 0.055 0.051 0.054 0.357 0.125 0.085 0.101 0.070 0.101 0.070 0.101	CovFreq 0.998 0.996 1.000 0.998 0.962 0.944 0.946 0.946 0.940 0.936 0.966 0.904 0.902 0.738 0.884 1.000 1.000	0.928 0.900 0.638 0.928 0.950 0.964 0.940 0.138 0.118 0.468 0.682 0.364 0.608 0.632 0.608 0.632
30% unbalanced UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MREE IVW MR-Egger MR-Egger MR-Egger	Bias 0.008 0.008 0.008 -0.004 -0.002 0.000 0.069 0.044 0.023 0.010 -0.063 -0.050 -0.001 0.098 -0.026 0.010	SD 0.048 0.051 0.060 0.048 0.051 0.051 0.053 0.353 0.365 0.114 0.102 0.118 0.137 0.157 0.152 0.166 0.070	SE 0.070 0.074 0.094 0.070 0.055 0.051 0.054 0.342 0.357 0.125 0.085 0.101 0.070 0.101 0.070 0.101 0.472 0.454 0.105	CovFreq 0.998 0.996 1.000 0.998 0.962 0.944 0.946 0.946 0.940 0.936 0.966 0.904 0.902 0.738 0.884 1.000 1.000	0.928 0.900 0.638 0.928 0.950 0.964 0.940 0.138 0.468 0.682 0.364 0.682 0.364 0.608 0.632 0.000 0.000 0.000
30% unbalanced UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso	Bias 0.008 0.008 0.006 0.004 -0.002 0.000 0.069 0.044 0.023 0.010 -0.063 -0.050 -0.050 -0.001 0.098 -0.026 0.010 0.003	SD 0.048 0.051 0.060 0.048 0.051 0.051 0.053 0.353 0.365 0.114 0.102 0.118 0.137 0.157 0.157 0.152 0.166 0.070 0.057	SE 0.070 0.074 0.094 0.070 0.055 0.051 0.054 0.342 0.357 0.125 0.085 0.101 0.070 0.101 0.472 0.454 0.105 0.075	CovFreq 0.998 0.996 1.000 0.998 0.962 0.944 0.946 0.946 0.940 0.936 0.966 0.904 0.902 0.738 0.884 1.000 1.000 1.000 0.990	0.928 0.900 0.638 0.928 0.950 0.964 0.940 0.138 0.118 0.468 0.682 0.364 0.608 0.632 0.608 0.632 0.000 0.542 0.828
d UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP	Bias 0.008 0.008 0.008 -0.004 -0.002 0.000 0.069 0.044 0.023 0.010 -0.063 -0.050 -0.050 -0.001 0.098 -0.026 0.010 0.003 -0.039	SD 0.048 0.051 0.060 0.048 0.051 0.051 0.053 0.365 0.114 0.102 0.118 0.137 0.157 0.157 0.152 0.166 0.070 0.057 0.069	SE 0.070 0.074 0.094 0.070 0.055 0.051 0.054 0.357 0.125 0.085 0.101 0.070 0.101 0.070 0.101 0.472 0.454 0.105 0.075	CovFreq 0.998 0.996 1.000 0.998 0.962 0.944 0.946 0.940 0.936 0.966 0.904 0.902 0.738 0.884 1.000 1.000 1.000 0.990 0.954	0.928 0.900 0.638 0.928 0.950 0.964 0.940 0.138 0.118 0.468 0.682 0.364 0.608 0.632 0.000 0.000 0.542 0.828 0.626
30% unbalanced UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso	Bias 0.008 0.008 0.006 0.004 -0.002 0.000 0.069 0.044 0.023 0.010 -0.063 -0.050 -0.050 -0.001 0.098 -0.026 0.010 0.003	SD 0.048 0.051 0.060 0.048 0.051 0.051 0.053 0.353 0.365 0.114 0.102 0.118 0.137 0.157 0.157 0.152 0.166 0.070 0.057	SE 0.070 0.074 0.094 0.070 0.055 0.051 0.054 0.342 0.357 0.125 0.085 0.101 0.070 0.101 0.472 0.454 0.105 0.075	CovFreq 0.998 0.996 1.000 0.998 0.962 0.944 0.946 0.946 0.940 0.936 0.966 0.904 0.902 0.738 0.884 1.000 1.000 1.000 0.990	0.928 0.900 0.638 0.928 0.950 0.964 0.940 0.138 0.118 0.468 0.682 0.364 0.608 0.632 0.608 0.632 0.000 0.542 0.828

	Table S5. 0	% sample ov	erlap, theta3=-	-0.2, number c	of IVs = 50	
Scenario	Method	Bias	SD	SE	CovFreq	RJF
	IVW	0.014	0.041	0.043	0.946	0.988
۶ ک	MR-Egger	0.012	0.061	0.062	0.948	0.846
no pleiotropy	MR-Median	0.014	0.052	0.059	0.964	0.904
eio	MR-Lasso	0.014	0.046	0.041	0.912	0.984
lq o	MRCML-DP	0.002	0.044	0.051	0.970	0.984
ŭ	MRCML-BIC	-0.001	0.043	0.043	0.950	0.994
	MRBEE	0.001	0.044	0.044	0.942	0.990
НЬ	IVW	0.152	0.215	0.199	0.874	0.098
П	MR-Egger	0.086	0.310	0.281	0.910	0.080
30% unbalanced UHP	MR-Median	0.054	0.101	0.076	0.830	0.568
alar	MR-Lasso	0.038	0.083	0.053	0.776	0.800
qui	MRCML-DP	0.005	0.076	0.077	0.966	0.718
۲ %	MRCML-BIC	0.000	0.083	0.051	0.794	0.918
30	MRBEE	0.014	0.109	0.081	0.892	0.678
	IVW	-0.249	0.171	0.254	0.960	0.352
	MR-Egger	-0.317	0.204	0.248	0.818	0.546
ЧН	MR-Median	-0.019	0.061	0.063	0.952	0.930
30% CHP	MR-Lasso	0.001	0.050	0.045	0.920	0.972
30	MRCML-DP	-0.008	0.049	0.055	0.982	0.978
	MRCML-BIC	-0.011	0.049	0.045	0.940	0.992
	MRBEE	-0.013	0.051	0.050	0.934	0.982
	Table S6. 10	0% sample o	verlap, theta3:	=-0.2 <i>,</i> number	of IVs = 50	
Scenario	Table S6. 10 Method	0% sample o Bias	verlap, theta3: SD	=-0.2, number SE	of IVs = 50 CovFreq	RJF
Scenario						RJF 1.000
	Method	Bias	SD	SE	CovFreq	
	Method IVW	Bias -0.030	SD 0.029	SE 0.040	CovFreq 0.940	1.000
	Method IVW MR-Egger	Bias -0.030 -0.031	SD 0.029 0.043	SE 0.040 0.058	CovFreq 0.940 0.948	1.000 0.948
	Method IVW MR-Egger MR-Median	Bias -0.030 -0.031 -0.030	SD 0.029 0.043 0.035	SE 0.040 0.058 0.054	CovFreq 0.940 0.948 0.984	1.000 0.948 1.000
Scenario bleiotropy	Method IVW MR-Egger MR-Median MR-Lasso	Bias -0.030 -0.031 -0.030 -0.030	SD 0.029 0.043 0.035 0.029	SE 0.040 0.058 0.054 0.040	CovFreq 0.940 0.948 0.984 0.940	1.000 0.948 1.000 1.000
	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP	Bias -0.030 -0.031 -0.030 -0.030 0.002	SD 0.029 0.043 0.035 0.029 0.030	SE 0.040 0.058 0.054 0.040 0.031	CovFreq 0.940 0.948 0.984 0.940 0.952	1.000 0.948 1.000 1.000 1.000
no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC	Bias -0.030 -0.031 -0.030 -0.030 0.002 -0.001	SD 0.029 0.043 0.035 0.029 0.030 0.029	SE 0.040 0.058 0.054 0.040 0.031 0.029	CovFreq 0.940 0.948 0.984 0.940 0.952 0.948	1.000 0.948 1.000 1.000 1.000 1.000
no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE	Bias -0.030 -0.031 -0.030 -0.030 0.002 -0.001 0.004	SD 0.029 0.043 0.035 0.029 0.030 0.029 0.030	SE 0.040 0.058 0.054 0.040 0.031 0.029 0.031	CovFreq 0.940 0.948 0.984 0.940 0.952 0.948 0.946	1.000 0.948 1.000 1.000 1.000 0.998
d UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW	Bias -0.030 -0.031 -0.030 -0.030 0.002 -0.001 0.004 0.109	SD 0.029 0.043 0.035 0.029 0.030 0.029 0.030 0.030	SE 0.040 0.058 0.054 0.040 0.031 0.029 0.031 0.194	CovFreq 0.940 0.948 0.984 0.940 0.952 0.948 0.946 0.910	1.000 0.948 1.000 1.000 1.000 1.000 0.998 0.110
d UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger	Bias -0.030 -0.031 -0.030 -0.030 0.002 -0.001 0.004 0.109 0.062	SD 0.029 0.043 0.035 0.029 0.030 0.029 0.030 0.204 0.300	SE 0.040 0.058 0.054 0.040 0.031 0.029 0.031 0.194 0.274	CovFreq 0.940 0.948 0.984 0.940 0.952 0.948 0.946 0.910 0.922	$\begin{array}{c} 1.000\\ 0.948\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 0.998\\ 0.110\\ 0.108\\ \end{array}$
d UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Egger MR-Median	Bias -0.030 -0.031 -0.030 -0.030 -0.002 -0.001 0.004 0.109 0.062 -0.007	SD 0.029 0.043 0.035 0.029 0.030 0.029 0.030 0.204 0.300 0.062	SE 0.040 0.058 0.054 0.040 0.031 0.029 0.031 0.194 0.274 0.071	CovFreq 0.940 0.948 0.984 0.940 0.952 0.948 0.946 0.910 0.922 0.984	1.000 0.948 1.000 1.000 1.000 0.998 0.110 0.108 0.844
d UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Egger MR-Median MR-Lasso	Bias -0.030 -0.031 -0.030 -0.030 -0.002 -0.001 0.004 0.109 0.062 -0.007 -0.016	SD 0.029 0.043 0.035 0.029 0.030 0.029 0.030 0.204 0.300 0.204 0.300 0.062 0.054	SE 0.040 0.058 0.054 0.040 0.031 0.029 0.031 0.194 0.274 0.274 0.071 0.048	CovFreq 0.940 0.948 0.984 0.940 0.952 0.948 0.946 0.910 0.922 0.984 0.920	$\begin{array}{c} 1.000\\ 0.948\\ 1.000\\ 1.000\\ 1.000\\ 0.998\\ 0.110\\ 0.108\\ 0.844\\ 0.968\end{array}$
no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP	Bias -0.030 -0.031 -0.030 -0.030 -0.002 -0.001 0.004 0.109 0.062 -0.007 -0.016 0.117	SD 0.029 0.043 0.035 0.029 0.030 0.029 0.030 0.204 0.300 0.062 0.054 0.082	SE 0.040 0.058 0.054 0.040 0.031 0.029 0.031 0.194 0.274 0.274 0.071 0.048 0.067	CovFreq 0.940 0.948 0.984 0.940 0.952 0.948 0.946 0.910 0.922 0.984 0.920 0.598	1.000 0.948 1.000 1.000 1.000 0.998 0.110 0.108 0.844 0.968 0.342
d UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC	Bias -0.030 -0.031 -0.030 -0.002 -0.001 0.004 0.109 0.062 -0.007 -0.016 0.117 0.097	SD 0.029 0.043 0.035 0.029 0.030 0.029 0.030 0.204 0.300 0.062 0.054 0.082 0.094	SE 0.040 0.058 0.054 0.040 0.031 0.029 0.031 0.194 0.274 0.071 0.048 0.067 0.041	CovFreq 0.940 0.948 0.984 0.940 0.952 0.948 0.946 0.910 0.922 0.984 0.920 0.598 0.454	$\begin{array}{c} 1.000\\ 0.948\\ 1.000\\ 1.000\\ 1.000\\ 0.998\\ 0.110\\ 0.108\\ 0.844\\ 0.968\\ 0.342\\ 0.664\\ \end{array}$
d UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE	Bias -0.030 -0.031 -0.030 -0.030 -0.001 0.004 0.109 0.062 -0.007 -0.016 0.117 0.097 0.029	SD 0.029 0.043 0.035 0.029 0.030 0.029 0.030 0.204 0.300 0.062 0.054 0.082 0.094 0.098	SE 0.040 0.058 0.054 0.040 0.031 0.029 0.031 0.194 0.274 0.071 0.048 0.067 0.041 0.056	CovFreq 0.940 0.948 0.940 0.952 0.948 0.946 0.910 0.922 0.984 0.920 0.598 0.454 0.864	$\begin{array}{c} 1.000\\ 0.948\\ 1.000\\ 1.000\\ 1.000\\ 0.998\\ 0.110\\ 0.108\\ 0.844\\ 0.968\\ 0.342\\ 0.664\\ 0.830\\ \end{array}$
30% unbalanced UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW	Bias -0.030 -0.031 -0.030 -0.030 -0.001 0.004 0.109 0.062 -0.007 -0.016 0.117 0.097 0.029 -0.276	SD 0.029 0.043 0.035 0.029 0.030 0.029 0.030 0.204 0.300 0.062 0.054 0.082 0.094 0.098 0.162	SE 0.040 0.058 0.054 0.040 0.031 0.029 0.031 0.194 0.274 0.071 0.048 0.067 0.041 0.056 0.250	CovFreq 0.940 0.948 0.984 0.940 0.952 0.948 0.946 0.910 0.922 0.984 0.920 0.598 0.454 0.864 0.940	1.000 0.948 1.000 1.000 1.000 0.998 0.110 0.108 0.844 0.968 0.342 0.664 0.830 0.476
30% unbalanced UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW	Bias -0.030 -0.031 -0.030 -0.002 -0.001 0.004 0.109 0.062 -0.007 -0.016 0.117 0.097 0.029 -0.276 -0.276 -0.357	SD 0.029 0.043 0.035 0.029 0.030 0.029 0.030 0.204 0.300 0.062 0.054 0.082 0.054 0.082 0.094 0.098 0.162 0.197	SE 0.040 0.058 0.054 0.040 0.031 0.029 0.031 0.194 0.274 0.071 0.048 0.067 0.041 0.056 0.250 0.243	CovFreq 0.940 0.948 0.984 0.940 0.952 0.948 0.946 0.910 0.922 0.984 0.920 0.598 0.454 0.864 0.940 0.940 0.730	$\begin{array}{c} 1.000\\ 0.948\\ 1.000\\ 1.000\\ 1.000\\ 0.998\\ 0.110\\ 0.108\\ 0.844\\ 0.968\\ 0.342\\ 0.664\\ 0.830\\ 0.476\\ 0.672\\ \end{array}$
d UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Egger MR-Egger	Bias -0.030 -0.031 -0.030 -0.002 -0.001 0.004 0.109 0.062 -0.007 -0.016 0.117 0.097 0.029 -0.276 -0.357 -0.039	SD 0.029 0.043 0.035 0.029 0.030 0.029 0.030 0.204 0.300 0.062 0.054 0.082 0.094 0.098 0.162 0.197 0.039	SE 0.040 0.058 0.054 0.040 0.031 0.029 0.031 0.194 0.274 0.071 0.048 0.067 0.041 0.056 0.250 0.243 0.058	CovFreq 0.940 0.948 0.984 0.940 0.952 0.948 0.946 0.910 0.922 0.984 0.920 0.598 0.454 0.864 0.940 0.730 0.964	1.000 0.948 1.000 1.000 1.000 0.998 0.110 0.108 0.844 0.968 0.342 0.664 0.830 0.476 0.672 0.992
30% unbalanced UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-BIC MRBEE IVW MR-Egger MR-BIC MRBEE	Bias -0.030 -0.031 -0.030 -0.030 -0.001 0.004 0.109 0.062 -0.007 -0.016 0.117 0.097 0.029 -0.276 -0.357 -0.039 -0.021	SD 0.029 0.043 0.035 0.029 0.030 0.029 0.030 0.204 0.300 0.062 0.054 0.082 0.094 0.098 0.162 0.197 0.039 0.033	SE 0.040 0.058 0.054 0.040 0.031 0.029 0.031 0.194 0.274 0.071 0.048 0.067 0.041 0.056 0.250 0.243 0.058 0.042	CovFreq 0.940 0.948 0.984 0.940 0.952 0.948 0.946 0.910 0.922 0.984 0.920 0.598 0.454 0.864 0.940 0.730 0.964 0.972	1.000 0.948 1.000 1.000 1.000 0.998 0.110 0.108 0.844 0.968 0.342 0.664 0.830 0.476 0.672 0.992 1.000
30% unbalanced UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP	Bias -0.030 -0.031 -0.030 -0.002 -0.001 0.004 0.109 0.062 -0.007 -0.016 0.117 0.097 0.029 -0.276 -0.357 -0.039 -0.021 0.064	SD 0.029 0.043 0.035 0.029 0.030 0.029 0.030 0.204 0.300 0.062 0.054 0.082 0.054 0.094 0.098 0.162 0.197 0.039 0.033 0.060	SE 0.040 0.058 0.054 0.040 0.031 0.029 0.031 0.194 0.274 0.071 0.048 0.067 0.041 0.056 0.250 0.243 0.058 0.042 0.055	CovFreq 0.940 0.948 0.984 0.940 0.952 0.948 0.946 0.910 0.922 0.984 0.920 0.598 0.454 0.864 0.940 0.730 0.964 0.972 0.866	1.000 0.948 1.000 1.000 1.000 0.998 0.110 0.108 0.844 0.968 0.342 0.664 0.830 0.476 0.672 0.992 1.000 0.690

	Table S7. 0)% sample ov	erlap, theta4=	0.4, number c	of IVs = 50	
Scenario	Method	Bias	SD	SE	CovFreq	RJF
	IVW	-0.008	0.073	0.075	0.958	0.996
20	MR-Egger	-0.009	0.076	0.079	0.952	0.996
no pleiotropy	MR-Median	-0.004	0.093	0.103	0.970	0.970
eiot	MR-Lasso	-0.008	0.080	0.072	0.932	0.994
o ple	MRCML-DP	0.004	0.077	0.089	0.968	0.994
DU	MRCML-BIC	0.003	0.077	0.076	0.950	0.998
	MRBEE	-0.003	0.080	0.079	0.938	0.994
우	IVW	0.021	0.352	0.349	0.936	0.236
30% unbalanced UHP	MR-Egger	-0.006	0.368	0.365	0.942	0.204
cec	MR-Median	-0.005	0.151	0.136	0.928	0.826
llan	MR-Lasso	-0.014	0.129	0.092	0.876	0.940
nba	MRCML-DP	0.004	0.117	0.136	0.980	0.868
n %	MRCML-BIC	0.006	0.126	0.089	0.846	0.968
305	MRBEE	0.011	0.182	0.145	0.908	0.794
	IVW	0.082	0.163	0.474	1.000	0.008
	MR-Egger	-0.035	0.167	0.460	1.000	0.004
우	MR-Median	0.002	0.097	0.111	0.978	0.962
30% CHP	MR-Lasso	-0.001	0.085	0.079	0.930	0.994
30%	MRCML-DP	0.005	0.079	0.095	0.980	0.986
	MRCML-BIC	0.006	0.078	0.079	0.952	0.998
	MRBEE	0.000	0.088	0.087	0.938	0.978
					0.000	
Scenario	Table S8. 10	00% sample o	verlap, theta4	=0.4, number	of IVs = 50	RJF
Scenario	Table S8. 10 Method	00% sample o Bias	overlap, theta4 SD	=0.4, number SE	of IVs = 50 CovFreq	RJF 1.000
	Table S8. 10 Method IVW	00% sample o Bias 0.010	overlap, theta4 SD 0.049	=0.4, number SE 0.069	of IVs = 50 CovFreq 0.990	1.000
	Table S8. 10 Method IVW MR-Egger	00% sample o Bias 0.010 0.009	verlap, theta4 SD 0.049 0.051	=0.4, number SE 0.069 0.073	of IVs = 50 CovFreq 0.990 0.988	1.000 1.000
	Table S8. 10 Method IVW MR-Egger MR-Median	00% sample o Bias 0.010 0.009 0.011	overlap, theta4 SD 0.049 0.051 0.061	=0.4, number SE 0.069 0.073 0.094	of IVs = 50 CovFreq 0.990 0.988 0.992	1.000 1.000 1.000
	Table S8. 10 Method IVW MR-Egger	00% sample o Bias 0.010 0.009	verlap, theta4 SD 0.049 0.051	=0.4, number SE 0.069 0.073	of IVs = 50 CovFreq 0.990 0.988	1.000 1.000
Scenario Vdortopy	Table S8. 10 Method IVW MR-Egger MR-Median MR-Lasso	00% sample o Bias 0.010 0.009 0.011 0.010	overlap, theta4 SD 0.049 0.051 0.061 0.049	=0.4, number SE 0.069 0.073 0.094 0.069	of IVs = 50 CovFreq 0.990 0.988 0.992 0.990	1.000 1.000 1.000 1.000
	Table S8. 10 Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP	00% sample o Bias 0.010 0.009 0.011 0.010 -0.004	verlap, theta4 SD 0.049 0.051 0.061 0.049 0.052	=0.4, number SE 0.069 0.073 0.094 0.069 0.055	of IVs = 50 CovFreq 0.990 0.988 0.992 0.990 0.950	1.000 1.000 1.000 1.000 1.000
no pleiotropy	Table S8. 10 Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC	00% sample o Bias 0.010 0.009 0.011 0.010 -0.004 -0.001	verlap, theta4 SD 0.049 0.051 0.061 0.049 0.052 0.051	=0.4, number SE 0.069 0.073 0.094 0.069 0.055 0.050	of IVs = 50 CovFreq 0.990 0.988 0.992 0.990 0.950 0.940	1.000 1.000 1.000 1.000 1.000 1.000
no pleiotropy	Table S8. 10 Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE	00% sample o Bias 0.010 0.009 0.011 0.010 -0.004 -0.001 -0.002	verlap, theta4 SD 0.049 0.051 0.061 0.049 0.052 0.051 0.052	=0.4, number SE 0.069 0.073 0.094 0.069 0.055 0.050 0.053	of IVs = 50 CovFreq 0.990 0.988 0.992 0.990 0.950 0.940 0.940	1.000 1.000 1.000 1.000 1.000 1.000 1.000
no pleiotropy	Table S8. 10 Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW	00% sample o Bias 0.010 0.009 0.011 0.010 -0.004 -0.001 -0.001 -0.002 0.046	verlap, theta4 SD 0.049 0.051 0.061 0.049 0.052 0.051 0.052 0.354	=0.4, number SE 0.069 0.073 0.094 0.069 0.055 0.050 0.053 0.341	of IVs = 50 CovFreq 0.990 0.988 0.992 0.990 0.950 0.940 0.940 0.942	1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.242
no pleiotropy	Table S8. 10 Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger	00% sample o Bias 0.010 0.009 0.011 0.010 -0.004 -0.001 -0.002 0.046 0.026	verlap, theta4 SD 0.049 0.051 0.061 0.049 0.052 0.051 0.052 0.354 0.373	=0.4, number SE 0.069 0.073 0.094 0.069 0.055 0.050 0.053 0.341 0.354	of IVs = 50 CovFreq 0.990 0.988 0.992 0.990 0.950 0.940 0.940 0.942 0.938	1.000 1.000 1.000 1.000 1.000 1.000 0.242 0.242
no pleiotropy	Table S8. 10 Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Egger MR-Median	00% sample o Bias 0.010 0.009 0.011 0.010 -0.004 -0.001 -0.002 0.046 0.026 0.013	SD 0.049 0.051 0.061 0.049 0.052 0.051 0.052 0.354 0.373 0.115	=0.4, number SE 0.069 0.073 0.094 0.069 0.055 0.050 0.053 0.341 0.354 0.126	of IVs = 50 CovFreq 0.990 0.988 0.992 0.990 0.950 0.940 0.940 0.942 0.938 0.976	1.000 1.000 1.000 1.000 1.000 1.000 0.242 0.242 0.242
no pleiotropy	Table S8. 10 Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso	00% sample o Bias 0.010 0.009 0.011 0.010 -0.004 -0.001 -0.002 0.046 0.026 0.013 0.014	verlap, theta4 SD 0.049 0.051 0.061 0.049 0.052 0.051 0.052 0.354 0.373 0.115 0.101	=0.4, number SE 0.069 0.073 0.094 0.055 0.055 0.050 0.053 0.341 0.354 0.126 0.085	of IVs = 50 CovFreq 0.990 0.988 0.992 0.990 0.950 0.940 0.940 0.942 0.938 0.976 0.900	1.000 1.000 1.000 1.000 1.000 1.000 0.242 0.242 0.242 0.922 0.982
	Table S8. 10 Method IVW MR-Egger MR-Median MR-Lasso MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE	00% sample o Bias 0.010 0.009 0.011 0.010 -0.004 -0.001 -0.002 0.046 0.026 0.013 0.014 -0.113 -0.079 -0.001	verlap, theta4 SD 0.049 0.051 0.061 0.049 0.052 0.051 0.052 0.354 0.373 0.115 0.101 0.119	=0.4, number SE 0.069 0.073 0.094 0.055 0.050 0.053 0.341 0.354 0.126 0.085 0.105	of IVs = 50 CovFreq 0.990 0.988 0.992 0.990 0.950 0.940 0.940 0.942 0.938 0.976 0.900 0.824	1.000 1.000 1.000 1.000 1.000 1.000 0.242 0.242 0.922 0.982 0.742
no pleiotropy	Table S8. 10 Method IVW MR-Egger MR-Median MR-Lasso MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-DP	00% sample o Bias 0.010 0.009 0.011 0.010 -0.004 -0.001 -0.002 0.046 0.026 0.013 0.014 -0.113 -0.079 -0.001 0.097	verlap, theta4 SD 0.049 0.051 0.061 0.049 0.052 0.051 0.052 0.354 0.373 0.115 0.101 0.119 0.132 0.142 0.157	=0.4, number SE 0.069 0.073 0.094 0.069 0.055 0.050 0.053 0.341 0.354 0.126 0.085 0.105 0.105 0.070	of IVs = 50 CovFreq 0.990 0.988 0.992 0.990 0.950 0.940 0.940 0.940 0.942 0.938 0.976 0.900 0.824 0.680 0.902 1.000	1.000 1.000 1.000 1.000 1.000 0.242 0.242 0.242 0.922 0.982 0.742 0.906 0.900 0.018
30% unbalanced UHP no pleiotropy	Table S8. 10 Method IVW MR-Egger MR-Median MR-Lasso MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE	00% sample o Bias 0.010 0.009 0.011 0.010 -0.004 -0.001 -0.002 0.046 0.026 0.013 0.014 -0.113 -0.079 -0.001 0.097 -0.029	SD 0.049 0.051 0.061 0.049 0.052 0.051 0.052 0.354 0.373 0.115 0.101 0.119 0.132 0.142 0.157 0.156	=0.4, number SE 0.069 0.073 0.094 0.055 0.050 0.053 0.341 0.354 0.126 0.085 0.105 0.070 0.099 0.473 0.455	of IVs = 50 CovFreq 0.990 0.988 0.992 0.990 0.950 0.940 0.940 0.942 0.938 0.976 0.900 0.824 0.680 0.902	1.000 1.000 1.000 1.000 1.000 0.242 0.242 0.922 0.982 0.742 0.906 0.900 0.018 0.000
30% unbalanced UHP no pleiotropy	Table S8. 10 Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Egger MR-Egger MR-Median	00% sample o Bias 0.010 0.009 0.011 0.010 -0.004 -0.001 -0.002 0.046 0.026 0.013 0.014 -0.113 -0.079 -0.001 0.097 -0.029 0.015	overlap, theta4 SD 0.049 0.051 0.061 0.049 0.052 0.051 0.052 0.354 0.373 0.115 0.101 0.119 0.132 0.142 0.157 0.156 0.069	=0.4, number SE 0.069 0.073 0.094 0.055 0.050 0.053 0.341 0.354 0.126 0.085 0.105 0.070 0.099 0.473 0.455 0.104	of IVs = 50 CovFreq 0.990 0.988 0.992 0.990 0.950 0.940 0.940 0.940 0.942 0.938 0.976 0.900 0.824 0.680 0.902 1.000 1.000 0.996	1.000 1.000 1.000 1.000 1.000 0.242 0.242 0.922 0.982 0.742 0.906 0.900 0.018 0.000 0.994
30% unbalanced UHP no pleiotropy	Table S8. 10 Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso	00% sample o Bias 0.010 0.009 0.011 0.010 -0.004 -0.001 -0.002 0.046 0.026 0.013 0.014 -0.113 -0.079 -0.001 0.097 -0.029 0.015 0.011	SD 0.049 0.051 0.061 0.049 0.052 0.051 0.052 0.354 0.373 0.115 0.101 0.119 0.132 0.142 0.157 0.156 0.069 0.057	=0.4, number SE 0.069 0.073 0.094 0.069 0.055 0.050 0.053 0.341 0.354 0.126 0.085 0.105 0.070 0.099 0.473 0.455 0.104 0.075	of IVs = 50 CovFreq 0.990 0.988 0.992 0.990 0.950 0.940 0.940 0.940 0.942 0.938 0.976 0.900 0.824 0.680 0.902 1.000 1.000 0.996 0.990	1.000 1.000 1.000 1.000 1.000 0.242 0.242 0.922 0.982 0.742 0.906 0.900 0.018 0.000 0.994 1.000
no pleiotropy	Table S8. 10 Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP	00% sample o Bias 0.010 0.009 0.011 0.010 -0.004 -0.001 -0.002 0.046 0.026 0.013 0.014 -0.113 -0.079 -0.001 0.097 -0.029 0.015 0.011 -0.052	SD 0.049 0.051 0.061 0.049 0.052 0.051 0.052 0.354 0.373 0.115 0.101 0.132 0.142 0.142 0.157 0.156 0.069 0.057 0.073	=0.4, number SE 0.069 0.073 0.094 0.069 0.055 0.050 0.053 0.341 0.354 0.126 0.085 0.105 0.070 0.099 0.473 0.455 0.104 0.075 0.080	of IVs = 50 CovFreq 0.990 0.988 0.992 0.990 0.950 0.940 0.940 0.940 0.942 0.938 0.976 0.900 0.824 0.680 0.902 1.000 1.000 0.996 0.990 0.944	1.000 1.000 1.000 1.000 1.000 0.242 0.242 0.242 0.922 0.982 0.742 0.906 0.900 0.018 0.000 0.994 1.000 0.962
30% unbalanced UHP no pleiotropy	Table S8. 10 Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso	00% sample o Bias 0.010 0.009 0.011 0.010 -0.004 -0.001 -0.002 0.046 0.026 0.013 0.014 -0.113 -0.079 -0.001 0.097 -0.029 0.015 0.011	SD 0.049 0.051 0.061 0.049 0.052 0.051 0.052 0.354 0.373 0.115 0.101 0.119 0.132 0.142 0.157 0.156 0.069 0.057	=0.4, number SE 0.069 0.073 0.094 0.069 0.055 0.050 0.053 0.341 0.354 0.126 0.085 0.105 0.070 0.099 0.473 0.455 0.104 0.075	of IVs = 50 CovFreq 0.990 0.988 0.992 0.990 0.950 0.940 0.940 0.940 0.942 0.938 0.976 0.900 0.824 0.680 0.902 1.000 1.000 0.996 0.990	1.000 1.000 1.000 1.000 1.000 0.242 0.242 0.922 0.982 0.742 0.906 0.900 0.018 0.000 0.994 1.000

Scenario Method Bias SD SE CovFreq RJF VW -0.003 0.070 0.071 0.948 0.052 MR-Eger 0.001 0.078 0.079 0.940 0.068 MR-Median -0.005 0.088 0.097 0.940 0.060 MR-Lasso -0.006 0.076 0.097 0.940 0.060 MRCML-DP -0.006 0.076 0.077 0.940 0.060 MRCML-BIC -0.004 0.076 0.077 0.940 0.060 MRCM-BE -0.003 0.079 0.077 0.940 0.060 MR-Lasso 0.007 0.127 0.083 0.836 0.164 MR-Lasso 0.007 0.127 0.083 0.836 0.164 MR-Lasso 0.007 0.127 0.033 0.339 0.960 0.040 MR-Lasso 0.007 0.133 0.139 0.966 0.784 0.216 MRCML-DP 0.009
App MR-Egger 0.001 0.078 0.078 0.942 0.058 MR-Median -0.005 0.088 0.097 0.968 0.032 MR-Lasso -0.003 0.074 0.069 0.940 0.060 MRCML-DP -0.006 0.076 0.990 0.972 0.028 MRCML-BIC -0.004 0.076 0.974 0.940 0.060 MREE -0.003 0.079 0.077 0.940 0.060 MR-Egger 0.032 0.272 0.270 0.944 0.056 MR-Median 0.012 0.148 0.122 0.890 0.110 MR-Lasso 0.007 0.127 0.083 0.836 0.164 MRCML-DP 0.005 0.133 0.139 0.966 0.784 0.216 MR-Median 0.013 0.139 0.886 0.784 0.216 MR-Esso 0.007 0.080 0.074 0.952 0.048 MR-Lasso 0.007 0.880<
BD Dep (MR-Lasso 0.005 0.088 0.097 0.968 0.032 MR-Lasso 0.003 0.074 0.669 0.940 0.060 MRCML-DP 0.006 0.076 0.090 0.972 0.028 MRCML-BIC 0.004 0.076 0.074 0.940 0.060 MREE 0.003 0.079 0.077 0.940 0.060 MR-Egger 0.032 0.272 0.270 0.944 0.056 MR-Median 0.012 0.148 0.122 0.890 0.110 MR-Lasso 0.007 0.127 0.083 0.836 0.164 MRCML-DP 0.005 0.133 0.139 0.866 0.784 0.216 MREE 0.009 0.175 0.133 0.000 0.000 0.000 MR-Egger 0.104 0.143 0.322 1.000 0.000 MR-Egger 0.107 0.880 0.074 0.952 0.048 MR-Lasso 0.007 0.800
MRBEE -0.03 0.079 0.077 0.940 0.060 MRBEE -0.03 0.079 0.077 0.940 0.060 MR-Median 0.012 0.148 0.122 0.890 0.110 MR-Median 0.012 0.148 0.122 0.890 0.110 MR-Median 0.005 0.133 0.139 0.960 0.040 MRCML-DP 0.005 0.133 0.139 0.960 0.040 MREE 0.009 0.175 0.135 0.890 0.110 IVW 0.082 0.125 0.322 1.000 0.000 MR-Egger -0.104 0.143 0.323 1.000 0.000 MR-Egger -0.007 0.880 0.074 0.952 0.048 MR-Lasso 0.007 0.080 0.097 0.982 0.018 MR-Lasso 0.007 0.080 0.074 0.955 0.048 MR-Median 0.017 0.086 0.855 0.944
MRBEE 0.003 0.079 0.077 0.940 0.060 MRBEE 0.003 0.079 0.077 0.940 0.060 MR-Median 0.012 0.148 0.122 0.890 0.110 MR-Median 0.012 0.148 0.122 0.890 0.110 MR-Median 0.005 0.133 0.139 0.960 0.040 MRCML-DP 0.005 0.133 0.139 0.960 0.040 MREE 0.009 0.175 0.135 0.890 0.110 IVW 0.082 0.125 0.322 1.000 0.000 MR-Egger -0.104 0.143 0.323 1.000 0.000 MR-Egger -0.007 0.880 0.074 0.952 0.048 MRCML-DP 0.000 0.880 0.078 0.952 0.048 MRCML-DP 0.000 0.800 0.077 0.982 0.018 MR-Median 0.017 0.866 0.844 0.056 </td
MRBEE 0.003 0.079 0.077 0.940 0.060 MRBEE 0.003 0.079 0.077 0.940 0.060 MR.Hegger 0.032 0.272 0.270 0.944 0.056 MR.Median 0.012 0.148 0.122 0.890 0.110 MR-Median 0.012 0.148 0.122 0.890 0.140 MRCML-DP 0.005 0.133 0.139 0.960 0.040 MRCML-BIC 0.013 0.139 0.086 0.784 0.216 MREE 0.009 0.175 0.135 0.890 0.110 IVW 0.082 0.125 0.322 1.000 0.000 MR-Egger -0.104 0.143 0.323 1.000 0.000 MR-Lasso 0.007 0.080 0.097 0.982 0.018 MR-Lasso 0.007 0.080 0.097 0.982 0.018 MRCML-DP 0.000 0.080 0.074 0.996
MRBEE 0.003 0.079 0.077 0.940 0.060 MRBEE 0.003 0.079 0.077 0.940 0.060 MR.Hegger 0.032 0.272 0.270 0.944 0.056 MR.Median 0.012 0.148 0.122 0.890 0.110 MR-Median 0.012 0.148 0.122 0.890 0.140 MRCML-DP 0.005 0.133 0.139 0.960 0.040 MRCML-BIC 0.013 0.139 0.086 0.784 0.216 MREE 0.009 0.175 0.135 0.890 0.110 IVW 0.082 0.125 0.322 1.000 0.000 MR-Egger -0.104 0.143 0.323 1.000 0.000 MR-Lasso 0.007 0.080 0.097 0.982 0.018 MR-Lasso 0.007 0.080 0.097 0.982 0.018 MRCML-DP 0.000 0.080 0.074 0.996
How 0.061 0.246 0.246 0.940 0.060 MR-Egger 0.032 0.272 0.270 0.944 0.056 MR-Median 0.012 0.148 0.122 0.890 0.110 MR-Lasso 0.007 0.127 0.083 0.836 0.164 MRCML-DP 0.005 0.133 0.139 0.960 0.040 MRCML-BIC 0.013 0.139 0.086 0.784 0.216 MREE 0.009 0.175 0.135 0.890 0.110 IVW 0.082 0.125 0.322 1.000 0.000 MR-Egger -0.104 0.143 0.323 1.000 0.000 MR-Median 0.013 0.095 0.107 0.968 0.032 MR-Lasso 0.007 0.080 0.074 0.952 0.048 MRCML-BIC 0.003 0.080 0.077 0.982 0.018 MRCML-BIC 0.017 0.086 0.085 0.944
E IVW 0.082 0.125 0.322 1.000 0.000 MR-Egger -0.104 0.143 0.323 1.000 0.000 MR-Median 0.013 0.095 0.107 0.968 0.032 MR-Median 0.013 0.095 0.107 0.968 0.032 MR-Lasso 0.007 0.080 0.074 0.952 0.048 MRCML-DP 0.000 0.080 0.097 0.982 0.018 MRCML-BIC 0.003 0.080 0.078 0.952 0.048 MREE 0.017 0.086 0.085 0.944 0.056 Table S10. 100% sample overlap, theta1=0, number of IVs = 100 Scenario Method Bias SD SE CovFreq RIF IVW 0.022 0.047 0.067 0.990 0.010 MR-Egger 0.012 0.055 0.056 0.034 MR-Lasso 0.023 0.047 0.067 0.990 0.010
E IVW 0.082 0.125 0.322 1.000 0.000 MR-Egger -0.104 0.143 0.323 1.000 0.000 MR-Median 0.013 0.095 0.107 0.968 0.032 MR-Median 0.013 0.095 0.107 0.968 0.032 MR-Lasso 0.007 0.080 0.074 0.952 0.048 MRCML-DP 0.000 0.080 0.097 0.982 0.018 MRCML-BIC 0.003 0.080 0.078 0.952 0.048 MREE 0.017 0.086 0.085 0.944 0.056 Scenario Method Bias SD SE CovFreq RJF IVW 0.022 0.047 0.067 0.990 0.010 MR-Egger 0.012 0.051 0.074 0.996 0.004 MR-Lasso 0.023 0.047 0.067 0.990 0.010 MR-Lasso 0.023 0.050
E IVW 0.082 0.125 0.322 1.000 0.000 MR-Egger -0.104 0.143 0.323 1.000 0.000 MR-Median 0.013 0.095 0.107 0.968 0.032 MR-Median 0.013 0.095 0.107 0.968 0.032 MR-Lasso 0.007 0.080 0.074 0.952 0.048 MRCML-DP 0.000 0.080 0.097 0.982 0.018 MRCML-BIC 0.003 0.080 0.078 0.952 0.048 MREE 0.017 0.086 0.085 0.944 0.056 Scenario Method Bias SD SE CovFreq RJF IVW 0.022 0.047 0.067 0.990 0.010 MR-Egger 0.012 0.051 0.074 0.996 0.004 MR-Lasso 0.023 0.047 0.067 0.990 0.010 MR-Lasso 0.023 0.050
E IVW 0.082 0.125 0.322 1.000 0.000 MR-Egger -0.104 0.143 0.323 1.000 0.000 MR-Median 0.013 0.095 0.107 0.968 0.032 MR-Median 0.013 0.095 0.107 0.968 0.032 MR-Lasso 0.007 0.080 0.074 0.952 0.048 MRCML-DP 0.000 0.080 0.097 0.982 0.018 MRCML-BIC 0.003 0.080 0.078 0.952 0.048 MREE 0.017 0.086 0.085 0.944 0.056 Table S10. 100% sample overlap, theta1=0, number of IVs = 100 Scenario Method Bias SD SE CovFreq RIF IVW 0.022 0.047 0.067 0.990 0.010 MR-Egger 0.012 0.055 0.056 0.034 MR-Lasso 0.023 0.047 0.067 0.990 0.010
E IVW 0.082 0.125 0.322 1.000 0.000 MR-Egger -0.104 0.143 0.323 1.000 0.000 MR-Median 0.013 0.095 0.107 0.968 0.032 MR-Median 0.013 0.095 0.107 0.968 0.032 MR-Lasso 0.007 0.080 0.074 0.952 0.048 MRCML-DP 0.000 0.080 0.097 0.982 0.018 MRCML-BIC 0.003 0.080 0.078 0.952 0.048 MREE 0.017 0.086 0.085 0.944 0.056 Scenario Method Bias SD SE CovFreq RJF IVW 0.022 0.047 0.067 0.990 0.010 MR-Egger 0.012 0.051 0.074 0.996 0.004 MR-Lasso 0.023 0.047 0.067 0.990 0.010 MRCML-DP 0.001 0.052
E IVW 0.082 0.125 0.322 1.000 0.000 MR-Egger -0.104 0.143 0.323 1.000 0.000 MR-Median 0.013 0.095 0.107 0.968 0.032 MR-Median 0.013 0.095 0.107 0.968 0.032 MR-Lasso 0.007 0.080 0.074 0.952 0.048 MRCML-DP 0.000 0.080 0.097 0.982 0.018 MRCML-BIC 0.003 0.080 0.078 0.952 0.048 MREE 0.017 0.086 0.085 0.944 0.056 Table S10. 100% sample overlap, theta1=0, number of IVs = 100 Scenario Method Bias SD SE CovFreq RIF IVW 0.022 0.047 0.067 0.990 0.010 MR-Egger 0.012 0.055 0.056 0.034 MR-Lasso 0.023 0.047 0.067 0.990 0.010
E IVW 0.082 0.125 0.322 1.000 0.000 MR-Egger -0.104 0.143 0.323 1.000 0.000 MR-Median 0.013 0.095 0.107 0.968 0.032 MR-Lasso 0.007 0.080 0.074 0.952 0.048 MRCML-DP 0.000 0.080 0.097 0.982 0.018 MRCML-BIC 0.003 0.080 0.078 0.952 0.048 MREE 0.017 0.086 0.085 0.944 0.056 Scenario Method Bias SD SE CovFreq RJF IVW 0.022 0.047 0.067 0.990 0.010 MR-Egger 0.012 0.051 0.074 0.996 0.004 MR-Lasso 0.023 0.047 0.067 0.990 0.010 MR-Lasso 0.023 0.047 0.066 0.034 MRCML-DP 0.001 0.052 0.938
Provide IVW 0.082 0.125 0.322 1.000 0.000 MR-Egger -0.104 0.143 0.323 1.000 0.000 MR-Median 0.013 0.095 0.107 0.968 0.032 MR-Lasso 0.007 0.080 0.074 0.952 0.048 MRCML-DP 0.000 0.080 0.097 0.982 0.018 MRCML-BIC 0.003 0.080 0.078 0.952 0.048 MREE 0.017 0.086 0.085 0.944 0.056 Scenario Method Bias SD SE CovFreq RJF IVW 0.022 0.047 0.067 0.990 0.010 MR-Egger 0.012 0.051 0.074 0.996 0.004 MR-Lasso 0.023 0.047 0.066 0.034 MR-Lasso 0.023 0.050 0.552 0.938 0.062 MREE -0.002 0.050 0.052
BY MR-Egger -0.104 0.143 0.323 1.000 0.000 MR-Median 0.013 0.095 0.107 0.968 0.032 MR-Lasso 0.007 0.080 0.074 0.952 0.048 MRCML-DP 0.000 0.080 0.077 0.982 0.018 MRCML-BIC 0.003 0.080 0.078 0.952 0.048 MREE 0.017 0.086 0.085 0.944 0.056 Scenario Method Bias SD SE CovFreq RJF IVW 0.022 0.047 0.067 0.990 0.010 MR-Egger 0.012 0.051 0.074 0.996 0.004 MR-Median 0.019 0.058 0.088 0.996 0.004 MR-Lasso 0.023 0.047 0.067 0.990 0.010 MR-Egger 0.010 0.052 0.056 0.966 0.034 MRCML-DP 0.001 0.052 <td< td=""></td<>
Product MR-Median 0.013 0.095 0.107 0.968 0.032 MR-Lasso 0.007 0.080 0.074 0.952 0.048 MRCML-DP 0.000 0.080 0.097 0.982 0.018 MRCML-BIC 0.003 0.080 0.078 0.952 0.048 MREE 0.017 0.086 0.085 0.944 0.056 Table S10. 100% sample overlap, theta1=0, number of IVs = 100 Scenario Method Bias SD SE CovFreq RJF IVW 0.022 0.047 0.067 0.990 0.010 MR-Egger 0.012 0.051 0.074 0.996 0.004 MR-Median 0.019 0.058 0.088 0.996 0.004 MR-Lasso 0.023 0.047 0.067 0.990 0.010 MR-Median 0.019 0.052 0.938 0.662 MRCML-BIC 0.004 0.052 0.938 0.622
MRCML-BIC MRBEE 0.003 0.017 0.080 0.086 0.078 0.085 0.952 0.944 0.048 0.056 Scenario Method Bias SD SE CovFreq RJF IVW 0.022 0.047 0.067 0.990 0.010 MR-Egger 0.012 0.051 0.074 0.996 0.004 MR-Egger 0.012 0.051 0.074 0.990 0.010 MR-Egger 0.012 0.051 0.074 0.996 0.004 MR-Lasso 0.023 0.047 0.067 0.990 0.010 MRCML-DP 0.001 0.052 0.056 0.966 0.034 MRCML-BIC 0.004 0.052 0.050 0.948 0.062 MRCML-BIC 0.004 0.052 0.938 0.062 MREE -0.002 0.050 0.52 0.938 0.062 MRCML-BIC 0.044 0.282 0.264 0.928 0.072 MR-Egger 0.044 0.282 0.264<
MRCML-BIC MRBEE 0.003 0.017 0.080 0.086 0.078 0.085 0.952 0.944 0.048 0.056 Scenario Method Bias SD SE CovFreq RJF IVW 0.022 0.047 0.067 0.990 0.010 MR-Egger 0.012 0.051 0.074 0.996 0.004 MR-Egger 0.012 0.051 0.074 0.990 0.010 MR-Egger 0.012 0.051 0.074 0.996 0.004 MR-Lasso 0.023 0.047 0.067 0.990 0.010 MRCML-DP 0.001 0.052 0.056 0.966 0.034 MRCML-BIC 0.004 0.052 0.050 0.948 0.062 MRCML-BIC 0.004 0.052 0.938 0.062 MREE -0.002 0.050 0.52 0.938 0.062 MRCML-BIC 0.044 0.282 0.264 0.928 0.072 MR-Egger 0.044 0.282 0.264<
MRCML-BIC MRBEE 0.003 0.017 0.080 0.086 0.078 0.085 0.952 0.944 0.048 0.056 Scenario Method Bias SD SE CovFreq RJF IVW 0.022 0.047 0.067 0.990 0.010 MR-Egger 0.012 0.051 0.074 0.996 0.004 MR-Egger 0.012 0.051 0.074 0.990 0.010 MR-Egger 0.012 0.051 0.074 0.996 0.004 MR-Lasso 0.023 0.047 0.067 0.990 0.010 MRCML-DP 0.001 0.052 0.056 0.966 0.034 MRCML-BIC 0.004 0.052 0.050 0.948 0.062 MRCML-BIC 0.004 0.052 0.938 0.062 MREE -0.002 0.050 0.52 0.938 0.062 MRCML-BIC 0.044 0.282 0.264 0.928 0.072 MR-Egger 0.044 0.282 0.264<
MRBEE 0.017 0.086 0.085 0.944 0.056 Table S10. 100% sample overlap, theta1=0, number of IVS = 100 Scenario Method Bias SD SE CovFreq RJF IVW 0.022 0.047 0.067 0.990 0.010 MR-Egger 0.012 0.051 0.074 0.996 0.004 MR-Median 0.019 0.058 0.088 0.996 0.004 MR-Lasso 0.023 0.047 0.067 0.990 0.010 MRCML-DP 0.001 0.052 0.056 0.966 0.034 MRCML-BIC 0.004 0.052 0.050 0.946 0.054 MREE -0.002 0.050 0.052 0.938 0.062 MR MREE 0.004 0.282 0.264 0.926 0.074 MR-Lasso 0.024 0.097 0.178 0.874 0.126 MR-Lasso 0.024 0.097 0.078 0.874 0.126 <tr< td=""></tr<>
Table S10. 100% sample overlap, theta1=0, number of IVs = 100 Scenario Method Bias SD SE CovFreq RJF IVW 0.022 0.047 0.067 0.990 0.010 MR-Egger 0.012 0.051 0.074 0.996 0.004 MR-Lasso 0.023 0.047 0.067 0.990 0.010 MRCML-DP 0.001 0.052 0.056 0.966 0.034 MRCML-BIC 0.004 0.052 0.050 0.946 0.054 MREE -0.002 0.050 0.052 0.938 0.062 MR-Egger 0.044 0.282 0.264 0.928 0.072 MREE -0.002 0.050 0.052 0.938 0.062 MR-Egger 0.044 0.282 0.264 0.928 0.072 MR-Lasso 0.024 0.097 0.078 0.874 0.126 MR-Median 0.032 0.099 0.133 0.972 0.284 <t< td=""></t<>
Scenario Method Bias SD SE CovFreq RJF IVW 0.022 0.047 0.067 0.990 0.010 MR-Egger 0.012 0.051 0.074 0.996 0.004 MR-Median 0.019 0.058 0.088 0.996 0.004 MR-Median 0.019 0.058 0.088 0.996 0.004 MR-Lasso 0.023 0.047 0.067 0.990 0.010 MRCML-DP 0.001 0.052 0.056 0.966 0.034 MRCML-BIC 0.004 0.052 0.050 0.946 0.054 MRBEE -0.002 0.050 0.052 0.938 0.062 MR-Median 0.032 0.099 0.113 0.972 0.028 MR-Median 0.032 0.097 0.078 0.874 0.126 MRCML-DP -0.032 0.102 0.099 0.938 0.062 MRCML-DP -0.032 0.102 0.099
NOU 0.022 0.047 0.067 0.990 0.010 MR-Egger 0.012 0.051 0.074 0.996 0.004 MR-Median 0.019 0.058 0.088 0.996 0.004 MR-Lasso 0.023 0.047 0.067 0.990 0.010 MRCML-DP 0.001 0.052 0.056 0.966 0.034 MRCML-BIC 0.004 0.052 0.050 0.946 0.054 MRBEE -0.002 0.050 0.052 0.938 0.062 MR-Egger 0.044 0.282 0.264 0.928 0.072 MR-Median 0.032 0.099 0.113 0.972 0.028 MR-Median 0.032 0.097 0.078 0.874 0.126 MRCML-DP -0.032 0.102 0.099 0.938 0.062 MRCML-BIC -0.033 0.122 0.070 0.756 0.244 MRBEE 0.000 0.117 0.091 0.908
MR-Egger 0.012 0.051 0.074 0.996 0.004 MR-Median 0.019 0.058 0.088 0.996 0.004 MR-Lasso 0.023 0.047 0.067 0.990 0.010 MRCML-DP 0.001 0.052 0.056 0.966 0.034 MRCML-BIC 0.004 0.052 0.050 0.946 0.054 MRBEE -0.002 0.050 0.052 0.938 0.062 MR-Egger 0.044 0.282 0.264 0.928 0.072 MR-Median 0.032 0.099 0.113 0.972 0.028 MR-Median 0.032 0.097 0.078 0.874 0.126 MR-Median 0.032 0.102 0.099 0.938 0.062 MRCML-DP -0.032 0.102 0.099 0.938 0.062 MRCML-BIC -0.033 0.122 0.070 0.756 0.244 MRBEE 0.000 0.117 0.091 0.908
MR-Median 0.019 0.058 0.088 0.996 0.004 MR-Lasso 0.023 0.047 0.067 0.990 0.010 MRCML-DP 0.001 0.052 0.056 0.966 0.034 MRCML-BIC 0.004 0.052 0.050 0.946 0.054 MRBEE -0.002 0.050 0.052 0.938 0.062 MR-Egger 0.044 0.282 0.264 0.928 0.072 MR-Median 0.032 0.099 0.113 0.972 0.028 MR-Median 0.032 0.097 0.078 0.874 0.126 MR-Lasso 0.024 0.097 0.078 0.874 0.126 MRCML-DP -0.032 0.102 0.099 0.938 0.062 MRCML-BIC -0.033 0.122 0.070 0.756 0.244 MRBEE 0.000 0.117 0.091 0.908 0.092 MREM 0.097 0.108 0.311 1.000
MRCML DIC 0.004 0.032 0.036 0.340 0.034 MRBEE -0.002 0.050 0.052 0.938 0.062 MRBEE -0.002 0.050 0.052 0.938 0.062 MR-Egger 0.044 0.282 0.264 0.928 0.072 MR-Median 0.032 0.099 0.113 0.972 0.028 MR-Lasso 0.024 0.097 0.078 0.874 0.126 MRCML-DP -0.032 0.102 0.099 0.938 0.062 MRCML-BIC -0.033 0.122 0.070 0.756 0.244 MRBEE 0.000 0.117 0.091 0.908 0.092 IVW 0.097 0.108 0.311 1.000 0.000
MRCML DIC 0.004 0.032 0.036 0.340 0.034 MRBEE -0.002 0.050 0.052 0.938 0.062 MRBEE -0.002 0.050 0.052 0.938 0.062 MR-Egger 0.044 0.282 0.264 0.928 0.072 MR-Median 0.032 0.099 0.113 0.972 0.028 MR-Lasso 0.024 0.097 0.078 0.874 0.126 MRCML-DP -0.032 0.102 0.099 0.938 0.062 MRCML-BIC -0.033 0.122 0.070 0.756 0.244 MRBEE 0.000 0.117 0.091 0.908 0.092 IVW 0.097 0.108 0.311 1.000 0.000
MRCML DIC 0.004 0.032 0.036 0.340 0.034 MRBEE -0.002 0.050 0.052 0.938 0.062 MRBEE -0.002 0.050 0.052 0.938 0.062 MR-Egger 0.044 0.282 0.264 0.928 0.072 MR-Median 0.032 0.099 0.113 0.972 0.028 MR-Lasso 0.024 0.097 0.078 0.874 0.126 MRCML-DP -0.032 0.102 0.099 0.938 0.062 MRCML-BIC -0.033 0.122 0.070 0.756 0.244 MRBEE 0.000 0.117 0.091 0.908 0.092 IVW 0.097 0.108 0.311 1.000 0.000
MREME BIC 0.004 0.032 0.032 0.036 0.034 0.034 MRBEE -0.002 0.050 0.052 0.938 0.062 MRBEE -0.002 0.050 0.052 0.938 0.062 MR-Dependence MR-Egger 0.044 0.282 0.264 0.928 0.072 MR-Median 0.032 0.099 0.113 0.972 0.028 MR-Lasso 0.024 0.097 0.078 0.874 0.126 MRCML-DP -0.032 0.102 0.099 0.938 0.062 MRCML-BIC -0.033 0.122 0.070 0.756 0.244 MRBEE 0.000 0.117 0.091 0.908 0.092 IVW 0.097 0.108 0.311 1.000 0.000
HO 0.088 0.254 0.241 0.926 0.074 MR-Egger 0.044 0.282 0.264 0.928 0.072 MR-Median 0.032 0.099 0.113 0.972 0.028 MR-Lasso 0.024 0.097 0.078 0.874 0.126 MRCML-DP -0.032 0.102 0.099 0.938 0.062 MRCML-BIC -0.033 0.122 0.070 0.756 0.244 MRBEE 0.000 0.117 0.091 0.908 0.092 IVW 0.097 0.108 0.311 1.000 0.000
MR-Lasso 0.024 0.097 0.078 0.874 0.126 MR-Median 0.032 0.099 0.113 0.972 0.028 MR-Lasso 0.024 0.097 0.078 0.874 0.126 MRCML-DP -0.032 0.102 0.099 0.938 0.062 MRCML-BIC -0.033 0.122 0.070 0.756 0.244 MRBEE 0.000 0.117 0.091 0.908 0.092 IVW 0.097 0.108 0.311 1.000 0.000
MR-Lasso 0.024 0.097 0.078 0.874 0.126 MR-Median 0.032 0.099 0.113 0.972 0.028 MR-Lasso 0.024 0.097 0.078 0.874 0.126 MRCML-DP -0.032 0.102 0.099 0.938 0.062 MRCML-BIC -0.033 0.122 0.070 0.756 0.244 MRBEE 0.000 0.117 0.091 0.908 0.092 IVW 0.097 0.108 0.311 1.000 0.000
IVW 0.097 0.108 0.311 1.000 0.000
IVW 0.097 0.108 0.311 1.000 0.000
IVW 0.097 0.108 0.311 1.000 0.000
IVW 0.097 0.108 0.311 1.000 0.000
IVW 0.097 0.108 0.311 1.000 0.000
MP Egger 0.105 0.122 0.210 1.000 0.000
운 MR-Median 0.022 0.062 0.098 0.990 0.010
H MR-Median 0.022 0.062 0.098 0.990 0.010 MR-Lasso 0.016 0.053 0.071 0.986 0.014 MRCML-DP -0.026 0.069 0.076 0.970 0.030
ି MRCML-DP -0.026 0.069 0.076 0.970 0.030
MRCML-BIC -0.020 0.076 0.059 0.912 0.088
MRBEE 0.000 0.054 0.058 0.954 0.046

	Table S11. (0% sample ov	erlap, theta2=	0.2, number c	of IVs = 100	
Scenario	Method	Bias	SD	SE	CovFreq	RJF
	IVW	-0.008	0.072	0.071	0.936	0.784
λ	MR-Egger	-0.006	0.073	0.073	0.948	0.764
no pleiotropy	MR-Median	-0.006	0.090	0.096	0.958	0.540
eiot	MR-Lasso	-0.009	0.077	0.069	0.920	0.784
pld o	MRCML-DP	0.001	0.078	0.089	0.972	0.662
nc	MRCML-BIC	0.003	0.077	0.073	0.934	0.794
	MRBEE	-0.001	0.077	0.077	0.940	0.734
무	IVW	0.049	0.250	0.248	0.950	0.178
i.	MR-Egger	0.028	0.258	0.254	0.942	0.134
cec	MR-Median	0.012	0.149	0.123	0.892	0.434
llan	MR-Lasso	0.007	0.131	0.084	0.812	0.648
30% unbalanced UHP	MRCML-DP	0.016	0.133	0.137	0.960	0.376
n %	MRCML-BIC	0.018	0.139	0.086	0.784	0.656
309	MRBEE	0.031	0.166	0.135	0.896	0.436
	IVW	0.073	0.125	0.323	1.000	0.000
	MR-Egger	-0.022	0.133	0.316	1.000	0.000
₽	MR-Median	0.007	0.093	0.107	0.968	0.504
°C	MR-Lasso	0.000	0.089	0.074	0.912	0.736
30% CHP	MRCML-DP	0.010	0.089	0.097	0.972	0.600
	MRCML-BIC	0.012	0.088	0.078	0.928	0.756
	MRBEE	0.005	0.084	0.084	0.934	0.686
	Table (12, 1)	200/ cample o	worlon thata?	-0.2 number	of $V_c = 100$	
Scenario			verlap, theta2 סס			RIF
Scenario	Method	Bias	SD	SE	CovFreq	RJF
	Method IVW	Bias 0.019	SD 0.046	SE 0.068	CovFreq 0.992	0.970
	Method IVW MR-Egger	Bias 0.019 0.016	SD 0.046 0.048	SE 0.068 0.069	CovFreq 0.992 0.996	0.970 0.952
	Method IVW MR-Egger MR-Median	Bias 0.019 0.016 0.018	SD 0.046 0.048 0.057	SE 0.068 0.069 0.088	CovFreq 0.992 0.996 0.994	0.970 0.952 0.770
	Method IVW MR-Egger MR-Median MR-Lasso	Bias 0.019 0.016 0.018 0.019	SD 0.046 0.048 0.057 0.046	SE 0.068 0.069 0.088 0.068	CovFreq 0.992 0.996 0.994 0.992	0.970 0.952 0.770 0.970
Scenario Deiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP	Bias 0.019 0.016 0.018 0.019 -0.002	SD 0.046 0.048 0.057 0.046 0.050	SE 0.068 0.069 0.088 0.068 0.056	CovFreq 0.992 0.996 0.994 0.992 0.976	0.970 0.952 0.770 0.970 0.950
	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC	Bias 0.019 0.016 0.018 0.019 -0.002 0.000	SD 0.046 0.048 0.057 0.046 0.050 0.050	SE 0.068 0.069 0.088 0.068 0.056 0.050	CovFreq 0.992 0.996 0.994 0.992 0.976 0.956	0.970 0.952 0.770 0.970 0.950 0.980
no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE	Bias 0.019 0.016 0.018 0.019 -0.002 0.000 -0.001	SD 0.046 0.048 0.057 0.046 0.050 0.050 0.056	SE 0.068 0.069 0.088 0.068 0.056 0.050 0.052	CovFreq 0.992 0.996 0.994 0.992 0.976 0.956 0.934	0.970 0.952 0.770 0.970 0.950 0.980 0.950
	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW	Bias 0.019 0.016 0.018 0.019 -0.002 0.000 -0.001 0.088	SD 0.046 0.048 0.057 0.046 0.050 0.050 0.056 0.253	SE 0.068 0.069 0.088 0.068 0.056 0.050 0.052 0.242	CovFreq 0.992 0.996 0.994 0.992 0.976 0.956 0.934 0.926	0.970 0.952 0.770 0.970 0.950 0.980 0.950 0.244
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger	Bias 0.019 0.016 0.018 0.019 -0.002 0.000 -0.001 0.088 0.065	SD 0.046 0.048 0.057 0.046 0.050 0.050 0.056 0.253 0.260	SE 0.068 0.069 0.088 0.068 0.056 0.050 0.052 0.242 0.248	CovFreq 0.992 0.996 0.994 0.992 0.976 0.956 0.934 0.926 0.922	0.970 0.952 0.770 0.970 0.950 0.980 0.950 0.244 0.202
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Egger	Bias 0.019 0.016 0.018 0.019 -0.002 0.000 -0.001 0.088 0.065 0.031	SD 0.046 0.048 0.057 0.046 0.050 0.050 0.056 0.253 0.260 0.096	SE 0.068 0.069 0.088 0.068 0.056 0.050 0.052 0.242 0.248 0.113	CovFreq 0.992 0.996 0.994 0.992 0.976 0.956 0.934 0.926 0.922 0.972	0.970 0.952 0.770 0.970 0.950 0.980 0.950 0.244 0.202 0.536
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso	Bias 0.019 0.016 0.018 0.019 -0.002 0.000 -0.001 0.088 0.065 0.031 0.023	SD 0.046 0.048 0.057 0.046 0.050 0.050 0.056 0.253 0.260 0.096	SE 0.068 0.069 0.088 0.056 0.050 0.052 0.242 0.248 0.113 0.079	CovFreq 0.992 0.996 0.994 0.992 0.976 0.956 0.934 0.926 0.922 0.972 0.870	0.970 0.952 0.770 0.970 0.950 0.980 0.950 0.244 0.202 0.536 0.758
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP	Bias 0.019 0.016 0.018 0.019 -0.002 0.000 -0.001 0.088 0.065 0.031 0.023 -0.079	SD 0.046 0.048 0.057 0.046 0.050 0.050 0.050 0.056 0.253 0.260 0.096 0.096 0.098	SE 0.068 0.069 0.088 0.068 0.056 0.050 0.052 0.242 0.248 0.113 0.079 0.099	CovFreq 0.992 0.996 0.994 0.992 0.976 0.956 0.934 0.926 0.922 0.972 0.870 0.870 0.890	0.970 0.952 0.770 0.970 0.950 0.980 0.950 0.244 0.202 0.536 0.758 0.258
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-DP	Bias 0.019 0.016 0.018 0.019 -0.002 0.000 -0.001 0.088 0.065 0.031 0.023 -0.079 -0.059	SD 0.046 0.048 0.057 0.046 0.050 0.050 0.056 0.253 0.260 0.096 0.096 0.098 0.119	SE 0.068 0.069 0.088 0.068 0.056 0.050 0.052 0.242 0.248 0.113 0.079 0.099 0.070	CovFreq 0.992 0.996 0.994 0.992 0.976 0.956 0.934 0.926 0.922 0.972 0.870 0.890 0.734	0.970 0.952 0.770 0.970 0.950 0.980 0.950 0.244 0.202 0.536 0.758 0.258 0.258
no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-DP MRCML-BIC MRBEE	Bias 0.019 0.016 0.018 0.019 -0.002 0.000 -0.001 0.088 0.065 0.031 0.023 -0.079 -0.059 0.007	SD 0.046 0.048 0.057 0.046 0.050 0.050 0.056 0.253 0.260 0.096 0.096 0.098 0.119 0.120	SE 0.068 0.069 0.088 0.056 0.050 0.052 0.242 0.248 0.113 0.079 0.099 0.070 0.090	CovFreq 0.992 0.996 0.994 0.992 0.976 0.956 0.934 0.926 0.922 0.972 0.870 0.890 0.734 0.906	0.970 0.952 0.770 0.970 0.950 0.980 0.950 0.244 0.202 0.536 0.758 0.258 0.518 0.662
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW	Bias 0.019 0.016 0.018 0.019 -0.002 0.000 -0.001 0.088 0.065 0.031 0.023 -0.079 -0.059 0.007 0.092	SD 0.046 0.048 0.057 0.046 0.050 0.050 0.056 0.253 0.260 0.096 0.096 0.098 0.119 0.120 0.112	SE 0.068 0.069 0.088 0.056 0.050 0.052 0.242 0.248 0.113 0.079 0.099 0.070 0.090	CovFreq 0.992 0.996 0.994 0.992 0.976 0.956 0.934 0.926 0.922 0.972 0.870 0.870 0.890 0.734 0.906 1.000	0.970 0.952 0.770 0.970 0.950 0.980 0.950 0.244 0.202 0.536 0.758 0.258 0.258 0.518 0.662 0.006
30% unbalanced UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MRBEE	Bias 0.019 0.016 0.018 0.019 -0.002 0.000 -0.001 0.088 0.065 0.031 0.023 -0.079 -0.059 0.007 0.092 -0.008	SD 0.046 0.048 0.057 0.046 0.050 0.050 0.056 0.253 0.260 0.096 0.096 0.096 0.098 0.119 0.120 0.112 0.122	SE 0.068 0.069 0.088 0.056 0.050 0.052 0.242 0.248 0.113 0.079 0.099 0.070 0.090 0.312 0.303	CovFreq 0.992 0.996 0.994 0.992 0.976 0.956 0.934 0.926 0.922 0.972 0.870 0.870 0.890 0.734 0.906 1.000	0.970 0.952 0.770 0.970 0.950 0.980 0.950 0.244 0.202 0.536 0.758 0.258 0.518 0.662 0.006 0.002
30% unbalanced UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Egger MR-Median	Bias 0.019 0.016 0.018 0.019 -0.002 0.000 -0.001 0.088 0.065 0.031 0.023 -0.079 -0.059 0.007 0.092 -0.008 0.022	SD 0.046 0.048 0.057 0.046 0.050 0.050 0.050 0.056 0.253 0.260 0.096 0.096 0.098 0.119 0.120 0.112 0.122 0.063	SE 0.068 0.069 0.088 0.068 0.056 0.050 0.052 0.242 0.248 0.113 0.079 0.099 0.070 0.099 0.070 0.090 0.312 0.303 0.097	CovFreq 0.992 0.996 0.994 0.992 0.976 0.956 0.934 0.926 0.922 0.972 0.870 0.890 0.734 0.906 1.000 1.000 0.998	0.970 0.952 0.770 0.970 0.950 0.980 0.950 0.244 0.202 0.536 0.758 0.258 0.258 0.518 0.662 0.006 0.002 0.002 0.706
30% unbalanced UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median	Bias 0.019 0.016 0.018 0.019 -0.002 0.000 -0.001 0.088 0.065 0.031 0.023 -0.079 -0.059 0.007 0.092 -0.008 0.022 0.016	SD 0.046 0.048 0.057 0.046 0.050 0.050 0.050 0.056 0.253 0.260 0.096 0.096 0.096 0.098 0.119 0.120 0.112 0.122 0.063 0.053	SE 0.068 0.069 0.088 0.068 0.056 0.050 0.052 0.242 0.248 0.113 0.079 0.099 0.070 0.090 0.312 0.303 0.097 0.097	CovFreq 0.992 0.996 0.994 0.992 0.976 0.956 0.934 0.926 0.922 0.972 0.870 0.890 0.734 0.906 1.000 1.000 0.998 0.992	0.970 0.952 0.770 0.970 0.950 0.980 0.950 0.244 0.202 0.536 0.758 0.258 0.258 0.258 0.518 0.662 0.006 0.002 0.706 0.920
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MR-Median	Bias 0.019 0.016 0.018 0.019 -0.002 0.000 -0.001 0.088 0.065 0.031 0.023 -0.079 -0.059 0.007 0.092 -0.008 0.022 0.016 -0.054	SD 0.046 0.048 0.057 0.046 0.050 0.050 0.050 0.056 0.253 0.260 0.096 0.096 0.096 0.098 0.119 0.120 0.112 0.122 0.063 0.053 0.069	SE 0.068 0.069 0.088 0.056 0.050 0.052 0.242 0.248 0.113 0.079 0.099 0.070 0.099 0.070 0.090 0.312 0.303 0.097 0.071 0.071	CovFreq 0.992 0.996 0.994 0.992 0.976 0.956 0.934 0.926 0.922 0.972 0.870 0.870 0.870 0.890 0.734 0.906 1.000 1.000 0.998 0.992 0.950	0.970 0.952 0.770 0.970 0.950 0.980 0.950 0.244 0.202 0.536 0.758 0.258 0.518 0.662 0.006 0.002 0.006 0.002 0.706 0.920 0.506
30% unbalanced UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median	Bias 0.019 0.016 0.018 0.019 -0.002 0.000 -0.001 0.088 0.065 0.031 0.023 -0.079 -0.059 0.007 0.092 -0.008 0.022 0.016	SD 0.046 0.048 0.057 0.046 0.050 0.050 0.050 0.056 0.253 0.260 0.096 0.096 0.096 0.098 0.119 0.120 0.112 0.122 0.063 0.053	SE 0.068 0.069 0.088 0.068 0.056 0.050 0.052 0.242 0.248 0.113 0.079 0.099 0.070 0.090 0.312 0.303 0.097 0.097	CovFreq 0.992 0.996 0.994 0.992 0.976 0.956 0.934 0.926 0.922 0.972 0.870 0.890 0.734 0.906 1.000 1.000 0.998 0.992	0.970 0.952 0.770 0.970 0.950 0.980 0.950 0.244 0.202 0.536 0.758 0.258 0.258 0.258 0.518 0.662 0.006 0.002 0.706 0.920

	Table S13. C	% sample ov	erlap, theta3=	-0.2, number (of IVs = 100	
Scenari	o Method	Bias	SD	SE	CovFreq	RJF
	IVW	0.032	0.040	0.040	0.862	0.986
Ъ	MR-Egger	0.035	0.052	0.051	0.864	0.890
no pleiotropy	MR-Median	0.034	0.052	0.056	0.922	0.852
leio	MR-Lasso	0.032	0.043	0.039	0.838	0.984
d o	MRCML-DP	0.003	0.044	0.051	0.974	0.988
c	MRCML-BIC	0.002	0.044	0.042	0.930	1.000
	MRBEE	-0.002	0.043	0.045	0.952	0.994
dHſ	IVW	0.174	0.141	0.141	0.764	0.062
ed L	MR-Egger	0.132	0.190	0.179	0.854	0.072
ince	MR-Median	0.070	0.078	0.070	0.814	0.476
oala	MR-Lasso	0.054	0.070	0.048	0.734	0.782
nnk	MRCML-DP	-0.011	0.076	0.081	0.958	0.754
30% unbalanced UHP	MRCML-BIC	-0.016	0.085	0.050	0.764	0.926
ŝ	MRBEE	0.024	0.095	0.076	0.876	0.646
	IVW	-0.203 -0.260	0.109 0.133	0.172 0.170	0.908 0.720	0.760 0.834
٩	MR-Egger MR-Median	-0.280 -0.016	0.135	0.170	0.720	0.854
СН	MR-Lasso	-0.018	0.033	0.080	0.972	0.998
30% CHP	MRCML-DP	-0.024	0.049	0.041	0.964	0.990
ŝ	MRCML-BIC	-0.024	0.051	0.038	0.878	0.984
	MRBEE	-0.024	0.054	0.044	0.904	0.990
	WINDEE	0.020	0.050	0.052	0.504	0.550
		-	verlap, theta3			
Scenari	o Method	Bias	SD	SE	CovFreq	RJF
	o Method IVW	Bias -0.054	SD 0.028	SE 0.038	CovFreq 0.764	1.000
	o Method IVW MR-Egger	Bias -0.054 -0.062	SD 0.028 0.036	SE 0.038 0.049	CovFreq 0.764 0.810	1.000 0.996
	o Method IVW MR-Egger MR-Median	Bias -0.054 -0.062 -0.054	SD 0.028 0.036 0.034	SE 0.038 0.049 0.052	CovFreq 0.764 0.810 0.916	1.000 0.996 1.000
	o Method IVW MR-Egger MR-Median MR-Lasso	Bias -0.054 -0.062 -0.054 -0.054	SD 0.028 0.036 0.034 0.028	SE 0.038 0.049 0.052 0.038	CovFreq 0.764 0.810 0.916 0.764	1.000 0.996 1.000 1.000
	o Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP	Bias -0.054 -0.062 -0.054 -0.054 0.004	SD 0.028 0.036 0.034 0.028 0.029	SE 0.038 0.049 0.052 0.038 0.031	CovFreq 0.764 0.810 0.916 0.764 0.982	1.000 0.996 1.000 1.000 1.000
Scenari no pleiotropy	o Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC	Bias -0.054 -0.062 -0.054 -0.054 0.004 0.000	SD 0.028 0.036 0.034 0.028 0.029 0.029	SE 0.038 0.049 0.052 0.038 0.031 0.028	CovFreq 0.764 0.810 0.916 0.764 0.982 0.954	1.000 0.996 1.000 1.000 1.000 1.000
no pleiotropy	o Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE	Bias -0.054 -0.062 -0.054 -0.054 0.004 0.000 0.006	SD 0.028 0.036 0.034 0.028 0.029 0.029 0.029 0.030	SE 0.038 0.049 0.052 0.038 0.031 0.028 0.031	CovFreq 0.764 0.810 0.916 0.764 0.982 0.954	1.000 0.996 1.000 1.000 1.000 1.000 1.000
	o Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW	Bias -0.054 -0.062 -0.054 -0.054 0.004 0.000 0.006 0.081	SD 0.028 0.036 0.034 0.028 0.029 0.029 0.030 0.134	SE 0.038 0.049 0.052 0.038 0.031 0.028 0.031 0.136	CovFreq 0.764 0.810 0.916 0.764 0.982 0.954 0.954 0.908	1.000 0.996 1.000 1.000 1.000 1.000 1.000 0.138
UHP no pleiotropy	io Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger	Bias -0.054 -0.054 -0.054 -0.054 0.004 0.000 0.006 0.081 0.034	SD 0.028 0.036 0.034 0.028 0.029 0.029 0.029 0.030 0.134 0.170	SE 0.038 0.049 0.052 0.038 0.031 0.028 0.031 0.136 0.173	CovFreq 0.764 0.810 0.916 0.764 0.982 0.954 0.954 0.908 0.946	1.000 0.996 1.000 1.000 1.000 1.000 1.000 0.138 0.180
UHP no pleiotropy	io Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median	Bias -0.054 -0.054 -0.054 -0.054 0.004 0.000 0.006 0.081 0.034 -0.027	SD 0.028 0.036 0.034 0.028 0.029 0.029 0.030 0.134 0.170 0.052	SE 0.038 0.049 0.052 0.038 0.031 0.028 0.031 0.136 0.173 0.065	CovFreq 0.764 0.810 0.916 0.764 0.982 0.954 0.954 0.908 0.946 0.970	1.000 0.996 1.000 1.000 1.000 1.000 0.138 0.180 0.956
UHP no pleiotropy	o Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso	Bias -0.054 -0.054 -0.054 0.004 0.000 0.006 0.081 0.034 -0.027 -0.039	SD 0.028 0.036 0.034 0.028 0.029 0.029 0.029 0.030 0.134 0.170 0.052 0.049	SE 0.038 0.049 0.052 0.038 0.031 0.028 0.031 0.136 0.173 0.065 0.044	CovFreq 0.764 0.810 0.916 0.764 0.982 0.954 0.954 0.954 0.908 0.946 0.970 0.836	1.000 0.996 1.000 1.000 1.000 1.000 0.138 0.180 0.956 0.994
UHP no pleiotropy	o Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP	Bias -0.054 -0.054 -0.054 0.004 0.000 0.006 0.081 0.034 -0.027 -0.039 0.177	SD 0.028 0.036 0.034 0.028 0.029 0.029 0.030 0.134 0.170 0.052 0.049 0.077	SE 0.038 0.049 0.052 0.038 0.031 0.028 0.031 0.136 0.173 0.065 0.044 0.068	CovFreq 0.764 0.810 0.916 0.764 0.982 0.954 0.954 0.954 0.908 0.946 0.970 0.836 0.240	$\begin{array}{c} 1.000\\ 0.996\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 0.138\\ 0.138\\ 0.180\\ 0.956\\ 0.994\\ 0.134 \end{array}$
no pleiotropy	io Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-DP	Bias -0.054 -0.054 -0.054 0.004 0.000 0.006 0.081 0.034 -0.027 -0.039 0.177 0.151	SD 0.028 0.036 0.034 0.028 0.029 0.029 0.030 0.134 0.170 0.052 0.049 0.077 0.097	SE 0.038 0.049 0.052 0.038 0.031 0.028 0.031 0.136 0.173 0.065 0.044 0.068 0.041	CovFreq 0.764 0.810 0.916 0.764 0.982 0.954 0.954 0.908 0.946 0.970 0.836 0.240 0.208	$\begin{array}{c} 1.000\\ 0.996\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 0.138\\ 0.138\\ 0.180\\ 0.956\\ 0.994\\ 0.134\\ 0.488\end{array}$
UHP no pleiotropy	io Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE	Bias -0.054 -0.054 -0.054 -0.054 0.004 0.000 0.006 0.081 0.034 -0.027 -0.039 0.177 0.151 0.029	SD 0.028 0.036 0.034 0.028 0.029 0.029 0.030 0.134 0.170 0.052 0.049 0.077 0.097 0.069	SE 0.038 0.049 0.052 0.038 0.031 0.028 0.031 0.136 0.173 0.065 0.044 0.068 0.041 0.052	CovFreq 0.764 0.810 0.916 0.764 0.982 0.954 0.954 0.908 0.946 0.970 0.836 0.240 0.208 0.880	1.000 0.996 1.000 1.000 1.000 1.000 0.138 0.180 0.956 0.994 0.134 0.488 0.828
UHP no pleiotropy	io Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW	Bias -0.054 -0.054 -0.054 0.004 0.000 0.006 0.081 0.034 -0.027 -0.039 0.177 0.151 0.029 -0.278	SD 0.028 0.036 0.034 0.029 0.029 0.029 0.030 0.134 0.170 0.052 0.049 0.077 0.097 0.069 0.109	SE 0.038 0.049 0.052 0.038 0.031 0.028 0.031 0.136 0.173 0.065 0.044 0.068 0.041 0.052 0.169	CovFreq 0.764 0.810 0.916 0.764 0.982 0.954 0.954 0.908 0.946 0.970 0.836 0.240 0.208 0.880 0.880	1.000 0.996 1.000 1.000 1.000 0.138 0.180 0.956 0.994 0.134 0.488 0.828 0.934
30% unbalanced UHP no pleiotropy	io Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE	Bias -0.054 -0.054 -0.054 -0.054 0.004 0.000 0.006 0.081 0.034 -0.027 -0.039 0.177 0.151 0.029	SD 0.028 0.036 0.034 0.028 0.029 0.029 0.030 0.134 0.170 0.052 0.049 0.077 0.097 0.069	SE 0.038 0.049 0.052 0.038 0.031 0.028 0.031 0.136 0.173 0.065 0.044 0.068 0.041 0.052	CovFreq 0.764 0.810 0.916 0.764 0.982 0.954 0.954 0.908 0.946 0.970 0.836 0.240 0.208 0.880	1.000 0.996 1.000 1.000 1.000 1.000 0.138 0.180 0.956 0.994 0.134 0.488 0.828
30% unbalanced UHP no pleiotropy	io Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger	Bias -0.054 -0.054 -0.054 -0.054 0.004 0.000 0.006 0.081 0.034 -0.027 -0.039 0.177 0.151 0.029 -0.278 -0.340	SD 0.028 0.036 0.034 0.028 0.029 0.029 0.030 0.134 0.170 0.052 0.049 0.049 0.077 0.097 0.097 0.069 0.109 0.127	SE 0.038 0.049 0.052 0.038 0.031 0.028 0.031 0.136 0.173 0.065 0.044 0.068 0.041 0.052 0.169 0.166	CovFreq 0.764 0.810 0.916 0.764 0.982 0.954 0.954 0.954 0.908 0.946 0.970 0.836 0.240 0.208 0.240 0.208 0.880 0.722 0.448	1.000 0.996 1.000 1.000 1.000 1.000 0.138 0.180 0.956 0.994 0.134 0.488 0.828 0.934 0.934 0.948
UHP no pleiotropy	io Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW	Bias -0.054 -0.054 -0.054 -0.054 0.004 0.000 0.006 0.081 0.034 -0.027 -0.039 0.177 0.151 0.029 -0.278 -0.340 -0.063	SD 0.028 0.036 0.034 0.028 0.029 0.029 0.029 0.030 0.134 0.170 0.052 0.049 0.077 0.097 0.069 0.109 0.127 0.039	SE 0.038 0.049 0.052 0.038 0.031 0.028 0.031 0.136 0.173 0.065 0.044 0.068 0.041 0.052 0.169 0.166 0.056	CovFreq 0.764 0.810 0.916 0.764 0.982 0.954 0.954 0.908 0.946 0.970 0.836 0.240 0.208 0.880 0.722 0.448 0.888	1.000 0.996 1.000 1.000 1.000 0.138 0.130 0.956 0.994 0.134 0.488 0.828 0.828 0.934 0.948 1.000
30% unbalanced UHP no pleiotropy	io Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MRCML-BIC MRBEE IVW MR-Egger MR-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso	Bias -0.054 -0.054 -0.054 -0.054 0.004 0.000 0.006 0.081 0.034 -0.027 -0.039 0.177 0.151 0.029 -0.278 -0.340 -0.063 -0.045	SD 0.028 0.036 0.034 0.028 0.029 0.029 0.029 0.030 0.134 0.170 0.052 0.049 0.077 0.097 0.097 0.097 0.069 0.109 0.127 0.039 0.033	SE 0.038 0.049 0.052 0.038 0.031 0.028 0.031 0.136 0.173 0.065 0.044 0.068 0.041 0.052 0.169 0.166 0.056 0.040	CovFreq 0.764 0.810 0.916 0.764 0.982 0.954 0.954 0.908 0.946 0.970 0.836 0.240 0.240 0.208 0.880 0.722 0.448 0.888 0.852	1.000 0.996 1.000 1.000 1.000 0.138 0.180 0.956 0.994 0.134 0.488 0.828 0.934 0.948 1.000 1.000

	Table S15. (0% sample ov	erlap, theta4=	0.4, number c	of IVs = 100	
Scenario	Method	Bias	SD	SE	CovFreq	RJF
	IVW	-0.021	0.069	0.071	0.934	0.998
٨c	MR-Egger	-0.019	0.070	0.073	0.942	1.000
no pleiotropy	MR-Median	-0.023	0.088	0.095	0.968	0.984
eio.	MR-Lasso	-0.021	0.074	0.068	0.914	1.000
lq c	MRCML-DP	0.001	0.074	0.088	0.980	0.996
bu	MRCML-BIC	0.000	0.074	0.073	0.962	1.000
	MRBEE	0.005	0.075	0.078	0.950	0.998
£	IVW	0.039	0.250	0.248	0.936	0.434
a U	MR-Egger	0.021	0.260	0.255	0.942	0.404
Ice	MR-Median	-0.003	0.150	0.123	0.896	0.856
alar	MR-Lasso	-0.014	0.132	0.084	0.804	0.954
inbä	MRCML-DP	0.015	0.135	0.138	0.958	0.840
30% unbalanced UHP	MRCML-BIC	0.014	0.146	0.086	0.780	0.956
30	MRBEE	0.017	0.172	0.136	0.880	0.814
	IVW	0.063	0.134	0.321	1.000	0.122
	MR-Egger	-0.030	0.139	0.314	1.000	0.056
ЧH	MR-Median	0.001	0.103	0.107	0.950	0.954
30% CHP	MR-Lasso	-0.009	0.092	0.074	0.900	0.990
30	MRCML-DP	0.014	0.091	0.097	0.974	0.986
	MRCML-BIC	0.013	0.091	0.078	0.916	0.996
	MRBEE	0.007	0.086	0.085	0.932	0.998
	Table S16. 10	00% sample o	verlap, theta4	=0.4, number	of IVs = 100	
Scenario	Table S16. 10 Method	00% sample o Bias	verlap, theta4 SD	=0.4, number SE	of IVs = 100 CovFreq	RJF
Scenario		-				RJF 1.000
	Method	Bias	SD	SE	CovFreq	
	Method IVW	Bias 0.018	SD 0.045	SE 0.067	CovFreq 0.990	1.000
	Method IVW MR-Egger	Bias 0.018 0.014	SD 0.045 0.047	SE 0.067 0.069	CovFreq 0.990 0.994	1.000 1.000
	Method IVW MR-Egger MR-Median	Bias 0.018 0.014 0.022	SD 0.045 0.047 0.058	SE 0.067 0.069 0.088	CovFreq 0.990 0.994 0.994	1.000 1.000 1.000
Scenario Vdo pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso	Bias 0.018 0.014 0.022 0.018	SD 0.045 0.047 0.058 0.045	SE 0.067 0.069 0.088 0.067	CovFreq 0.990 0.994 0.994 0.990	1.000 1.000 1.000 1.000
	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP	Bias 0.018 0.014 0.022 0.018 -0.008	SD 0.045 0.047 0.058 0.045 0.050	SE 0.067 0.069 0.088 0.067 0.056	CovFreq 0.990 0.994 0.994 0.990 0.980	1.000 1.000 1.000 1.000 1.000
no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC	Bias 0.018 0.014 0.022 0.018 -0.008 -0.003	SD 0.045 0.047 0.058 0.045 0.050 0.049	SE 0.067 0.069 0.088 0.067 0.056 0.049	CovFreq 0.990 0.994 0.994 0.990 0.980 0.958	1.000 1.000 1.000 1.000 1.000 1.000
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE	Bias 0.018 0.014 0.022 0.018 -0.008 -0.003 -0.002	SD 0.045 0.047 0.058 0.045 0.050 0.049 0.053	SE 0.067 0.069 0.088 0.067 0.056 0.049 0.052	CovFreq 0.990 0.994 0.994 0.990 0.980 0.958 0.946	1.000 1.000 1.000 1.000 1.000 1.000 1.000
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW	Bias 0.018 0.014 0.022 0.018 -0.008 -0.003 -0.002 0.067	SD 0.045 0.047 0.058 0.045 0.050 0.049 0.053 0.236	SE 0.067 0.069 0.088 0.067 0.056 0.049 0.052 0.243	CovFreq 0.990 0.994 0.994 0.990 0.980 0.958 0.946 0.952	1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.514
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger	Bias 0.018 0.014 0.022 0.018 -0.008 -0.003 -0.002 0.067 0.044	SD 0.045 0.047 0.058 0.045 0.050 0.049 0.053 0.236 0.237	SE 0.067 0.069 0.088 0.067 0.056 0.049 0.052 0.243 0.249	CovFreq 0.990 0.994 0.994 0.990 0.980 0.958 0.946 0.952 0.954	$ \begin{array}{c} 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 0.514\\ 0.432\\ \end{array} $
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Egger MR-Median	Bias 0.018 0.014 0.022 0.018 -0.008 -0.003 -0.002 0.067 0.044 0.031	SD 0.045 0.047 0.058 0.045 0.050 0.049 0.053 0.236 0.237 0.093	SE 0.067 0.069 0.088 0.067 0.056 0.049 0.052 0.243 0.249 0.114	CovFreq 0.990 0.994 0.994 0.990 0.980 0.958 0.946 0.952 0.954 0.976	1.000 1.000 1.000 1.000 1.000 1.000 0.514 0.432 0.978
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso	Bias 0.018 0.014 0.022 0.018 -0.008 -0.003 -0.002 0.067 0.044 0.031 0.031	SD 0.045 0.047 0.058 0.045 0.050 0.049 0.053 0.236 0.237 0.093 0.087	SE 0.067 0.069 0.088 0.067 0.056 0.049 0.052 0.243 0.243 0.249 0.114 0.079	CovFreq 0.990 0.994 0.990 0.980 0.958 0.946 0.952 0.954 0.976 0.900	1.000 1.000 1.000 1.000 1.000 1.000 0.514 0.432 0.978 0.998
no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP	Bias 0.018 0.014 0.022 0.018 -0.008 -0.003 -0.002 0.067 0.044 0.031 0.031 -0.140	SD 0.045 0.047 0.058 0.045 0.050 0.049 0.053 0.236 0.237 0.093 0.087 0.109	SE 0.067 0.069 0.088 0.067 0.056 0.049 0.052 0.243 0.243 0.249 0.114 0.079 0.102	CovFreq 0.990 0.994 0.990 0.980 0.958 0.946 0.952 0.954 0.976 0.900 0.708	1.000 1.000 1.000 1.000 1.000 1.000 0.514 0.432 0.978 0.998 0.710
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC	Bias 0.018 0.014 0.022 0.018 -0.003 -0.002 0.067 0.044 0.031 0.031 -0.140 -0.103	SD 0.045 0.047 0.058 0.045 0.050 0.049 0.053 0.236 0.237 0.093 0.087 0.109 0.126	SE 0.067 0.069 0.088 0.067 0.056 0.049 0.052 0.243 0.249 0.114 0.079 0.102 0.071	CovFreq 0.990 0.994 0.990 0.980 0.958 0.946 0.952 0.954 0.954 0.976 0.900 0.708 0.602	$\begin{array}{c} 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 0.514\\ 0.432\\ 0.978\\ 0.998\\ 0.710\\ 0.878\end{array}$
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-DP MRCML-BIC MRBEE	Bias 0.018 0.014 0.022 0.018 -0.003 -0.002 0.067 0.044 0.031 0.031 -0.140 -0.103 -0.009	SD 0.045 0.047 0.058 0.045 0.050 0.049 0.053 0.236 0.237 0.093 0.087 0.109 0.126 0.118	SE 0.067 0.069 0.088 0.067 0.056 0.049 0.052 0.243 0.249 0.114 0.079 0.102 0.071 0.091	CovFreq 0.990 0.994 0.994 0.990 0.980 0.958 0.946 0.952 0.954 0.976 0.900 0.708 0.602 0.904	1.000 1.000 1.000 1.000 1.000 1.000 0.514 0.432 0.978 0.998 0.710 0.878 0.944
30% unbalanced UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW	Bias 0.018 0.014 0.022 0.018 -0.003 -0.002 0.067 0.044 0.031 0.031 -0.140 -0.103 -0.100 -0.009 0.100 -0.002 0.019	SD 0.045 0.047 0.058 0.045 0.050 0.049 0.053 0.236 0.237 0.093 0.087 0.109 0.126 0.118 0.109 0.108 0.108	SE 0.067 0.069 0.088 0.067 0.056 0.049 0.052 0.243 0.249 0.114 0.079 0.102 0.071 0.091 0.311 0.303 0.097	CovFreq 0.990 0.994 0.994 0.990 0.980 0.958 0.946 0.952 0.954 0.976 0.900 0.708 0.602 0.904 1.000 1.000 0.998	1.000 1.000 1.000 1.000 1.000 1.000 0.514 0.432 0.978 0.998 0.710 0.878 0.944 0.192 0.052 0.998
30% unbalanced UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MRBEE	Bias 0.018 0.014 0.022 0.018 -0.003 -0.002 0.067 0.044 0.031 0.031 -0.140 -0.103 -0.009 0.100 -0.002	SD 0.045 0.047 0.058 0.045 0.050 0.049 0.053 0.236 0.237 0.093 0.087 0.109 0.126 0.118 0.109 0.109	SE 0.067 0.069 0.088 0.067 0.056 0.049 0.052 0.243 0.249 0.114 0.079 0.102 0.071 0.091 0.311 0.303 0.097 0.071	CovFreq 0.990 0.994 0.994 0.990 0.980 0.958 0.946 0.952 0.954 0.976 0.900 0.708 0.602 0.904 1.000 1.000	1.000 1.000 1.000 1.000 1.000 1.000 0.514 0.432 0.978 0.998 0.710 0.878 0.944 0.192 0.052
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Egger MR-Median	Bias 0.018 0.014 0.022 0.018 -0.003 -0.002 0.067 0.044 0.031 0.031 -0.140 -0.103 -0.100 -0.009 0.100 -0.002 0.019	SD 0.045 0.047 0.058 0.045 0.050 0.049 0.053 0.236 0.237 0.093 0.087 0.109 0.126 0.118 0.109 0.108 0.108	SE 0.067 0.069 0.088 0.067 0.056 0.049 0.052 0.243 0.249 0.114 0.079 0.102 0.071 0.091 0.311 0.303 0.097	CovFreq 0.990 0.994 0.994 0.990 0.980 0.958 0.946 0.952 0.954 0.976 0.900 0.708 0.602 0.904 1.000 1.000 0.998	1.000 1.000 1.000 1.000 1.000 1.000 0.514 0.432 0.978 0.998 0.710 0.878 0.944 0.192 0.052 0.998
30% unbalanced UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Egger	Bias 0.018 0.014 0.022 0.018 -0.003 -0.002 0.067 0.044 0.031 0.031 -0.140 -0.103 -0.103 -0.009 0.100 -0.002 0.019 0.015	SD 0.045 0.047 0.058 0.045 0.050 0.049 0.053 0.236 0.237 0.093 0.087 0.109 0.126 0.118 0.109 0.108 0.109 0.108 0.108	SE 0.067 0.069 0.088 0.067 0.056 0.049 0.052 0.243 0.249 0.114 0.079 0.102 0.071 0.091 0.311 0.303 0.097 0.071	CovFreq 0.990 0.994 0.994 0.990 0.980 0.958 0.946 0.952 0.954 0.976 0.900 0.708 0.602 0.904 1.000 1.000 0.998 0.986	1.000 1.000 1.000 1.000 1.000 0.514 0.432 0.978 0.998 0.710 0.878 0.944 0.192 0.052 0.998 1.000

	Table S17.	0% sample o	verlap, theta1	=0, number of	⁻ IVs = 200	
Scenario	Method	Bias	SD	SE	CovFreq	RJF
	IVW	0.005	0.068	0.069	0.946	0.054
λ	MR-Egger	0.010	0.076	0.076	0.942	0.058
no pleiotropy	MR-Median	0.003	0.084	0.090	0.970	0.030
eio	MR-Lasso	0.005	0.072	0.066	0.914	0.086
ld o	MRCML-DP	-0.002	0.078	0.094	0.976	0.024
bu	MRCML-BIC	0.003	0.078	0.073	0.928	0.072
	MRBEE	0.002	0.076	0.078	0.948	0.052
НР	IVW	0.070	0.179	0.176	0.926	0.074
30% unbalanced UHP	MR-Egger	0.043	0.194	0.195	0.938	0.062
JCe	MR-Median	0.027	0.124	0.111	0.910	0.090
alar	MR-Lasso	0.013	0.109	0.078	0.840	0.160
qui	MRCML-DP	0.005	0.135	0.153	0.966	0.034
n %	MRCML-BIC	0.010	0.154	0.085	0.738	0.262
30	MRBEE	0.010	0.140	0.107	0.862	0.138
	IVW	0.085	0.106	0.222	1.000	0.000
	MR-Egger	-0.092	0.115	0.229	1.000	0.000
ЧН	MR-Median	0.027	0.094	0.100	0.952	0.048
30% CHP	MR-Lasso	0.015	0.081	0.070	0.902	0.098
30	MRCML-DP	0.009	0.091	0.107	0.972	0.028
	MRCML-BIC	0.014	0.093	0.079	0.890	0.110
	MRBEE	0.003	0.089	0.083	0.926	0.074
	Table S18. 1	.00% sample	overlap, theta	1=0, number o	of IVs = 200	
Scenario	Table S18. 1 Method	.00% sample Bias	overlap, theta SD	1=0, number o SE	of IVs = 200 CovFreq	RJF
Scenario						RJF 0.018
	Method	Bias	SD	SE	CovFreq	
	Method IVW	Bias 0.036	SD 0.042	SE 0.065	CovFreq 0.982	0.018
	Method IVW MR-Egger	Bias 0.036 0.022	SD 0.042 0.046	SE 0.065 0.072	CovFreq 0.982 0.994	0.018 0.006
	Method IVW MR-Egger MR-Median	Bias 0.036 0.022 0.036	SD 0.042 0.046 0.055	SE 0.065 0.072 0.081	CovFreq 0.982 0.994 0.988	0.018 0.006 0.012
Scenario Deleiotropy no	Method IVW MR-Egger MR-Median MR-Lasso	Bias 0.036 0.022 0.036 0.036	SD 0.042 0.046 0.055 0.042	SE 0.065 0.072 0.081 0.065	CovFreq 0.982 0.994 0.988 0.982	0.018 0.006 0.012 0.018
	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP	Bias 0.036 0.022 0.036 0.036 -0.003	SD 0.042 0.046 0.055 0.042 0.051	SE 0.065 0.072 0.081 0.065 0.058	CovFreq 0.982 0.994 0.988 0.982 0.974	0.018 0.006 0.012 0.018 0.026
no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC	Bias 0.036 0.022 0.036 0.036 -0.003 -0.001	SD 0.042 0.046 0.055 0.042 0.051 0.052	SE 0.065 0.072 0.081 0.065 0.058 0.049	CovFreq 0.982 0.994 0.988 0.982 0.974 0.932	0.018 0.006 0.012 0.018 0.026 0.068
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE	Bias 0.036 0.022 0.036 -0.003 -0.001 -0.001	SD 0.042 0.046 0.055 0.042 0.051 0.052 0.051	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053	CovFreq 0.982 0.994 0.988 0.982 0.974 0.932 0.940	0.018 0.006 0.012 0.018 0.026 0.068 0.060
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW	Bias 0.036 0.022 0.036 -0.003 -0.001 -0.001 -0.001 0.098	SD 0.042 0.046 0.055 0.042 0.051 0.052 0.051 0.169	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165	CovFreq 0.982 0.994 0.988 0.982 0.974 0.932 0.940 0.906	0.018 0.006 0.012 0.018 0.026 0.068 0.060 0.094
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger	Bias 0.036 0.022 0.036 -0.003 -0.001 -0.001 0.098 0.064	SD 0.042 0.046 0.055 0.042 0.051 0.052 0.051 0.169 0.187	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165 0.183	CovFreq 0.982 0.994 0.988 0.982 0.974 0.932 0.940 0.906 0.936	0.018 0.006 0.012 0.018 0.026 0.068 0.060 0.094 0.094
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Egger MR-Median	Bias 0.036 0.022 0.036 -0.003 -0.001 -0.001 0.098 0.064 0.047	SD 0.042 0.046 0.055 0.042 0.051 0.052 0.051 0.169 0.187 0.087	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165 0.183 0.101	CovFreq 0.982 0.994 0.988 0.982 0.974 0.932 0.940 0.906 0.936 0.950	0.018 0.006 0.012 0.018 0.026 0.068 0.060 0.094 0.064 0.050
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Egger MR-Median MR-Lasso	Bias 0.036 0.022 0.036 -0.003 -0.001 -0.001 0.098 0.064 0.047 0.046	SD 0.042 0.046 0.055 0.042 0.051 0.052 0.051 0.169 0.187 0.087 0.085	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165 0.183 0.101 0.073	CovFreq 0.982 0.994 0.988 0.982 0.974 0.932 0.940 0.906 0.936 0.950 0.858	0.018 0.006 0.012 0.018 0.026 0.068 0.060 0.094 0.064 0.050 0.142
no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP	Bias 0.036 0.022 0.036 -0.003 -0.001 -0.001 0.098 0.064 0.047 0.046 -0.064	SD 0.042 0.046 0.055 0.042 0.051 0.052 0.051 0.169 0.187 0.087 0.085 0.112	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165 0.183 0.101 0.073 0.112	CovFreq 0.982 0.994 0.988 0.982 0.974 0.932 0.940 0.940 0.936 0.936 0.950 0.858 0.934	0.018 0.006 0.012 0.018 0.026 0.068 0.060 0.094 0.064 0.050 0.142 0.066
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-DP	Bias 0.036 0.022 0.036 -0.003 -0.001 -0.001 0.098 0.064 0.047 0.046 -0.064 -0.067	SD 0.042 0.046 0.055 0.042 0.051 0.052 0.051 0.169 0.187 0.087 0.087 0.085 0.112 0.135	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165 0.183 0.101 0.073 0.112 0.076	CovFreq 0.982 0.994 0.988 0.982 0.974 0.932 0.940 0.906 0.936 0.936 0.950 0.858 0.934 0.934 0.700	0.018 0.006 0.012 0.018 0.026 0.068 0.060 0.094 0.064 0.050 0.142 0.066 0.300
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MR-Egger MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-DP MRCML-BIC MRBEE	Bias 0.036 0.022 0.036 -0.003 -0.001 -0.001 0.098 0.064 0.047 0.046 -0.064 -0.067 -0.001	SD 0.042 0.046 0.055 0.042 0.051 0.052 0.051 0.169 0.187 0.087 0.087 0.085 0.112 0.135 0.120	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165 0.183 0.101 0.073 0.112 0.076 0.095	CovFreq 0.982 0.994 0.988 0.982 0.974 0.932 0.940 0.906 0.936 0.950 0.858 0.934 0.700 0.882	0.018 0.006 0.012 0.018 0.026 0.068 0.060 0.094 0.064 0.050 0.142 0.066 0.300 0.118
30% unbalanced UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-DP MRCML-BIC MRBEE IVW	Bias 0.036 0.022 0.036 -0.003 -0.001 -0.001 0.098 0.064 0.047 0.046 -0.064 -0.064 -0.067 -0.001 0.108	SD 0.042 0.046 0.055 0.042 0.051 0.052 0.051 0.169 0.187 0.087 0.085 0.112 0.135 0.120 0.100	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165 0.183 0.101 0.073 0.112 0.076 0.095 0.213	CovFreq 0.982 0.994 0.988 0.982 0.974 0.932 0.940 0.906 0.936 0.950 0.858 0.934 0.700 0.882 1.000	0.018 0.006 0.012 0.018 0.026 0.068 0.060 0.094 0.064 0.050 0.142 0.066 0.300 0.118 0.000
30% unbalanced UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW	Bias 0.036 0.022 0.036 -0.003 -0.001 -0.001 0.098 0.064 0.047 0.046 -0.064 -0.067 -0.001 0.108 -0.096	SD 0.042 0.046 0.055 0.042 0.051 0.052 0.051 0.169 0.187 0.087 0.087 0.085 0.112 0.135 0.120 0.100 0.100	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165 0.183 0.101 0.073 0.112 0.076 0.095 0.213 0.218	CovFreq 0.982 0.994 0.988 0.982 0.974 0.932 0.940 0.940 0.936 0.936 0.950 0.858 0.934 0.700 0.882 1.000 1.000	0.018 0.006 0.012 0.018 0.026 0.068 0.060 0.094 0.064 0.050 0.142 0.066 0.300 0.118 0.000 0.000
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Egger MR-Egger	Bias 0.036 0.022 0.036 0.036 -0.003 -0.001 0.098 0.064 0.047 0.046 -0.064 -0.067 -0.061 0.108 -0.096 0.036	SD 0.042 0.046 0.055 0.042 0.051 0.052 0.051 0.169 0.187 0.087 0.087 0.085 0.112 0.135 0.120 0.100 0.100 0.104 0.063	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165 0.183 0.101 0.073 0.112 0.076 0.095 0.213 0.218 0.091	CovFreq 0.982 0.994 0.988 0.982 0.974 0.932 0.940 0.906 0.936 0.936 0.950 0.858 0.934 0.700 0.882 1.000 1.000 0.990	0.018 0.006 0.012 0.018 0.026 0.068 0.060 0.094 0.064 0.050 0.142 0.066 0.300 0.142 0.066 0.300 0.118 0.000 0.000 0.010
30% unbalanced UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso	Bias 0.036 0.022 0.036 0.036 -0.003 -0.001 -0.001 0.098 0.064 0.047 0.046 -0.064 -0.064 -0.067 -0.001 0.108 -0.096 0.036 0.030	SD 0.042 0.046 0.055 0.042 0.051 0.052 0.051 0.169 0.187 0.087 0.087 0.085 0.112 0.135 0.120 0.100 0.100 0.104 0.063 0.052	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165 0.183 0.101 0.073 0.112 0.076 0.095 0.213 0.218 0.091 0.068	CovFreq 0.982 0.994 0.988 0.982 0.974 0.932 0.940 0.906 0.936 0.936 0.950 0.858 0.934 0.700 0.882 1.000 1.000 0.990 0.978	0.018 0.006 0.012 0.018 0.026 0.068 0.060 0.094 0.064 0.050 0.142 0.066 0.300 0.118 0.000 0.010 0.010 0.022

	Table S19. 0	% sample ov	erlap, theta2=	0.2, number c	f IVs = 200	
Scenario	Method	Bias	SD	SE	CovFreq	RJF
	IVW	-0.020	0.065	0.069	0.950	0.744
δ	MR-Egger	-0.018	0.067	0.070	0.950	0.748
no pleiotropy	MR-Median	-0.018	0.088	0.089	0.950	0.524
eiot	MR-Lasso	-0.019	0.070	0.066	0.926	0.764
ld o	MRCML-DP	0.001	0.074	0.094	0.982	0.592
Du	MRCML-BIC	0.002	0.075	0.073	0.928	0.794
	MRBEE	0.000	0.076	0.078	0.946	0.742
đ	IVW	0.037	0.176	0.176	0.930	0.266
30% unbalanced UHP	MR-Egger	0.027	0.182	0.179	0.930	0.248
Iced	MR-Median	-0.005	0.123	0.111	0.894	0.432
alan	MR-Lasso	-0.005	0.112	0.077	0.822	0.656
nba	MRCML-DP	0.030	0.136	0.152	0.964	0.326
n %	MRCML-BIC	0.034	0.153	0.085	0.704	0.656
30%	MRBEE	0.005	0.133	0.108	0.872	0.462
	IVW	0.056	0.112	0.222	1.000	0.046
	MR-Egger	-0.008	0.115	0.220	1.000	0.014
우	MR-Median	0.002	0.097	0.101	0.964	0.542
30% CHP	MR-Lasso	-0.002	0.084	0.070	0.896	0.768
30%	MRCML-DP	0.024	0.092	0.108	0.984	0.586
	MRCML-BIC	0.026	0.097	0.079	0.892	0.774
	MRBEE	0.015	0.087	0.083	0.938	0.740
	Table 520, 10	10% cample a	varlan thata?	-0.2 number	af N/c = 200	
Scenario		-	verlap, theta2			RIE
Scenario	Method	Bias	SD	SE	CovFreq	RJF
	Method IVW	Bias 0.034	SD 0.041	SE 0.065	CovFreq 0.986	0.998
	Method IVW MR-Egger	Bias 0.034 0.030	SD 0.041 0.041	SE 0.065 0.072	CovFreq 0.986 0.990	0.998 0.988
	Method IVW MR-Egger MR-Median	Bias 0.034 0.030 0.033	SD 0.041 0.041 0.051	SE 0.065 0.072 0.081	CovFreq 0.986 0.990 0.992	0.998 0.988 0.936
	Method IVW MR-Egger MR-Median MR-Lasso	Bias 0.034 0.030 0.033 0.034	SD 0.041 0.041 0.051 0.041	SE 0.065 0.072 0.081 0.065	CovFreq 0.986 0.990 0.992 0.986	0.998 0.988 0.936 0.998
	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP	Bias 0.034 0.030 0.033 0.034 -0.005	SD 0.041 0.041 0.051 0.041 0.049	SE 0.065 0.072 0.081 0.065 0.058	CovFreq 0.986 0.990 0.992 0.986 0.982	0.998 0.988 0.936 0.998 0.940
Scenario Dieiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC	Bias 0.034 0.030 0.033 0.034 -0.005 0.000	SD 0.041 0.041 0.051 0.041 0.049 0.050	SE 0.065 0.072 0.081 0.065 0.058 0.049	CovFreq 0.986 0.990 0.992 0.986 0.982 0.944	0.998 0.988 0.936 0.998 0.940 0.980
no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE	Bias 0.034 0.030 0.033 0.034 -0.005 0.000 0.000	SD 0.041 0.051 0.041 0.041 0.049 0.050 0.052	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053	CovFreq 0.986 0.990 0.992 0.986 0.982 0.944 0.956	0.998 0.988 0.936 0.998 0.940 0.980 0.956
no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW	Bias 0.034 0.030 0.033 0.034 -0.005 0.000 0.000 0.087	SD 0.041 0.041 0.051 0.041 0.049 0.050 0.052 0.172	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165	CovFreq 0.986 0.990 0.992 0.986 0.982 0.944 0.956 0.908	0.998 0.988 0.936 0.998 0.940 0.980 0.956 0.414
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger	Bias 0.034 0.030 0.033 0.034 -0.005 0.000 0.000 0.087 0.075	SD 0.041 0.041 0.051 0.041 0.049 0.050 0.052 0.172 0.171	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165 0.183	CovFreq 0.986 0.990 0.992 0.986 0.982 0.944 0.956 0.908 0.908	0.998 0.988 0.936 0.998 0.940 0.980 0.956 0.414 0.326
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Egger	Bias 0.034 0.030 0.033 0.034 -0.005 0.000 0.000 0.000 0.087 0.075 0.049	SD 0.041 0.041 0.051 0.041 0.049 0.050 0.052 0.172 0.171 0.084	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165 0.183 0.101	CovFreq 0.986 0.990 0.986 0.982 0.944 0.956 0.908 0.908 0.952 0.966	0.998 0.988 0.936 0.998 0.940 0.980 0.956 0.414 0.326 0.742
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-BIC MRBEE IVW MR-Egger MR-Egger MR-Median MR-Lasso	Bias 0.034 0.030 0.033 0.034 -0.005 0.000 0.000 0.000 0.087 0.075 0.049 0.045	SD 0.041 0.041 0.051 0.041 0.049 0.050 0.052 0.172 0.171 0.084 0.083	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165 0.183 0.101 0.073	CovFreq 0.986 0.990 0.992 0.986 0.982 0.944 0.956 0.908 0.952 0.966 0.878	0.998 0.988 0.936 0.998 0.940 0.980 0.956 0.414 0.326 0.742 0.882
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC NRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP	Bias 0.034 0.030 0.033 0.034 -0.005 0.000 0.000 0.087 0.075 0.049 0.045 -0.125	SD 0.041 0.041 0.051 0.041 0.049 0.050 0.052 0.172 0.171 0.084 0.083 0.107	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165 0.183 0.101 0.073 0.112	CovFreq 0.986 0.990 0.986 0.982 0.944 0.956 0.908 0.952 0.966 0.878 0.810	0.998 0.988 0.936 0.998 0.940 0.980 0.956 0.414 0.326 0.742 0.882 0.108
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-DP	Bias 0.034 0.030 0.033 0.034 -0.005 0.000 0.000 0.000 0.087 0.075 0.049 0.045 -0.125 -0.108	SD 0.041 0.041 0.051 0.049 0.050 0.052 0.172 0.171 0.084 0.083 0.107 0.132	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165 0.183 0.101 0.073 0.112 0.076	CovFreq 0.986 0.990 0.986 0.982 0.944 0.956 0.908 0.952 0.966 0.878 0.810 0.618	0.998 0.988 0.936 0.998 0.940 0.980 0.956 0.414 0.326 0.742 0.882 0.108 0.388
no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE	Bias 0.034 0.030 0.033 0.034 -0.005 0.000 0.000 0.087 0.075 0.049 0.045 -0.125 -0.108 -0.005	SD 0.041 0.041 0.051 0.049 0.050 0.052 0.172 0.171 0.084 0.083 0.107 0.132 0.121	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165 0.183 0.101 0.073 0.112 0.076 0.096	CovFreq 0.986 0.990 0.986 0.982 0.944 0.956 0.908 0.952 0.966 0.878 0.810 0.618 0.886	0.998 0.988 0.936 0.998 0.940 0.980 0.956 0.414 0.326 0.742 0.882 0.742 0.882 0.108 0.388 0.534
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW	Bias 0.034 0.030 0.033 0.034 -0.005 0.000 0.000 0.087 0.075 0.049 0.045 -0.125 -0.108 -0.104	SD 0.041 0.041 0.051 0.041 0.049 0.050 0.052 0.172 0.171 0.084 0.083 0.107 0.132 0.121 0.091	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165 0.183 0.101 0.073 0.112 0.076 0.096 0.213	CovFreq 0.986 0.990 0.992 0.986 0.982 0.944 0.956 0.908 0.952 0.966 0.878 0.810 0.618 0.886 0.998	0.998 0.988 0.936 0.940 0.940 0.956 0.414 0.326 0.742 0.882 0.108 0.388 0.534 0.112
30% unbalanced UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger	Bias 0.034 0.030 0.033 0.034 -0.005 0.000 0.000 0.087 0.075 0.049 0.045 -0.125 -0.108 -0.005 0.104 0.028	SD 0.041 0.041 0.051 0.049 0.050 0.052 0.172 0.171 0.084 0.083 0.107 0.132 0.121 0.091 0.091	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165 0.183 0.101 0.073 0.112 0.076 0.096 0.213 0.218	CovFreq 0.986 0.990 0.992 0.986 0.982 0.944 0.956 0.908 0.952 0.966 0.878 0.810 0.810 0.618 0.886 0.998 1.000	0.998 0.988 0.936 0.998 0.940 0.956 0.414 0.326 0.742 0.882 0.108 0.388 0.534 0.112 0.016
30% unbalanced UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Egger MR-Median	Bias 0.034 0.030 0.033 0.034 -0.005 0.000 0.000 0.087 0.075 0.049 0.045 -0.125 -0.108 -0.005 0.104 0.028 0.037	SD 0.041 0.041 0.051 0.049 0.050 0.052 0.172 0.171 0.084 0.083 0.107 0.132 0.121 0.091 0.091 0.059	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165 0.183 0.101 0.073 0.112 0.076 0.096 0.213 0.218 0.091	CovFreq 0.986 0.990 0.992 0.986 0.982 0.944 0.956 0.908 0.952 0.966 0.878 0.810 0.618 0.810 0.618 0.886 0.998 1.000 0.990	0.998 0.988 0.936 0.940 0.980 0.956 0.414 0.326 0.742 0.882 0.108 0.388 0.534 0.112 0.016 0.830
30% unbalanced UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso	Bias 0.034 0.030 0.033 0.034 -0.005 0.000 0.000 0.087 0.075 0.049 0.045 -0.125 -0.108 -0.108 -0.005 0.104 0.028 0.037 0.029	SD 0.041 0.041 0.051 0.049 0.050 0.052 0.172 0.171 0.084 0.083 0.107 0.132 0.121 0.091 0.091 0.059 0.052	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165 0.183 0.101 0.073 0.112 0.076 0.096 0.213 0.218 0.091 0.068	CovFreq 0.986 0.990 0.992 0.986 0.982 0.944 0.956 0.908 0.952 0.966 0.878 0.810 0.618 0.810 0.618 0.886 0.998 1.000 0.990 0.980	0.998 0.988 0.936 0.940 0.980 0.956 0.414 0.326 0.742 0.882 0.108 0.388 0.534 0.112 0.016 0.830 0.976
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP	Bias 0.034 0.030 0.033 0.034 -0.005 0.000 0.000 0.087 0.075 0.049 0.045 -0.125 -0.108 -0.105 0.104 0.028 0.037 0.029 -0.095	SD 0.041 0.041 0.051 0.049 0.050 0.052 0.172 0.171 0.084 0.083 0.107 0.132 0.121 0.091 0.091 0.059 0.052 0.070	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165 0.183 0.101 0.073 0.112 0.076 0.096 0.213 0.218 0.091 0.068 0.087	CovFreq 0.986 0.990 0.992 0.986 0.982 0.944 0.956 0.908 0.952 0.966 0.878 0.810 0.618 0.886 0.998 1.000 0.990 0.980 0.980 0.856	0.998 0.988 0.936 0.940 0.940 0.956 0.414 0.326 0.742 0.882 0.108 0.388 0.534 0.112 0.016 0.830 0.976 0.190
30% unbalanced UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso	Bias 0.034 0.030 0.033 0.034 -0.005 0.000 0.000 0.087 0.075 0.049 0.045 -0.125 -0.108 -0.108 -0.005 0.104 0.028 0.037 0.029	SD 0.041 0.041 0.051 0.049 0.050 0.052 0.172 0.171 0.084 0.083 0.107 0.132 0.121 0.091 0.091 0.059 0.052	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165 0.183 0.101 0.073 0.112 0.076 0.096 0.213 0.218 0.091 0.068	CovFreq 0.986 0.990 0.992 0.986 0.982 0.944 0.956 0.908 0.952 0.966 0.878 0.810 0.618 0.810 0.618 0.886 0.998 1.000 0.990 0.980	0.998 0.988 0.936 0.940 0.980 0.956 0.414 0.326 0.742 0.882 0.108 0.388 0.534 0.112 0.016 0.830 0.976

	Table S21. 0	% sample ov	erlap, theta3=-	-0.2, number o	of IVs = 200	
Scenario	Method	Bias	SD	SE	CovFreq	RJF
	IVW	0.054	0.036	0.039	0.728	0.972
λ	MR-Egger	0.057	0.043	0.045	0.764	0.886
no pleiotropy	MR-Median	0.053	0.048	0.053	0.846	0.814
eio	MR-Lasso	0.054	0.040	0.037	0.692	0.970
lq o	MRCML-DP	0.000	0.043	0.055	0.982	0.980
Ĕ	MRCML-BIC	-0.003	0.043	0.042	0.932	0.998
	MRBEE	0.001	0.042	0.045	0.968	0.994
30% unbalanced UHP	IVW	0.195	0.098	0.099	0.488	0.048
⊂ q	MR-Egger	0.175	0.113	0.115	0.646	0.052
nce	MR-Median	0.106	0.070	0.063	0.590	0.356
ala	MR-Lasso	0.090	0.065	0.044	0.468	0.648
qun	MRCML-DP	-0.028	0.079	0.091	0.968	0.740
1 %(MRCML-BIC	-0.039	0.093	0.049	0.692	0.952
3(MRBEE	-0.020	0.083	0.062	0.852	0.890
	IVW	-0.159	0.082	0.120	0.846	0.962
0	MR-Egger	-0.199	0.094	0.119	0.654	0.980
E	MR-Median	-0.008	0.055	0.057	0.968	0.958
30% CHP	MR-Lasso	0.013	0.048	0.039	0.884	0.990
3(MRCML-DP	-0.066	0.057	0.069	0.912	0.996
	MRCML-BIC	-0.069	0.065	0.044	0.638	1.000
	MRBEE	-0.027	0.062	0.049	0.834	0.978
	Table S22. 10	0% sample o	verlap, theta3	=-0.2 <i>,</i> number	of IVs = 200	
Scenario	Table S22. 10 Method	0% sample o Bias	verlap, theta3 SD	=-0.2, number SE	of IVs = 200 CovFreq	RJF
Scenario						RJF 1.000
	Method	Bias	SD	SE	CovFreq	
	Method IVW	Bias -0.100 -0.109 -0.099	SD 0.025 0.028 0.032	SE 0.065 0.072 0.081	CovFreq 0.850 0.882 0.954	1.000 1.000 1.000
	Method IVW MR-Egger MR-Median MR-Lasso	Bias -0.100 -0.109 -0.099 -0.100	SD 0.025 0.028 0.032 0.025	SE 0.065 0.072 0.081 0.065	CovFreq 0.850 0.882 0.954 0.850	1.000 1.000 1.000 1.000
	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP	Bias -0.100 -0.109 -0.099 -0.100 0.007	SD 0.025 0.028 0.032 0.025 0.029	SE 0.065 0.072 0.081 0.065 0.058	CovFreq 0.850 0.882 0.954 0.850 0.998	1.000 1.000 1.000 1.000 0.990
Scenario Deiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC	Bias -0.100 -0.109 -0.099 -0.100 0.007 0.001	SD 0.025 0.028 0.032 0.025 0.029 0.029	SE 0.065 0.072 0.081 0.065 0.058 0.049	CovFreq 0.850 0.882 0.954 0.850 0.998 0.998	1.000 1.000 1.000 1.000 0.990 0.996
no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE	Bias -0.100 -0.109 -0.099 -0.100 0.007 0.001 0.006	SD 0.025 0.028 0.032 0.025 0.029 0.029 0.029	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.032	CovFreq 0.850 0.882 0.954 0.850 0.998 0.998 0.948	1.000 1.000 1.000 0.990 0.996 1.000
no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW	Bias -0.100 -0.109 -0.099 -0.100 0.007 0.001 0.006 0.033	SD 0.025 0.028 0.032 0.025 0.029 0.029 0.033 0.093	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.032 0.165	CovFreq 0.850 0.882 0.954 0.850 0.998 0.998 0.948 0.998	1.000 1.000 1.000 0.990 0.996 1.000 0.058
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger	Bias -0.100 -0.109 -0.099 -0.100 0.007 0.001 0.006 0.033 0.010	SD 0.025 0.028 0.032 0.025 0.029 0.029 0.033 0.093 0.108	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.032 0.165 0.183	CovFreq 0.850 0.882 0.954 0.850 0.998 0.998 0.948 0.998 0.998	1.000 1.000 1.000 0.990 0.996 1.000 0.058 0.072
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Egger MR-Median	Bias -0.100 -0.109 -0.099 -0.100 0.007 0.001 0.006 0.033 0.010 -0.064	SD 0.025 0.028 0.032 0.025 0.029 0.029 0.033 0.093 0.108 0.049	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.032 0.165 0.183 0.101	CovFreq 0.850 0.882 0.954 0.850 0.998 0.998 0.948 0.998 0.998 0.998 0.996	1.000 1.000 1.000 0.990 0.996 1.000 0.058 0.072 0.894
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Egger MR-Median MR-Lasso	Bias -0.100 -0.109 -0.099 -0.100 0.007 0.001 0.006 0.033 0.010 -0.064 -0.071	SD 0.025 0.028 0.032 0.025 0.029 0.029 0.033 0.033 0.093 0.108 0.049 0.048	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.032 0.165 0.183 0.101 0.073	CovFreq 0.850 0.882 0.954 0.998 0.998 0.948 0.998 0.998 0.998 0.998 0.996 0.926	1.000 1.000 1.000 0.990 0.996 1.000 0.058 0.072 0.894 0.996
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC NRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP	Bias -0.100 -0.109 -0.099 -0.100 0.007 0.001 0.006 0.033 0.010 -0.064 -0.071 0.309	SD 0.025 0.028 0.032 0.025 0.029 0.029 0.033 0.093 0.108 0.049 0.048 0.048	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.032 0.165 0.183 0.101 0.073 0.112	CovFreq 0.850 0.882 0.954 0.850 0.998 0.998 0.948 0.998 0.998 0.998 0.996 0.926 0.926 0.096	1.000 1.000 1.000 0.990 0.996 1.000 0.058 0.072 0.894 0.996 0.072
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-DP	Bias -0.100 -0.099 -0.100 0.007 0.001 0.006 0.033 0.010 -0.064 -0.071 0.309 0.292	SD 0.025 0.028 0.032 0.025 0.029 0.029 0.033 0.093 0.108 0.049 0.048 0.049 0.048 0.087 0.125	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.032 0.165 0.183 0.101 0.073 0.112 0.076	CovFreq 0.850 0.882 0.954 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.996 0.926 0.096 0.096 0.062	1.000 1.000 1.000 0.990 0.996 1.000 0.058 0.072 0.894 0.996 0.072 0.244
no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-DP MRCML-BIC MRBEE	Bias -0.100 -0.109 -0.099 -0.100 0.007 0.001 0.006 0.033 0.010 -0.064 -0.071 0.309 0.292 0.063	SD 0.025 0.028 0.032 0.025 0.029 0.029 0.033 0.093 0.108 0.049 0.048 0.049 0.048 0.087 0.125 0.079	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.032 0.165 0.183 0.101 0.073 0.112 0.076 0.057	CovFreq 0.850 0.882 0.954 0.850 0.998 0.998 0.998 0.998 0.998 0.996 0.996 0.926 0.096 0.096 0.062 0.770	1.000 1.000 1.000 0.990 0.996 1.000 0.058 0.072 0.894 0.996 0.072 0.244 0.658
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-DP MRCML-BIC MRBEE IVW	Bias -0.100 -0.109 -0.099 -0.100 0.007 0.001 0.006 0.033 0.010 -0.064 -0.071 0.309 0.292 0.063 -0.303	SD 0.025 0.028 0.032 0.025 0.029 0.029 0.033 0.093 0.093 0.108 0.049 0.048 0.049 0.048 0.049 0.048 0.087 0.125 0.079	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.032 0.165 0.183 0.101 0.073 0.112 0.076 0.057 0.213	CovFreq 0.850 0.882 0.954 0.998 0.998 0.948 0.998 0.998 0.998 0.998 0.996 0.926 0.096 0.0926 0.096 0.062 0.0770 0.938	1.000 1.000 1.000 0.990 0.996 1.000 0.058 0.072 0.894 0.996 0.072 0.244 0.658 0.852
30% unbalanced UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger	Bias -0.100 -0.109 -0.099 -0.100 0.007 0.001 0.006 0.033 0.010 -0.064 -0.071 0.309 0.292 0.063 -0.303 -0.350	SD 0.025 0.028 0.032 0.025 0.029 0.029 0.033 0.093 0.108 0.049 0.048 0.049 0.048 0.049 0.048 0.087 0.125 0.079 0.079 0.079	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.032 0.165 0.183 0.101 0.073 0.112 0.076 0.057 0.213 0.218	CovFreq 0.850 0.882 0.954 0.998 0.998 0.998 0.998 0.998 0.998 0.996 0.926 0.096 0.0926 0.096 0.092 0.096 0.092 0.0938 0.938 0.828	1.000 1.000 1.000 0.990 0.996 1.000 0.058 0.072 0.894 0.996 0.072 0.244 0.658 0.852 0.852 0.908
30% unbalanced UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW	Bias -0.100 -0.109 -0.099 -0.100 0.007 0.001 0.006 0.033 0.010 -0.064 -0.071 0.309 0.292 0.063 -0.303 -0.350 -0.105	SD 0.025 0.028 0.032 0.025 0.029 0.029 0.033 0.093 0.108 0.049 0.048 0.049 0.048 0.087 0.125 0.079 0.079 0.079	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.032 0.165 0.183 0.101 0.073 0.112 0.076 0.057 0.213 0.218 0.091	CovFreq 0.850 0.882 0.954 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.996 0.926 0.096 0.096 0.096 0.096 0.096 0.096 0.0938 0.828 0.970	1.000 1.000 1.000 0.990 0.996 1.000 0.058 0.072 0.894 0.996 0.072 0.244 0.658 0.852 0.908 1.000
30% unbalanced UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso	Bias -0.100 -0.109 -0.099 -0.100 0.007 0.001 0.006 0.033 0.010 -0.064 -0.071 0.309 0.292 0.063 -0.303 -0.350 -0.105 -0.087	SD 0.025 0.028 0.032 0.025 0.029 0.029 0.033 0.093 0.108 0.049 0.048 0.049 0.048 0.049 0.048 0.087 0.125 0.079 0.079 0.079 0.088 0.035 0.031	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.032 0.165 0.183 0.101 0.073 0.112 0.076 0.057 0.213 0.218 0.091 0.068	CovFreq 0.850 0.882 0.954 0.850 0.998 0.998 0.998 0.998 0.998 0.998 0.996 0.926 0.096 0.026 0.096 0.096 0.062 0.770 0.938 0.828 0.970 0.918	1.000 1.000 1.000 0.990 0.996 1.000 0.058 0.072 0.894 0.996 0.072 0.244 0.658 0.852 0.852 0.908 1.000 1.000
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP	Bias -0.100 -0.109 -0.099 -0.100 0.007 0.001 0.006 0.033 0.010 -0.064 -0.071 0.309 0.292 0.063 -0.303 -0.303 -0.350 -0.105 -0.087 0.206	SD 0.025 0.028 0.032 0.025 0.029 0.029 0.033 0.093 0.033 0.108 0.049 0.048 0.049 0.048 0.049 0.048 0.049 0.048 0.037 0.125 0.079 0.079 0.079 0.088 0.035 0.031 0.054	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.032 0.165 0.183 0.101 0.073 0.112 0.076 0.057 0.213 0.218 0.091 0.068 0.087	CovFreq 0.850 0.850 0.954 0.998 0.998 0.998 0.998 0.998 0.998 0.996 0.926 0.096 0.0926 0.096 0.0926 0.096 0.0926 0.0938 0.828 0.970 0.918 0.234	1.000 1.000 1.000 0.990 0.996 1.000 0.058 0.072 0.894 0.996 0.072 0.244 0.658 0.852 0.852 0.908 1.000 1.000 0.002
30% unbalanced UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso	Bias -0.100 -0.109 -0.099 -0.100 0.007 0.001 0.006 0.033 0.010 -0.064 -0.071 0.309 0.292 0.063 -0.303 -0.350 -0.105 -0.087	SD 0.025 0.028 0.032 0.025 0.029 0.029 0.033 0.093 0.108 0.049 0.048 0.049 0.048 0.049 0.048 0.087 0.125 0.079 0.079 0.079 0.088 0.035 0.031	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.032 0.165 0.183 0.101 0.073 0.112 0.076 0.057 0.213 0.218 0.091 0.068	CovFreq 0.850 0.882 0.954 0.850 0.998 0.998 0.998 0.998 0.998 0.998 0.996 0.926 0.096 0.026 0.096 0.096 0.062 0.770 0.938 0.828 0.970 0.918	1.000 1.000 1.000 0.990 0.996 1.000 0.058 0.072 0.894 0.996 0.072 0.244 0.658 0.852 0.852 0.908 1.000 1.000

	Table S23. 0)% sample ov	erlap, theta4=	0.4, number c	of IVs = 200	
Scenario	Method	Bias	SD	SE	CovFreq	RJF
no pleiotropy	IVW	-0.046	0.068	0.069	0.892	0.998
	MR-Egger	-0.045	0.068	0.070	0.902	0.996
	MR-Median	-0.045	0.084	0.090	0.946	0.986
	MR-Lasso	-0.046	0.072	0.066	0.860	0.998
	MRCML-DP	-0.006	0.078	0.094	0.978	0.996
	MRCML-BIC	-0.004	0.078	0.073	0.940	0.998
	MRBEE	-0.003	0.080	0.078	0.936	1.000
30% unbalanced UHP	IVW	0.011	0.185	0.176	0.924	0.638
	MR-Egger	0.002	0.188	0.178	0.932	0.620
	MR-Median	-0.018	0.125	0.111	0.906	0.898
bala	MR-Lasso	-0.025	0.116	0.077	0.788	0.972
un	MRCML-DP	0.053	0.142	0.152	0.950	0.858
%0	MRCML-BIC	0.062	0.160	0.085	0.668	0.974
ŝ	MRBEE	0.008	0.141	0.107	0.862	0.912
	IVW	0.029 -0.033	0.108 0.112	0.222 0.219	1.000 1.000	0.476
<u>م</u>	MR-Egger MR-Median	-0.033	0.112	0.219	0.956	0.278 0.968
ъ	MR-Lasso	-0.020	0.092	0.100	0.938	0.998
30% CHP	MRCML-DP	0.027	0.083	0.108	0.972	0.990
ς,	MRCML-BIC	0.032	0.092	0.108	0.874	1.000
	MRBEE	0.012	0.090	0.073	0.936	0.998
	WINDLE	0.012	0.051	0.005	0.550	0.550
			verlap, theta4			
Scenario	Method	Bias	SD	SE	CovFreq	RJF
Scenario	Method IVW	Bias 0.036	SD 0.043	SE 0.065	CovFreq 0.986	1.000
	Method IVW MR-Egger	Bias 0.036 0.032	SD 0.043 0.043	SE 0.065 0.072	CovFreq 0.986 0.994	1.000 1.000
	Method IVW MR-Egger MR-Median	Bias 0.036 0.032 0.037	SD 0.043 0.043 0.052	SE 0.065 0.072 0.081	CovFreq 0.986 0.994 0.994	1.000 1.000 1.000
	Method IVW MR-Egger MR-Median MR-Lasso	Bias 0.036 0.032 0.037 0.036	SD 0.043 0.043 0.052 0.043	SE 0.065 0.072 0.081 0.065	CovFreq 0.986 0.994 0.994 0.986	1.000 1.000 1.000 1.000
	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP	Bias 0.036 0.032 0.037 0.036 -0.010	SD 0.043 0.043 0.052 0.043 0.050	SE 0.065 0.072 0.081 0.065 0.058	CovFreq 0.986 0.994 0.994 0.986 0.972	1.000 1.000 1.000 1.000 1.000
Scenario Deleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC	Bias 0.036 0.032 0.037 0.036 -0.010 0.000	SD 0.043 0.043 0.052 0.043 0.050 0.051	SE 0.065 0.072 0.081 0.065 0.058 0.049	CovFreq 0.986 0.994 0.994 0.986 0.972 0.948	1.000 1.000 1.000 1.000 1.000 1.000
no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE	Bias 0.036 0.032 0.037 0.036 -0.010 0.000 -0.003	SD 0.043 0.052 0.043 0.050 0.051 0.055	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053	CovFreq 0.986 0.994 0.994 0.986 0.972 0.948 0.942	1.000 1.000 1.000 1.000 1.000 1.000 1.000
	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW	Bias 0.036 0.032 0.037 0.036 -0.010 0.000 -0.003 0.102	SD 0.043 0.043 0.052 0.043 0.050 0.051 0.055 0.171	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165	CovFreq 0.986 0.994 0.994 0.986 0.972 0.948 0.942 0.882	1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.852
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger	Bias 0.036 0.032 0.037 0.036 -0.010 0.000 -0.003 0.102 0.090	SD 0.043 0.043 0.052 0.043 0.050 0.051 0.055 0.171 0.176	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165 0.183	CovFreq 0.986 0.994 0.986 0.972 0.948 0.942 0.882 0.920	1.000 1.000 1.000 1.000 1.000 1.000 0.852 0.774
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Egger MR-Median	Bias 0.036 0.032 0.037 0.036 -0.010 0.000 -0.003 0.102 0.090 0.058	SD 0.043 0.043 0.052 0.043 0.050 0.051 0.055 0.171 0.176 0.086	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165 0.183 0.101	CovFreq 0.986 0.994 0.986 0.972 0.948 0.942 0.882 0.920 0.950	1.000 1.000 1.000 1.000 1.000 1.000 0.852 0.774 1.000
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Egger MR-Median MR-Lasso	Bias 0.036 0.032 0.037 0.036 -0.010 0.000 -0.003 0.102 0.090 0.058 0.054	SD 0.043 0.043 0.052 0.043 0.050 0.051 0.055 0.171 0.176 0.086 0.087	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165 0.183 0.101 0.073	CovFreq 0.986 0.994 0.986 0.972 0.948 0.942 0.882 0.920 0.950 0.826	$ \begin{array}{c} 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 0.852\\ 0.774\\ 1.000\\ 1.000\\ 1.000 \end{array} $
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC NRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP	Bias 0.036 0.032 0.037 0.036 -0.010 0.000 -0.003 0.102 0.090 0.058 0.054 -0.177	SD 0.043 0.043 0.052 0.043 0.050 0.051 0.055 0.171 0.176 0.086 0.087 0.107	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165 0.183 0.101 0.073 0.112	CovFreq 0.986 0.994 0.986 0.972 0.948 0.942 0.882 0.920 0.920 0.826 0.826 0.650	1.000 1.000 1.000 1.000 1.000 1.000 0.852 0.774 1.000 1.000 0.538
no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-DP	Bias 0.036 0.037 0.036 -0.010 0.000 -0.003 0.102 0.090 0.058 0.054 -0.177 -0.139	SD 0.043 0.043 0.052 0.043 0.050 0.051 0.055 0.171 0.176 0.086 0.087 0.107 0.133	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165 0.183 0.101 0.073 0.112 0.076	CovFreq 0.986 0.994 0.986 0.972 0.948 0.942 0.882 0.920 0.920 0.950 0.826 0.650 0.520	1.000 1.000 1.000 1.000 1.000 1.000 0.852 0.774 1.000 1.000 0.538 0.806
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC NRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP	Bias 0.036 0.032 0.037 0.036 -0.010 0.000 -0.003 0.102 0.090 0.058 0.054 -0.177	SD 0.043 0.043 0.052 0.043 0.050 0.051 0.055 0.171 0.176 0.086 0.087 0.107	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165 0.183 0.101 0.073 0.112	CovFreq 0.986 0.994 0.986 0.972 0.948 0.942 0.882 0.920 0.920 0.826 0.826 0.650	1.000 1.000 1.000 1.000 1.000 1.000 0.852 0.774 1.000 1.000 0.538
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE	Bias 0.036 0.032 0.037 0.036 -0.010 0.000 -0.003 0.102 0.090 0.058 0.054 -0.177 -0.139 0.012	SD 0.043 0.043 0.052 0.043 0.050 0.051 0.055 0.171 0.176 0.086 0.087 0.107 0.133 0.125 0.095	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165 0.183 0.101 0.073 0.112 0.076 0.096 0.213	CovFreq 0.986 0.994 0.994 0.986 0.972 0.948 0.942 0.882 0.920 0.950 0.826 0.650 0.520 0.876 0.998	1.000 1.000 1.000 1.000 1.000 0.852 0.774 1.000 1.000 0.538 0.806 0.952 0.812
30% unbalanced UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-DP MRCML-BIC MRBEE	Bias 0.036 0.032 0.037 0.036 -0.010 0.000 -0.003 0.102 0.090 0.058 0.054 -0.177 -0.139 0.012 0.108	SD 0.043 0.043 0.052 0.043 0.050 0.051 0.055 0.171 0.176 0.086 0.087 0.107 0.133 0.125	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165 0.183 0.101 0.073 0.112 0.076 0.096	CovFreq 0.986 0.994 0.986 0.972 0.948 0.942 0.882 0.920 0.950 0.826 0.650 0.520 0.876	$\begin{array}{c} 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 0.852\\ 0.774\\ 1.000\\ 1.000\\ 0.538\\ 0.806\\ 0.952 \end{array}$
30% unbalanced UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger	Bias 0.036 0.032 0.037 0.036 -0.010 0.000 -0.003 0.102 0.090 0.058 0.054 -0.177 -0.139 0.012 0.108 0.034	SD 0.043 0.043 0.052 0.043 0.050 0.051 0.055 0.171 0.176 0.086 0.087 0.087 0.107 0.133 0.125 0.095 0.100	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165 0.183 0.101 0.073 0.112 0.076 0.096 0.213 0.218	CovFreq 0.986 0.994 0.986 0.972 0.948 0.942 0.942 0.920 0.920 0.950 0.826 0.650 0.520 0.876 0.998 1.000	1.000 1.000 1.000 1.000 1.000 1.000 0.852 0.774 1.000 1.000 0.538 0.806 0.952 0.812 0.812 0.532
UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Egger MR-Median	Bias 0.036 0.032 0.037 0.036 -0.010 0.000 -0.003 0.102 0.090 0.058 0.054 -0.177 -0.139 0.012 0.108 0.034 0.037	SD 0.043 0.043 0.052 0.043 0.050 0.051 0.055 0.171 0.176 0.086 0.087 0.107 0.133 0.125 0.095 0.100 0.061	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165 0.183 0.101 0.073 0.112 0.076 0.096 0.213 0.218 0.091	CovFreq 0.986 0.994 0.986 0.972 0.948 0.942 0.882 0.920 0.950 0.826 0.650 0.520 0.876 0.998 1.000 0.990	1.000 1.000 1.000 1.000 1.000 1.000 0.852 0.774 1.000 1.000 0.538 0.806 0.952 0.812 0.532 1.000
30% unbalanced UHP no pleiotropy	Method IVW MR-Egger MR-Median MR-Lasso MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MRCML-DP MRCML-BIC MRBEE IVW MR-Egger MR-Median MR-Lasso	Bias 0.036 0.032 0.037 0.036 -0.010 0.000 -0.003 0.102 0.090 0.058 0.054 -0.177 -0.139 0.012 0.108 0.034 0.037 0.030	SD 0.043 0.043 0.052 0.043 0.050 0.051 0.055 0.171 0.176 0.086 0.087 0.107 0.133 0.125 0.095 0.100 0.061 0.051	SE 0.065 0.072 0.081 0.065 0.058 0.049 0.053 0.165 0.183 0.101 0.073 0.112 0.076 0.096 0.213 0.218 0.091 0.068	CovFreq 0.986 0.994 0.994 0.986 0.972 0.948 0.942 0.882 0.920 0.950 0.826 0.650 0.520 0.876 0.998 1.000 0.990 0.970	1.000 1.000 1.000 1.000 1.000 1.000 0.852 0.774 1.000 1.000 0.538 0.806 0.952 0.812 0.532 1.000 1.000

1.6 Replication of Lin et al

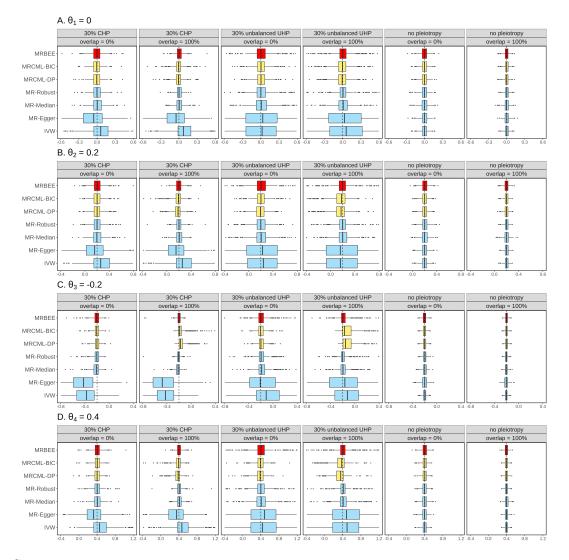


Figure S4: Estimation results of Lin et al. Panel A - L displays the boxplots of causal effect estimates from seven methods in the MVMR simulation. The four rows represent the four causal effects θ_j , j = 1, 2, 3, 4. Each column corresponds to one of the three scenarios. The x-axis indicates the value of the causal effect estimate, while the y-axis lists the seven methods. The true values of causal effects are denoted by dashed lines.

		•						ates with ef in yellow, t				Understand	darized
		beta01=-0.5			beta02=-0.7				beta03=-0.3				
lambda/sqrt p	Estimator	Est	SD	SE	CP	EST	SD	SE	СР	EST	SD	SE	CP
35.6	IVW	-0.4011	0.0257	0.0265	0.0460	-0.6529	0.0200	0.0216	0.4020	0.3821	0.0274	0.0295	0.2200
	Egger	-0.4266	0.0353	0.0370	0.4920	-0.6526	0.0200	0.0208	0.3560	0.3847	0.0278	0.0305	0.2140
	Median	-0.4049	0.0350	0.0418	0.3600	-0.6474	0.0277	0.0358	0.7560	0.3797	0.0393	0.0446	0.6060
	GRAPPLE	-0.4957	0.0337	0.0346	0.9520	-0.6974	0.0243	0.0253	0.9600	0.3042	0.0367	0.0391	0.9680
	MRBEE	-0.5074	0.0393	0.0408	0.9740	-0.7024	0.0263	0.0272	0.9520	0.2941	0.0411	0.0447	0.9680
	MRBEE Unstandarized	-0.5581	0.0620	7.6143	1.0000	-0.7126	0.0424	3.0688	1.0000	0.2544	0.0629	7.0391	1.0000
	dIVW	-0.5049	0.0391	0.0390	0.9700	-0.7018	0.0261	0.0271	0.9640	0.2963	0.0411	0.0426	0.9720
	adIVW	-0.5049	0.0391	0.0390	0.9700	-0.7018	0.0261	0.0271	0.9640	0.2963	0.0411	0.0426	0.9720
11	IVW	-0.2890	0.0350	0.0359	0.0000	-0.5850	0.0290	0.0317	0.0520	0.4528	0.0401	0.0400	0.0380
	Egger	-0.3230	0.0529	0.0558	0.1200	-0.5861	0.0294	0.0326	0.0600	0.4544	0.0404	0.0442	0.0480
	Median	-0.2933	0.0504	0.0570	0.0440	-0.5733	0.0423	0.0569	0.3580	0.4474	0.0575	0.0596	0.3300
	GRAPPLE	-0.4828	0.0708	0.0694	0.9180	-0.6936	0.0437	0.0464	0.9560	0.3173	0.0793	0.0793	0.9480
	MRBEE	-0.5217	0.0996	0.1096	0.9560	-0.7090	0.0535	0.0597	0.9640	0.2829	0.1053	0.1161	0.9720
	MRBEE Unstandarized	-0.9042	2.6129	34.9001	1.0000	-0.8177	0.7338	10.6841	1.0000	-0.0506	2.5668	32.0195	1.0000
	dIVW	-0.5131	0.0973	0.0974	0.9320	-0.7055	0.0521	0.0560	0.9540	0.2903	0.1023	0.1036	0.9520
	adIVW	-0.5016	0.0798	0.0900	0.9320	-0.7012	0.0483	0.0545	0.9540	0.2974	0.0869	0.0949	0.9520
7.4	IVW	-0.2507	0.0396	0.0389	0.0000	-0.5502	0.0334	0.0359	0.0220	0.4571	0.0450	0.0436	0.0700
	Egger	-0.2806	0.0590	0.0623	0.0660	-0.5510	0.0334	0.0374	0.0300	0.4582	0.0451	0.0489	0.0840
	Median	-0.2616	0.0566	0.0597	0.0200	-0.5268	0.0515	0.0615	0.1640	0.4463	0.0645	0.0631	0.3640
	GRAPPLE	-0.4808	0.0927	0.0902	0.9380	-0.6889	0.0571	0.0582	0.9360	0.3128	0.1049	0.1036	0.9460
	MRBEE	-0.5566	0.1843	0.2033	0.9780	-0.7208	0.0837	0.0945	0.9600	0.2420	0.1965	0.2132	0.9760
	MRBEE Unstandarized	2.1489	80.3074	5037.7991	1.0000	0.2806	24.8002	1530.8156	1.0000	2.2589	64.7862	4079.5503	1.0000
	dIVW	-0.5442	0.1782	0.1613	0.9640	-0.7167	0.0810	0.0832	0.9580	0.2536	0.1899	0.1702	0.9520
	adIVW	-0.4895	0.0899	0.1136	0.9600	-0.6940	0.0586	0.0707	0.9560	0.2875	0.1075	0.1164	0.9440

1.7 Replication of Wu et al

1.8 Bias-correction terms: Correlation matrix estimation from insignificant GWAS statistics

We investigate the estimation error of $\hat{\mathbf{R}}_{W_{\beta} \times w_{\alpha}}$, i.e., the correlation version of covariance matrix $\hat{\boldsymbol{\Sigma}}_{W_{\beta} \times w_{\alpha}}$. We first examine if increasing M results in a decreasing estimation error. Besides, we consider studying the Frobenius norm rather than the ℓ_2 norm, as $||\mathbf{A}||_2 \leq ||\mathbf{A}||_F$ and the calculation of the Frobenius norm is much less costly than the ℓ_2 norm. In comparison, we also consider the correlation matrix estimate directly yielded by the individual data, whose convergence rate is roughly $O(\min(\sqrt{n_1}, \sqrt{n_0}))$. The number of replications is 1000.

For this purpose, we set $M = 250, 500, \ldots, 2000, n_1 = n_0 = 2000, 20000$, and $n_o/n_0 = 0.5$. Figure S5 shows the investigation, from which we witness: (1), as M increases, the Frobenius norm of $\hat{\mathbf{R}}_{W_\beta \times w_\alpha}$ is reduced; (2) directly estimating $\hat{\mathbf{R}}_{W_\beta \times w_\alpha}$ from the individual data is always more precise than indirectly estimating it from insignificant GWAS statistics. In addition, although the estimation error of $\hat{\mathbf{R}}_{W_\beta \times w_\alpha}$ only depends on M, low sample sizes will introduce finite-sample bias into the estimation.

We then study if increasing n_1 and n_0 will influence the estimation error of $\hat{\mathbf{R}}_{W_{\beta} \times w_{\alpha}}$. For this purpose, we set M = 250,500,1000 and let n_1 and n_0 increase from 5000 to 40000 with a lag 5000. The number of replications is 1000. Figure S6 exhibits the results, from which we observe: increasing n_1 and n_0 cannot reduce estimation error of $\hat{\mathbf{R}}_{W_{\beta} \times w_{\alpha}}$. These results confirm our theory: the estimation error of $\hat{\mathbf{R}}_{W_{\beta} \times w_{\alpha}}$ only depends on M.

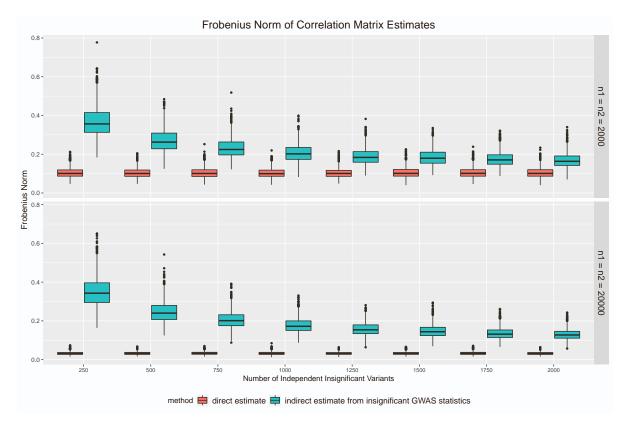


Figure S5: The Frobenius norms of correlation matrix esimates when M increases.

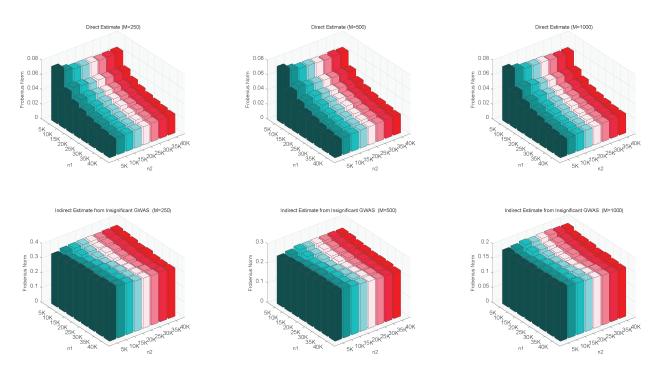


Figure S6: The Frobenius norms of correlation matrix estimates when n_0 and n_1 increase.

2 Supplemental Univariable Simulations

2.1 Overlapping Fraction

We briefly introduce the simulation settings for UVMR. First, we generate a binomial variable from Binom(2, b_j) where $b_j \sim \text{Unif}(0.05, 0.5)$ and standardize it as g_{ij} , the direct effect β_j from $\mathcal{N}(0, 1/m)$, and u_i, v_i from a normal distribution with correlation coefficient 0.5. The variances of u_i and v_i are chosen such that the IV-heritabilities are $\sigma_{\beta\beta}/\sigma_{xx} = 0.3$ and $\theta^2 \times (\sigma_{\beta\beta}/\sigma_{yy}) = 0.15$, respectively. We specify the causal effect $\theta = 0.3/\sqrt{2}$. We compare MRBEE with IVW, DIVW, MR-RAPS, MR-Egger, MR-Lasso, MR-Median, IMRP, MR-Conmix, and MR-MiX, where most are implemented by using the R package MendelianRandomization. We fix $n_0 = n_1 = 20000$, specify n_{01} according to the overlapping fraction, and assume no UHP or CHP. The so-called overlapping fraction is n_{01}/n_0 , where the special fraction such that $E(S_{IVW}(\theta)) = 0$ is $n_{01}/n_0 \approx 0.77$. The number of independent replications is 1000.

First, we study the influences of overlapping fraction n_{01}/n_0 and the number of IVs m, with the results displayed in Fig.S7. It is easy to see that only MRBEE is able to yield an unbiased estimate of θ in all cases. For a special overlapping fraction $n_{01}/n_0 \approx 0.77$, all approaches become unbiased except MR-RAPS and DIVW. These two methods perform badly because are based on no sample overlap assumption, which in turn add extra biases to the estimates as long as sample overlap exists. The SEs of causal effect estimates for all methods increases as the overlapping fraction decreases but remains unchanged by the increase of m, confirming that the convergence rates of causal estimates are mainly determined by n_{\min} .

As for the SE estimation, we display the boxplot of $\hat{se}(\hat{\theta}) - se(\hat{\theta})$ where $se(\hat{\theta})$ is approximated by the empirical SE calculated from the independent replications. It is evident that the SE estimates produced by all approaches have reduced variances as m grows. However, only MRBEE and DIVW can provide consistent SE estimates, confirming the accuracy of their SE formulas. MR-ConMix is extremely likely to underestimate the standard error, while MR-Egger, MR-Lasso, MR-Median, and MR-Mix constantly overestimate it. IVW underestimates the SE when the fraction is large and overestimates it when the fraction is small. In contrast, MR-RAPS seems to overestimate the SE unless the overlapping fraction is 0%.

The coverage frequency refers to the frequency that the confidence interval covers the true causal effect among simulations. Here, this confidence interval is constructed by doubling $\hat{s}e(\hat{\theta})$, meaning that the coverage frequency corresponding to neither an inflated type-I error nor an inflated type-II error should be 0.95. We observed that only MRBEE enjoys a coverage frequency around 0.95. When m = 250, MR-Egger, MR-Lasso, and MR-Median suffer from inflated type-II errors, likely because these methods cannot estimate the SE properly. These approaches also result in inflated type-I errors caused by weak instrument bias as m increases. Additionally, because MR-Mix overestimates the SE, it consistently exhibits a substantially inflated type-II error. Furthermore, IMRP and MR-ConMix consistently have inflated type I errors because they frequently underestimate the SE.

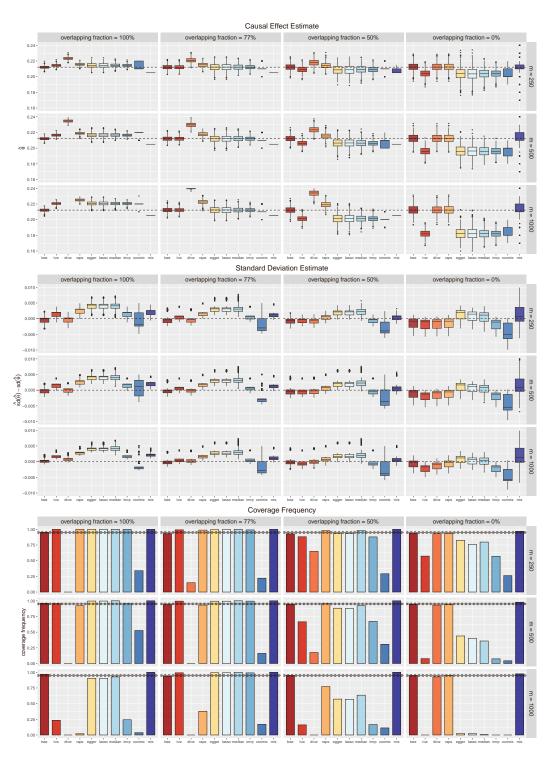


Figure S7: Investigation of UVMR approaches for univariable MR with sample sizes $n_0 = n_1 = 20000$, in terms of overlapping fraction and number of instrumental variants.

2.2 Sample size

In this section, we examine the influence of sample sizes. Here, we fix the number of variants m = 500 and consider $n_0 = n_1 = 20K$; $n_0 = 40K$, $n_1 = 20K$; $n_0 = 20K$, $n_1 = 40K$; and $n_0 = n_1 = 40K$ four cases. Recall that the overlapping fraction is defined as n_{01}/n_0 , and 100%, 77%,50%, and 0% four cases will be studied. Other setting remains the same as the one shown in section 4.1 in the main paper.

Figure S8 displays the results of this examination. Preliminary, it illustrates neither increasing n_0 nor increasing n_1 along is able to make the causal effect estimate more accuracy. Besides, increasing the sample sizes of the exposure GWAS and the outcome GWAS has different impacts: the former decreases the measurement error bias, while the latter reduces the variance of all causal effect estimates. The reason is that the estimation error of $\hat{\alpha}_j$ will not cause estimation bias, in contrast, it is indeed the random error term of the multivariate MR model. Furthermore, only the MR-BEE is able to produce unbiased causal effect estimate and reliable SE estimate in all cases.

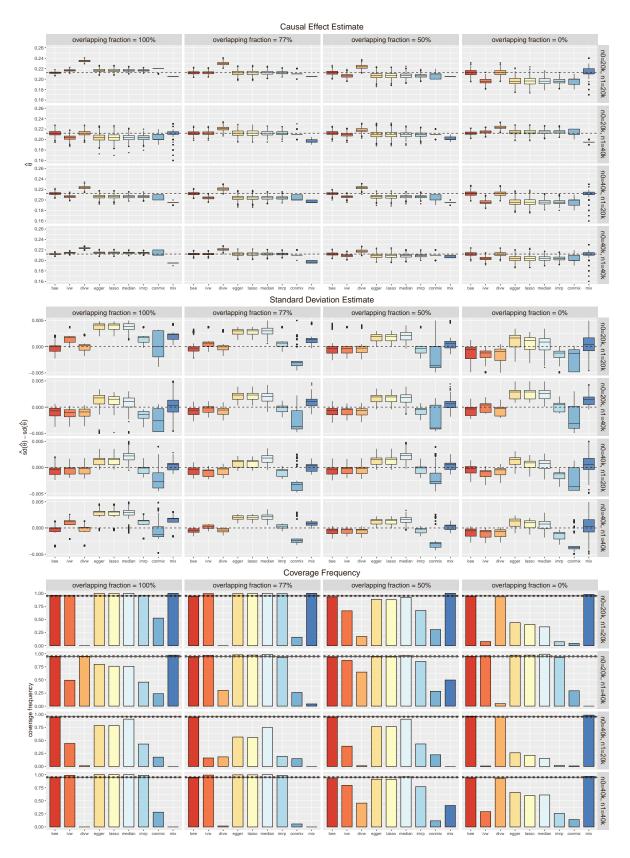


Figure S8: The investigation of univariate MR in terms of sample sizes.

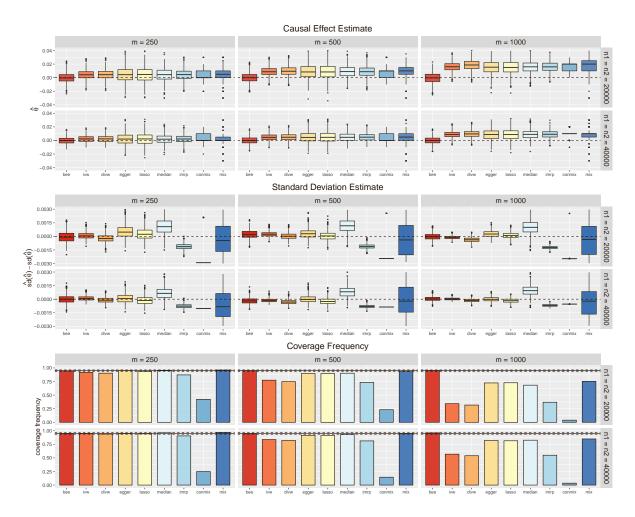


Figure S9: The investigation of univariate MR in terms of type-I error.

2.3 Type-I error

Now we turn to examine whether MRBEE and existing approaches produce inflated type-I error rates when UHP is present. Note that the UHP γ_{u_j} must exist otherwise the IV-heritability of outcome will be zero when $\theta = 0$. We independently generate γ_{u_j} from the same distribution as β_j . The simulation settings are: IV-heritability of exposure = 0.3, IV-heritability of outcome = 0.15, $n_{01}/n_0 = 0.5$, and the number of replications is 1000.

Figure S9 exhibits the results, from which some phenomena are consistently observed; e.g., increasing n_1 and n_0 simultaneously reduces the variances of all causal estimates, while increasing m increases weak instrument bias. Since $\theta = 0$ implies that only the confounder bias $(n_{01}/n_0\sigma_{uv})$ exists, all the weak instrument biases are upward. (The correlation coefficient between u_i and v_i is 0.5.) In addition, all the existing approaches incur inflated type-I errors as m rises. The result suggests that the weak instrument bias is likely to explain some significant causal relationships observed in the literature. However, using MRBEE can produce reliable causal inferences.

2.4 Winner's curse

In this section, we examine the impact winner's curse. We use the exactly same setting as the one in section 4.1. To simulate the winner's curse, we only use the variants with absolute t-statistics (i.e., $|\hat{\beta}/\operatorname{se}(\hat{\beta})|$) larger than 1 or 2.

Figure S10 displays the results of this examination. It shows the winner's curse will not introduce a significant bias into MR-BEE as long as the overlapping fraction is not zero. As for other MR approaches that suffer from biases, we observed that the winner's curse will indeed slightly reduce the biases but inflate the variances. We believe that only selecting the significant variants will reduce the weak instrument bias somehow, because the weak instrument bias is determined by the ratio of signal-by-noise, i.e.,

$$\frac{\psi_{\beta\beta}}{m}$$
 v.s. $\sigma_{W_{\beta}W_{\beta}}$, (10)

where $\psi_{\beta\beta} = \sum_{j=1}^{m} \operatorname{var}(\beta_j)$. If $\psi_{\beta\beta}/m$ is significantly larger than $\sigma_{W_{\beta}W_{\beta}}$, the bias of the IVW estimate should disappear due to the structure of "weak instrument bias x estimation error bias".

In addition, as the overlapping fraction decreases, the MR-BEE also encounters small bias especially when this fraction is zero. The reason for this problem is

$$\frac{1}{m}\sum_{j=1}^{m}\beta_{j}\omega_{\beta_{j}} \to 0, \quad \frac{1}{|\mathcal{W}|}\sum_{j\in\mathcal{W}}\beta_{j}\omega_{\beta_{j}} \not\to 0, \tag{11}$$

where \mathcal{W} is the set of all "winners". In this case, extra selection bias arises but MR-BEE fails to account for it. Fortunately, such a bias is usually modest and it seems only existing when the overlapping fraction is 0. Increasing the sample size to identify more causal variants is one of the practical ways to resolve the winner's curse in this case.

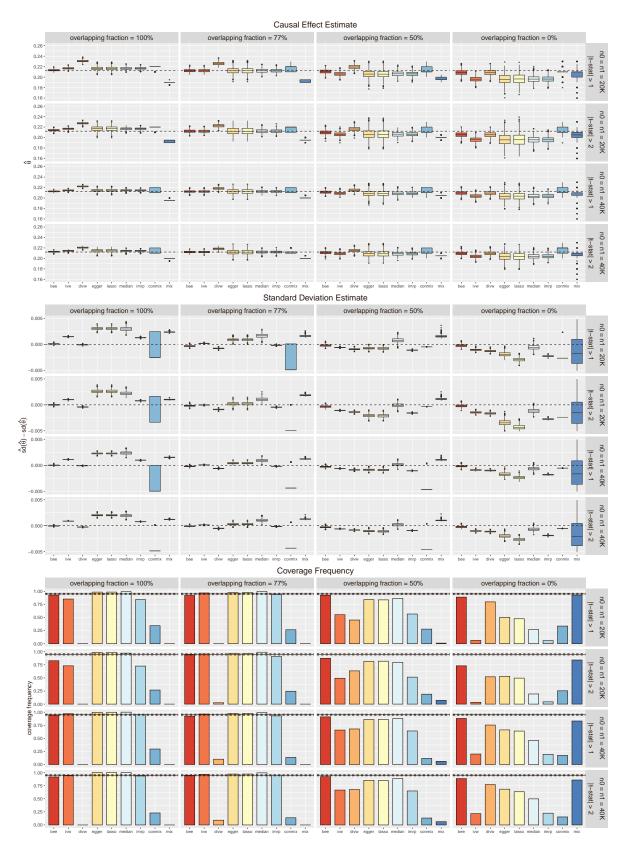


Figure S10: The investigation of univariate MR in terms of winner's curse.

2.5 Outlier test

In this section, we investigate if the MR-BEE with the IMRP pleiotropy test is able to remove the pleiotropy as resembling the outlier detection. The methods for comparison include IMRP, MR-Lasso and MR-ConMix. Detailed setting of outliers can be found in the subsection of outlier detection setting. Here, we consider three criteria: estimation error of causal effect, true negative (TN) and true positive (TP). Here, the TN refers to the proportion of removing all outliers, while the TP refers to the proportion of not removing any valid IV. For IMRP and MR-BEE, we need to specify the threshold κ . For IMRP, we consider two thresholds: $\kappa = 0.05$ and $\kappa = 0.05/s$ where s is the number of real outliers. Regarding MR-BEE with IMRP, we not only consider this two thresholds but also consider two FDR control methods "BH" and "Sidak", where the thresholds in these two methods are 0.05. Details of the FDR control methods can be found in R package FDRestimation.

Figure S11 displays the results of outlier detection. As for estimation error, MR-BEE with threshold $\kappa = 0.05$ suffers from a small selection bias, because this estimator is supposed to remove many valid IVs because of false discovery. As for MR-BEE with other thresholds, they do not suffer from bias. As for other methods, they incur large bias introduced by the weak instrument bias and estimation error bias.

As for TN, the results show all methods are able to remove the true outliers. As for TP, however, only the MR-Lasso is able to keep all valid IVs. MR-BEE and IMRP with the oracle threshold (i.e., $\kappa = 0.05/s$) have large probabilities to keep every valid IV with the increasing of outlier fractions, but this probability is not 1. Other methods cannot keep valid IVs at all, although the causal effect estimates may not have biases. These results show that there exists a theoretical threshold $\kappa \simeq F_{\chi^2}(\log m)$ to distinguish the outliers and the valid IVs, but this threshold may be difficult to specify in practice. In contrast, the MR-Lasso seems to enjoy the oracle property thanks to the consistency of lasso-type regularizer (Fan, 2001).

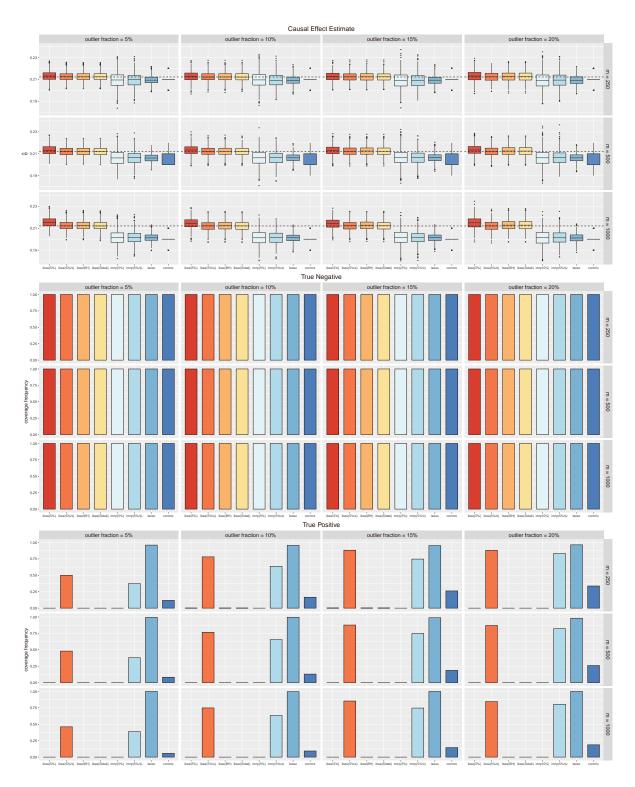


Figure S11: The investigation of univariate MR in terms of outlier detection.

2.6 Verification of Asymptotic Theroy

We next verify if the asymptotic normal distributions in Theorem 1.2 and Theorem 1.2 are correct. For a general estimate $\hat{\theta}$, the asymptotic bias and SE are $\sqrt{s_n}(\hat{\theta} - \theta)$ and $\sqrt{s_n}\operatorname{se}(\hat{\theta})$, respectively, where $\sqrt{s_n}$ is the convergence rate of $\hat{\theta}$. If this estimate is strongly asymptotically unbiased, the asymptotic bias $s_n(\hat{\theta} - \theta)$ should also be 0. Besides, if two estimates have equal asymptotic SEs, they are equally powerful in terms of statistical efficiency. We select MR-BEE, IVW, MR-Median, and MR-Lasso to compare, only consider two overlapping fractions: 100% and 0%, set $n_0 = n_1 = n_{\min}$, and fix the causal effect $\theta = 0.5$. As for m and n_{\min} , we focus on the following four cases:

- (1) $m = 2500, 5000, \dots, 50000$ and $m^{0.9}/n = c_0 = 0.1$ and 0.2; we examine the direct bias: $\hat{\theta} \theta$, asymptotic SE: $\sqrt{n_{\min}^2/m} \operatorname{se}(\hat{\theta})$, and coverage frequency;
- (2) $m = 250, 500, \dots, 5000$ and $m/n = c_0 = 0.1$ and 0.2; we examine the direct bias: $\hat{\theta} \theta$, asymptotic SE: $\sqrt{n_{\min}} \operatorname{se}(\hat{\theta})$, and coverage frequency;
- (3) $m = 250, 500, \dots, 5000$ and $m^2/n = c_0 = 5$ and 10; we examine the asymptotic bias: $\sqrt{n_{\min}}(\hat{\theta} \theta)$, asymptotic SE: $\sqrt{n_{\min}} \operatorname{se}(\hat{\theta})$, and coverage frequency;
- (4) $m = 250, 500, \dots, 5000$ and $m^3/n = c_0 = 5$ and 10; we examine the asymptotic bias: $\sqrt{n_{\min}}(\hat{\theta} \theta)$, asymptotic SE: $\sqrt{n_{\min}} \operatorname{se}(\hat{\theta})$, and coverage frequency.

Note that we directly generate the estimation errors \mathbf{W}_{β} and \boldsymbol{w}_{α} according to Theorem 1 because n_{\min} in cases (3) and (4) can be larger than one million. %The calculations involving individual-data are extremely time-consuming in these cases.

Fig. S12 demonstrates the simulation results. In case (1), $\hat{\theta}_{\text{BEE}}$ is unbiased while the other three estimates suffer from non-removable biases. For the asymptotic SE, $\sqrt{n_{\min}^2/m} \operatorname{se}(\hat{\theta}_{\text{BEE}})$ remains unchanged when n_{\min} and m are sufficiently large (e.g., the bars colored in blue), verifying conclusion (*iii*) in Theorem 1.3. However, the coverage frequency of MR-BEE is a little larger than 0.95, meaning that the SE of $\hat{\theta}_{\text{BEE}}$ is overestimated in this extreme case. This phenomenon is reasonable because Theorem 1.4 points out that the convergence rate of the sandwich formula is $\min(\sqrt{n_{\min}}, n_{\min}/\sqrt{m}, \sqrt{m/\log m})$, which slows down as m increases. In case (2), the direct bias of $\hat{\theta}_{\text{IVW}}$ is unchanged as n_{\min} tends to infinity, confirming conclusion (*iii*) in Theorem 1.2. As for $\hat{\theta}_{\text{BEE}}$, its asymptotic SE is a little larger than $\hat{\theta}_{\text{IVW}}$, verifying item (*ii*) in Theorem 1.3.

In case (3), the asymptotic bias of $\hat{\theta}_{\text{IVW}}$ is constant as n_{\min} goes to infinity, illustrating that $\hat{\theta}_{\text{IVW}}$ is not strongly asymptotically unbiased. As a result, the coverage frequencies of $\hat{\theta}_{\text{IVW}}$ are significantly smaller than 0.95, confirming our claim that any inference made based on $\hat{\theta}_{\text{IVW}}$ is invalid. Besides, the asymptotic SEs of $\hat{\theta}_{\text{BEE}}$ and $\hat{\theta}_{\text{IVW}}$ are essentially the same, indicating that $\hat{\theta}_{\text{BEE}}$ and $\hat{\theta}_{\text{IVW}}$ are equally efficient as long as $m/n_{\min} \rightarrow 0$. In case (4), the asymptotic bias of IVW, MR-Median, and MR-Lasso vanish as n_{\min} increases and their coverage frequencies are around 0.95, which is consistent with conclusion (i) in Theorem 1.2. The equal asymptotic SEs also indicate that $\hat{\theta}_{\text{BEE}}$ and $\hat{\theta}_{\text{IVW}}$ are equally efficient in this scenario. In addition, IVW, MR-Median, and MR-Lasso suffer from the same degree of bias when there is no pleiotropy, while MR-Median not only suffers from a large asymptotic SE but also is likely to overestimate it.

Figure S12: Investigations of MR-BEE and IVW in terms of asymptotic bias and covariance matrix.

2.7 Larger numbers of IVs

Here, we directly generate the GWAS summary data from the normal distribution using the following model:

$$\hat{\boldsymbol{\beta}}_j \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{\Sigma}_{\beta\beta} + \boldsymbol{\Sigma}_{W_{\beta}W_{\beta}}), \quad \hat{\alpha}_j \sim \mathcal{N}(\boldsymbol{\beta}_j^{\top} \boldsymbol{\theta}, \boldsymbol{\theta}^{\top} \boldsymbol{\Sigma}_{W_{\beta}W_{\beta}} \boldsymbol{\theta} + \sigma_{w_{\alpha}w_{\alpha}} + 2\boldsymbol{\theta}^{\top} \boldsymbol{\sigma}_{W_{\beta}w_{\alpha}})$$

This helps us to evaluate the performances of the existing methods in the cases of larger numbers of IVs.

For larger numbers of IVs, the degrees of the weak instruments are higher, MRBEE and MR.CUE are two methods consistently performing well in the no pleiotropy cases. This confirms our conjecture that the key to removing weak instrument bias is accounting for the covariance matrix of estimation errors—however, MR.CUE suffers from bias in the presence of pleiotropy. We believe this is due to the fact that MR.CUE only considers the UHP satisfying the InSide condition, which cannot address the unbalanced UHP. In addition, the univariable version of MRCML is generalized bias because it does not require the user to provide the correlation between exposure and outcome GWAS, which implies it does not account for the correlation between exposure and outcome GWAS estimation errors. In contrast, the multivariable version of MRCML requires us to provide it, and hence it is unbiased.

2.8 Additional pleiotropy simulation

We performed a univariable MR simulation to compare the performance of horizontal pleiotropy identification methods used by MRBEE and MRCML-BIC and their subsequent effects on their causal estimates. The simulation models and R code used to generate the simulated data are presented in Figure 15. In these simulations, we fixed the number of causal exposure SNPs at 100, the exposure heritability at 0.15, the true causal effect at 0.2, and the exposure and outcome GWAS sample sizes at 30k and non-overlapping and varied the mean of UHP from a value of 0 to a value of 0.1. For each UHP mean, we drew UHP effects for each SNP from a normal distribution with variance that was one fourth of the variance of the true SNP-outcome associations. We then estimated causal effects using MRBEE and MRCML-BIC. We then recorded the number of horizontally pleiotropic IVs that were identified by each method and the corresponding causal effect estimates after excluding them. These results indicate that the results of which is are presented below, which suggestreveals that MRBEE correctly unbiasedly estimated the causal effects and identified a stable constant proportion of UHP IVs regardless of the UHP mean, whereas the BIC method of MVMR-cML MRCML-BIC identifieds UHP IVs at different rates as the UHP mean changeds, thus affecting the its subsequent causal effect estimate. In this simulation, the causal estimate was based on observed values of $\hat{\beta}_X$ and $\hat{\beta}_Y$, the observed SNP-exposure and SNP-outcome associations, respectively, and both methods were adjusted for GWAS estimation error.

3 Real Data Analysis

- 3.1 Myopia data: heritability, genetic correlation matrix, and estimation error correlation matrix
- 3.2 SCZ data: heritability, genetic correlation matrix, and estimation error correlation matrix
- 3.3 CAD data: heritability, genetic correlation matrix, and estimation error correlation matrix

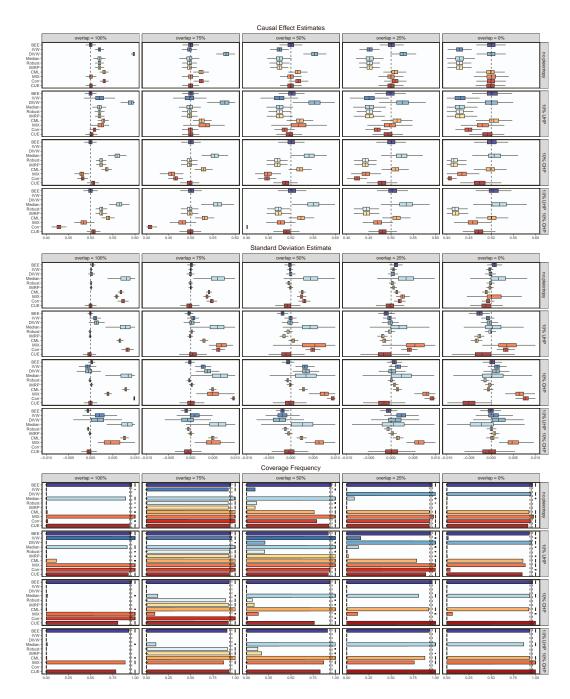


Figure S13: Investigation of UVMR approaches for UVMR model with sample sizes $n_0 = \cdots = n_6 = 20000$ and number of IVs m = 1000.

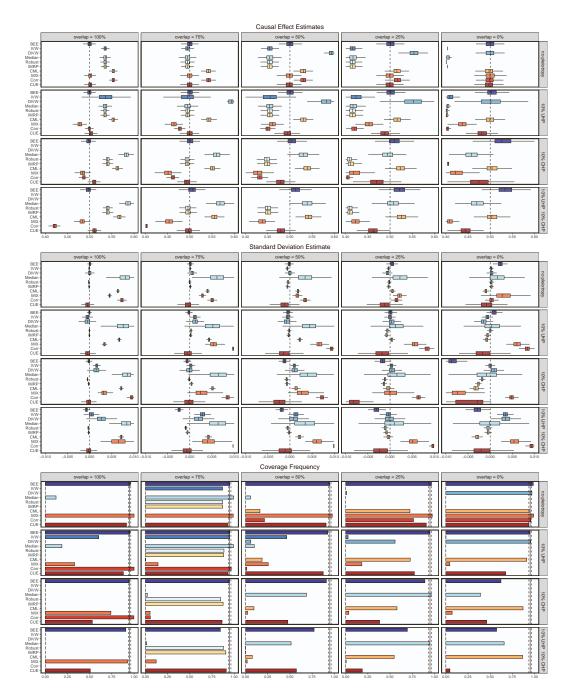
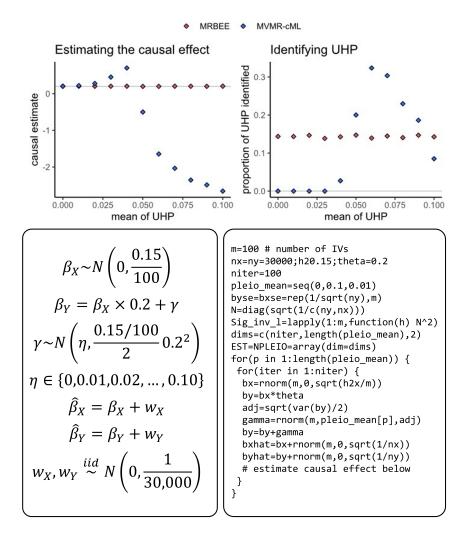
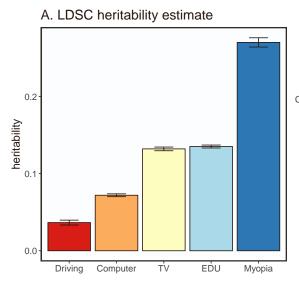
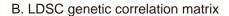
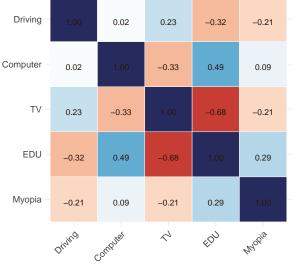
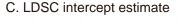


Figure S14: Investigation of UVMR approaches for UVMR model with sample sizes $n_0 = \cdots = n_6 = 20000$ and number of IVs m = 2000.


Figure S15: These are the results of simulations described above comparing the performance of MRBEE and MRCML-BIC in identifying horizontal pleitropy and estimating the causal effect as the UHP mean changes.


References

- Lin, Z., Xue, H. and Pan, W. (2023). Robust multivariable Mendelian randomization based on constrained maximum likelihood. <u>The American Journal of Human Genetics</u>, **110**(4), pp.592-605.
- Fan. J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, **96**(456), pp.1348-1360.

D. GWAS insignificant effect estimate

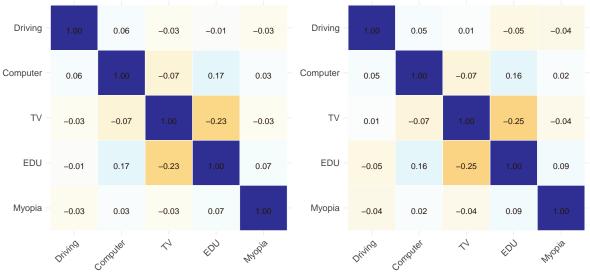
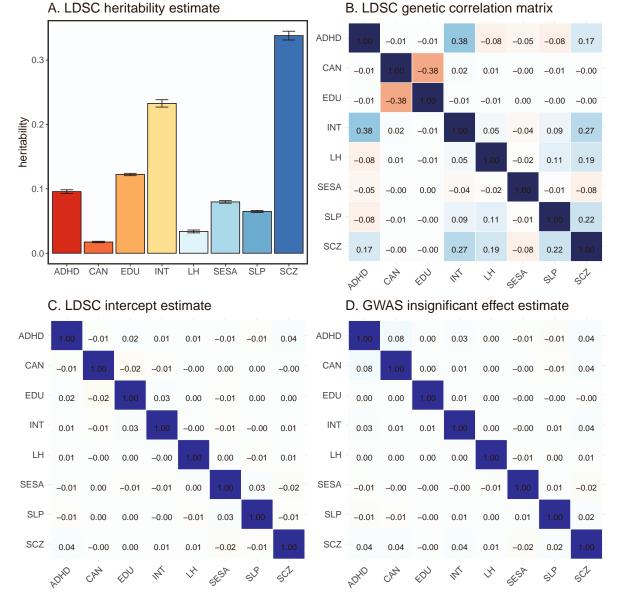
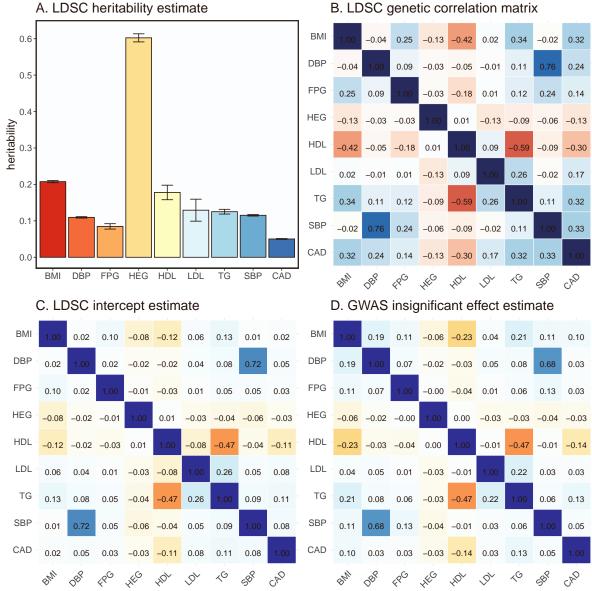




Figure S16: Myopia data. A. Heritability estimated by LDSC and the corresponding confidence intervals (radius is double SE). B. Genetic correlation matrix estimated by LDSC. C. Correlation matrix of estimation error constructed using the intercept from LDSC estimation. D. Correlation matrix of estimation error constructed using GWAS insignificant statistics.

B. LDSC genetic correlation matrix

Figure S17: SCZ data. A. Heritability estimated by LDSC and the corresponding confidence intervals (radius is double SE). B. Genetic correlation matrix estimated by LDSC. C. Correlation matrix of estimation error constructed using the intercept from LDSC estimation. D. Correlation matrix of estimation error constructed using GWAS insignificant statistics.

B. LDSC genetic correlation matrix

Figure S18: CAD data. A. Heritability estimated by LDSC and the corresponding confidence intervals (radius is double SE). B. Genetic correlation matrix estimated by LDSC. C. Correlation matrix of estimation error constructed using the intercept from LDSC estimation. D. Correlation matrix of estimation error constructed using GWAS insignificant statistics.

Supplementary material 2 of MRBEE: asymptotic results

Noah Lorincz-Comi, Yihe Yang, Gen Li, Xiaofeng Zhu

Contents

1	Asy	mptotic Results	1
	1.1	Regular conditions	1
	1.2	Asymptotic Results for Multivariable IVW	3
	1.3	Asymptotic Results for MRBEE	5
	1.4	Preliminary lemmas	7
	1.5	Specific Lemmas	10
	1.6	Proofs of Theorems for IVW	12
	1.7	Proofs of Theorems for MRBEE	17

1 Asymptotic Results

1.1 Regular conditions

we investigate the asymptotic behavior of the multivariable IVW estimate as the number of IVs m and the minimum sample size n_{\min} go to infinity. To facilitate the theoretical derivation, we specify three definitions and four regularity conditions.

Definition 1.1 (Sub-Gaussian variable). A random variable x is sub-Gaussian distributed with sub-Gaussian parameter $\tau_x > 0$ if for all t > 0, $\Pr(|x - E(x)| \ge t) \le 2e^{-t^2/\tau_x^2}$.

Definition 1.2 (Well-conditioned covariance matrix). A covariance matrix Σ is well-conditioned if there is a positive constant d_0 such that $0 < d_0^{-1} \leq \lambda_{min}(\Sigma) \leq \lambda_{max}(\Sigma) \leq d_0 < \infty$.

Definition 1.3 (Strongly asymptotically unbiased estimate). Let $\hat{\theta}$ be a consistent estimate of θ with an asymptotic normal distribution $\sqrt{s_n(\hat{\theta}-\theta)} \xrightarrow{D} \mathcal{N}(\mu_{\theta}, \Sigma_{\theta})$, where μ_{θ} is a vector with a bounded ℓ_2 -norm, Σ_{θ} is a well-conditioned covariance matrix, and s_n is a sequence of n. Then $\hat{\theta}$ is called a strongly asymptotically unbiased estimate of θ if $\mu_{\theta} = 0$.

Sub-Gaussianity and well-conditioned covariance matrix are two of the basic concepts in modern statistics (Vershynin, 2018). In addition, we define the strongly asymptotic unbiasedness to distinguish the consistent estimate whose squared bias vanishes with an equal and a smaller rate than its variance, respectively. If an estimate is consistent but its squared bias and variance vanish at the same rate, the classic confidence interval cannot cover the true parameter with a probability of 0.95, thus leading to invalid statistical inference (Jankova, 2018).

Condition 1.1 (Regularity conditions for multivariable MR).

- (C1) For $\mathbf{g}_i = (g_{i1}, \ldots, g_{im})^{\top}$, each entry g_{ij} is a bounded sub-Gaussian with $\mathbf{E}(g_{ij})=0$, $\mathbf{var}(g_{ij})=1$, and sub-Gaussian parameter $\tau_g \in (0, \infty)$. For all $(i, j) \neq (t, s)$, g_{ij} is independent of g_{ts} .
- (C2) For $\mathbf{u}_i = (u_{i1}, \dots, u_{ip})^{\top}$, each entry u_{ij} is a sub-Gaussian with $\mathbf{E}(u_{ij}) = 0$, $\mathbf{var}(u_{is}) \in (0, \infty)$, and sub-Gaussian parameter $\tau_u \in (0, \infty)$; v_i is a sub-Gaussian with $\mathbf{E}(v_i) = 0$, $\mathbf{var}(v_i) \in (0, \infty)$, and sub-Gaussian parameter $\tau_v \in (0, \infty)$. Besides, $(\mathbf{u}_i^{\top}, v_i)^{\top}$ is independent of $(\mathbf{u}_t^{\top}, v_t)^{\top}$ for all $i \neq t$. Furthermore, $\mathbf{\Sigma}_{u \times v}$ is a well-conditioned covariance matrix of $(\mathbf{u}_i^{\top}, v_i)^{\top}$.
- (C3) For $\beta_j = (\beta_{j1}, \dots, \beta_{jp})^{\top}$, $\sqrt{m\beta_{js}}$ is sub-Gaussian with $E(\sqrt{m\beta_{js}}) = 0$, $var(\sqrt{m\beta_{js}}) \in (0, \infty)$, and sub-Gaussian parameter $\tau_{\beta} \in (0, \infty)$. For all $j \neq t$, β_j is independent of β_t and $\Psi_{\beta\beta}$ is a well-conditioned covariance matrix of $\sqrt{m\beta_j}$.
- (C4) The genetic variant g_{ij} , the genetic effect β_j , the noise terms u_i and v_i , are three mutually independent groups.

Conditions (C1)-(C4) restrict that all variables involved in this paper are sub-Gaussian distributed. In practice, g_{ij} is standardized from a binomial variable with status 0, 1, and 2. Hence, it is supposedly a bounded sub-Gaussian variable as long as its MAF is not rare. Besides, we assume $\sqrt{m\beta_j}$ to be sub-Gaussian with a well-conditioned covariance matrix $\Psi_{\beta\beta}$, because the cumulative covariance explained by the m IVs $\Psi_{\beta\beta}$ should be fixed while the covariance explained by each IV $\Sigma_{\beta\beta} \to 0$ as $m \to \infty$. This is because we adopt the infinitesimal random effect model in which $\cos(\beta_j) = h_m^2/m$ (Bulik-Sullivan et al., 2015; Fisher, 1919), where h_m^2 is the additive SNP heritability explained by the m IVs. In MR analysis, the number of IVs can increase as the sample size increases because of increasing statistical power. Our theoretical work assumes that the heritability of IVs always keeps a constant. This is a reasonable assumption because the effect sizes because smaller and smaller under the infinitesimal model as the number of causal SNPs grows. In additional, the sub-Gaussian distribution is more general than the normal distribution, allowing for the possibility of partial elements in β_j to be a product of a continuous variable and a binary variable. This flexibility aligns with the scenario in multivariable MR analysis where the IVs from multiple exposures are combined, inevitably leading to the inclusion of numerous weak or null IVs for some exposures.

1.2 Asymptotic Results for Multivariable IVW

Theorem 1.1. Denote $w_{\alpha_j} = \hat{\alpha}_j - \alpha_j$ and $\omega_{js} = \hat{\beta}_{js} - \beta_{js}$, $s = 1, \ldots, p$. If conditions (C1)-(C4) are satisfied, then for all j,

$$\begin{pmatrix} \sqrt{n_0 w_{\alpha_j}} \\ \sqrt{n_1 w_{\beta_{1_j}}} \\ \vdots \\ \sqrt{n_p w_{\beta_{1_p}}} \end{pmatrix} \xrightarrow{D} \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_{yy} & \frac{n_{01}}{\sqrt{(n_0 n_1)}} \sigma_{yx_1} & \cdots & \frac{n_{01}}{\sqrt{(n_0 n_p)}} \sigma_{yx_p} \\ \frac{n_{01}}{\sqrt{(n_0 n_1)}} \sigma_{yx_1} & \sigma_{x_1 x_1} & \cdots & \frac{n_{01}}{\sqrt{(n_1 n_p)}} \sigma_{x_1 x_p} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{n_{0p}}{\sqrt{(n_0 n_p)}} \sigma_{yx_p} & \frac{n_{1p}}{\sqrt{(n_1 n_p)}} \sigma_{x_1 x_p} & \cdots & \sigma_{x_p x_p} \end{pmatrix} \right),$$

if n_0, \ldots, n_p and $m \to \infty$.

m

Theorem 1.1 demonstrates the asymptotic normal distribution of the estimation errors, from which we are able to obtain

$$\boldsymbol{\Sigma}_{W_{\beta}W_{\beta}} = \boldsymbol{\Delta}_{xx} \odot \boldsymbol{\Sigma}_{xx}, \quad \boldsymbol{\sigma}_{W_{\beta}w_{\alpha}} = \boldsymbol{\delta}_{xy} \odot \boldsymbol{\sigma}_{xy}, \quad \boldsymbol{\sigma}_{w_{\alpha}w_{\alpha}} = \boldsymbol{\sigma}_{yy}/n_{0}, \tag{1}$$

where the (j, s)th element of Δ_{xx} is $n_{js}/(n_j n_s)$, the *j*th element of δ_{xy} is $n_{j0}/(n_0 n_j)$, and the operator \odot is the Hadamard product of two matrices. Our work is the first to rigorously prove this theorem under regularity conditions (C1)-(C4) and highlight the role of sample overlap.

Based on this theorem, the expectations of $S_{IVW}(\theta)$ and H_{IVW} are given by

$$\mathsf{E}(\boldsymbol{S}_{\mathsf{IVW}}(\boldsymbol{\theta})) = (\boldsymbol{\Delta}_{xx} \odot \boldsymbol{\Sigma}_{xx})\boldsymbol{\theta} - \boldsymbol{\delta}_{xy} \odot \boldsymbol{\sigma}_{xy}, \quad \mathsf{E}(\mathbf{H}_{\mathsf{IVW}}) = \boldsymbol{\Sigma}_{\beta\beta} + \boldsymbol{\Delta}_{xx} \odot \boldsymbol{\Sigma}_{xx}.$$
(2)

By expressing $\sigma_{xy} = \Sigma_{xx}\theta + \sigma_{uv}$, an alternative expectation of $S_{IW}(\theta)$ is obtained:

$$\underbrace{\mathsf{E}(S_{\mathsf{IVW}}(\boldsymbol{\theta}))}_{\text{neasurement error bias}} = \underbrace{\{(\boldsymbol{\Delta}_{xx} - \boldsymbol{\delta}_{xy} \mathbf{1}^\top) \odot \boldsymbol{\Sigma}_{xx}\}\boldsymbol{\theta}}_{\text{null bias}} - \underbrace{\boldsymbol{\delta}_{xy} \odot \boldsymbol{\sigma}_{uv}}_{\text{confounder bias}}.$$
(3)

From this expectation, it is clear that there are two sources of measurement error bias: $\{(\Delta_{xx} - \delta_{xy}\mathbf{1}^{\top}) \odot \Sigma_{xx}\}\boldsymbol{\theta}$ comes from the measurement error, while $\{\delta_{xy} \odot \boldsymbol{\sigma}_{uv}\}$ is caused by the confounder. Here, we call $\{(\Delta_{xx} - \delta_{xy}\mathbf{1}^{\top}) \odot \Sigma_{xx}\}\boldsymbol{\theta}$ null bias because it always shrinks the coefficient estimate toward zero. In contrast, we term $\{\delta_{xy} \odot \boldsymbol{\sigma}_{uv}\}$ confounder bias because $\boldsymbol{\sigma}_{uv} \neq \mathbf{0}$ implies that there are underlying confounders simultaneously affecting both \boldsymbol{x}_i and y_i . Moreover, the overlapping fractions δ_{xy} linearly trade off these two sources of biases. Generally, null bias is dominant when the elements of δ_{xy} are small, while confounder bias dominates when the elements of δ_{xy} are large. And there may exist a special sample overlap such that $\delta_{xy} \odot \boldsymbol{\sigma}_{uv} = \{(\Delta_{xx} - \delta_{xy}\mathbf{1}^{\top}) \odot \Sigma_{xx}\}\boldsymbol{\theta}$. In univariable MR, this special fraction is $n_{01}/n_0 = \sigma_{xx}\boldsymbol{\theta}/\sigma_{xy}$, which guarantees that $\mathbf{E}(S_{\mathbf{IVW}}(\boldsymbol{\theta})) = 0$ and $\mathbf{E}(\hat{\theta}_{\mathbf{IVW}}) = \boldsymbol{\theta}$. This theoretical result explains why in the empirical studies, $\hat{\theta}_{\mathbf{IVW}}$ has a negative bias when n_{01}/n_0 is small, has a positive bias when n_{01}/n_0 is large, and is unbiased at this specific point.

Theorem 1.2. Suppose conditions (C1)-(C4) hold and $m, n_{\min} \to \infty$. Then

(i) if $m/\sqrt{n_{\min}} \to 0$, $\sqrt{n_{\min}}(\hat{\theta}_{IVW} - \theta) \xrightarrow{D} \mathcal{N}(\mathbf{0}, \psi_{\theta} \Psi_{\beta\beta}^{-1})$; (ii) if $m/\sqrt{n_{\min}} \to c_0$, $\sqrt{n_{\min}}(\hat{\theta}_{IVW} - \theta) \xrightarrow{D} \mathcal{N}(-c_0 \Psi_{\beta\beta}^{-1}(\Psi_{W_{\beta}W_{\beta}}\theta - \psi_{W_{\beta}w_{\alpha}}), \psi_{\theta} \Psi_{\beta\beta}^{-1})$; (iii) if $m/n_{\min} \to 0$, $||\hat{\theta}_{IVW} - \theta||_2 = O_P(m/n_{\min})$; (iv) if $m/n_{\min} \to c_0 \in (0, \infty)$, $\hat{\theta}_{IVW} - \theta \xrightarrow{P} -c_0(\Psi_{\beta\beta} + c_0 \Psi_{W_{\beta}W_{\beta}})^{-1}(\Psi_{W_{\beta}W_{\beta}}\theta - \psi_{W_{\beta}w_{\alpha}})$; (v) if $m/n_{\min} \to \infty$, $\hat{\theta}_{IVW} \xrightarrow{P} \Psi_{W_{\beta}W_{\beta}}^{+}\psi_{W_{\beta}w_{\alpha}}$; where

$$\boldsymbol{\Psi}_{W_{\beta} \times w_{\alpha}} = \begin{pmatrix} \boldsymbol{\Psi}_{W_{\beta}W_{\beta}} & \boldsymbol{\psi}_{W_{\beta}w_{\alpha}} \\ \boldsymbol{\psi}_{W_{\beta}w_{\alpha}}^{\top} & \boldsymbol{\psi}_{w_{\alpha}w_{\alpha}} \end{pmatrix} = \lim_{n_{\min} \to \infty} \begin{pmatrix} n_{\min}\boldsymbol{\Sigma}_{W_{\beta}W_{\beta}} & n_{\min}\boldsymbol{\sigma}_{W_{\beta}w_{\alpha}} \\ n_{\min}\boldsymbol{\sigma}_{W_{\beta}w_{\alpha}}^{\top} & n_{\min}\boldsymbol{\sigma}_{w_{\alpha}w_{\alpha}} \end{pmatrix},$$

and $\psi_{\theta} = \psi_{w_{\alpha}w_{\alpha}} + \boldsymbol{\theta}^{\top} \boldsymbol{\Psi}_{W_{\beta}W_{\beta}} \boldsymbol{\theta} - 2\boldsymbol{\theta}^{\top} \boldsymbol{\psi}_{W_{\beta}w_{\alpha}}.$

Theorem 1.2 is one of two main theorems in this paper and points out five scenarios. First, if m goes to infinity with a lower rate than $\sqrt{n_{\min}}$, then $\hat{\theta}_{IVW}$ is strongly asymptotically unbiased. In other words, $\hat{\theta}_{IVW}$ is able to reliably infer causality only when the sample size of GWAS data is quadratically larger than the number of IVs. On the other hand, the asymptotic covariance matrix of $\hat{\theta}_{IVW}$ is the inverse of the cumulative covariance matrix $\Psi_{\beta\beta} = \sum_{j=1}^{m} \operatorname{cov}(\beta_j)$, therefore, it is optimal to include as many associated variants as possible in order to have $\Psi_{\beta\beta}$ large enough. In contrast, using a few top significant variants to perform MR analysis is not recommended.

Second, if *m* tends to infinity with the same rate as $\sqrt{n_{\min}}$, $\sqrt{n_{\min}}(\hat{\theta}_{IVW} - \theta)$ converges to an asymptotic normal distribution with a non-zero asymptotic bias $\{c_0\Psi_{\beta\beta}^{-1}(\psi_{W_{\beta}w_{\alpha}} - \Psi_{W_{\beta}W_{\beta}}\theta)\}$. In this asymptotic bias, $\{c_0(\psi_{W_{\beta}w_{\alpha}} - \Psi_{W_{\beta}W_{\beta}}\theta)\}$ is caused by $S_{IVW}(\theta)$ and $\Psi_{\beta\beta}^{-1}$ is caused by H_{IVW}^{-1} . Since the asymptotic bias and asymptotic covariance matrix are of the same order in this scenario, the inference made is invalid although the bias of $\hat{\theta}_{IVW}$ is infinitesimal. When $m/n_{\min} \to 0$, $\hat{\theta}_{IVW}$ still converges to θ with a rate $O(m/n_{\min})$, but it no longer has an asymptotic normal distribution. Scenario (iv) is more serious than (iii) because the bias of $\hat{\theta}_{IVW}$ will not vanish even when $\sqrt{n_{\min}}$ goes to infinity. In the fifth scenario, $\hat{\theta}_{IVW}$ converges to a term irrelevant to θ .

1.3 Asymptotic Results for MRBEE

Theorem 1.3. Suppose conditions (C1)-(C4) hold and $m, n_{\min} \to \infty$. Then

(i) if
$$m/n_{\min} \to 0$$
, $\sqrt{n_{\min}}(\hat{\theta}_{BEE} - \theta) \xrightarrow{D} \mathcal{N}(\mathbf{0}, \psi_{\theta} \Psi_{\beta\beta}^{-1});$
(ii) if $m/n_{\min} \to c_0 \in (0, \infty)$, $\sqrt{n_{\min}}(\hat{\theta}_{BEE} - \theta) \xrightarrow{D} \mathcal{N}(\mathbf{0}, \psi_{\theta} \Psi_{\beta\beta}^{-1} + c_0 \Psi_{\beta\beta}^{-1} \Psi_{BC} \Psi_{\beta\beta}^{-1});$

(iii) if $m/n_{\min} \to \infty$ and $m/n_{\min}^2 \to 0$, $\sqrt{(n_{\min}^2/m)}(\hat{\theta}_{BEE} - \theta) \xrightarrow{D} \mathcal{N}(\mathbf{0}, \Psi_{\beta\beta}^{-1}\Psi_{BC}\Psi_{\beta\beta}^{-1})$;

where ψ_{θ} is defined in Theorem 1.2 and Ψ_{BC} is a semi-positive symmetric matrix whose expression is shown in equation (64) in supplementary materials.

Theorem 1.3 indicates three scenarios. First, if $m/n \to 0, \sqrt{n_{\min}(\hat{\theta}_{\text{BEE}} - \theta)}$ converges to a normal distribution with a zero mean and the covariance matrix being exactly the same as $\hat{\theta}_{\text{IVW}}$. In other words, $\hat{\theta}_{\text{BEE}}$ is not only strongly asymptotically unbiased but also loses no efficiency in comparison to $\hat{\theta}_{\text{IVW}}$. Second, if $m/n_{\min} \to c_0 \in (0, \infty)$, there is an additional covariance matrix $c_0 \Psi_{\beta\beta}^{-1} \Psi_{\text{BC}} \Psi_{\beta\beta}^{-1}$ in the asymptotic normal distribution, where Ψ_{BC} is introduced by the bias-correction terms:

$$\Psi_{\rm BC} = \lim_{n_{\rm min} \to \infty} \operatorname{var} \left[\frac{n_{\rm min}}{\sqrt{m}} \left((\mathbf{W}_{\beta}^{\top} \mathbf{W}_{\beta} - m \boldsymbol{\Sigma}_{W_{\beta} W_{\beta}}) \boldsymbol{\theta} - (\mathbf{W}_{\beta}^{\top} \boldsymbol{w}_{\alpha} - m \boldsymbol{\sigma}_{W_{\beta} w_{\alpha}}) \right) \right].$$
(4)

In this scenario, $\hat{\theta}_{\text{BEE}}$ is again strongly asymptotically unbiased with a convergence rate $\sqrt{n_{\min}}$, while $\hat{\theta}_{\text{IVW}}$ incurs a bias not vanishing asymptotically. In the third scenario, $\hat{\theta}_{\text{BEE}}$ is still strongly asymptotically unbiased with a convergence rate $\sqrt{(n_{\min}^2/m)}$, and the asymptotic distribution is dominated by the bias correction terms. Note that $\hat{\theta}_{\text{IVW}}$ is not consistent unless $m/n_{\min} \to 0$ and the inference made by $\hat{\theta}_{\text{IVW}}$ is unreliable unless $m/\sqrt{n_{\min}} \to 0$. In contrast, $\hat{\theta}_{\text{BEE}}$ is strongly asymptotically unbiased as long as $m/n_{\min}^2 \to 0$. Thus, MRBEE is superior to multivariable IVW in terms of both unbiasedness and asymptotic validity in all possible scenarios.

Theorem 1.4. Suppose conditions (C1)-(C4) hold. Let $g_{ij}^{\{s\}}$ satisfy the condition (C1), $E(x_i^{[s]}|g_{ij}^{\{s\}}) = 0$ for all $1 \le s \le p$, and $E(y_i^{[0]}|g_{ij}^{\{0\}}) = 0$. Then

$$\|\boldsymbol{\Sigma}_{W_{\beta}\times w_{\alpha}}^{-\frac{1}{2}} \widehat{\boldsymbol{\Sigma}}_{W_{\beta}\times w_{\alpha}} \boldsymbol{\Sigma}_{W_{\beta}\times w_{\alpha}}^{-\frac{1}{2}} - \mathbf{I}_{p+1}\|_{2} = O_{P}\left(\frac{1}{\sqrt{M}}\right),$$

if n_{\min} and $M \to \infty$.

Theorem 1.4 shows that $\widehat{\Sigma}_{W_{\beta} \times w_{\alpha}}$ has a $O(\sqrt{M})$ convergence rate after adjusting the scale of $\Sigma_{W_{\beta} \times w_{\alpha}}$. As there may be more than 1 million independent variants in the whole genome, $\widehat{\Sigma}_{W_{\beta} \times w_{\alpha}}$ has high precision. Besides, $n_0, n_1, ..., n_p \to \infty$ are required such that $\sqrt{n_0} \widehat{\alpha}_j^*$ and $\sqrt{n_s} \widehat{\beta}_{js}^*$ are asymptotically normally distributed.

Theorem 1.5. Under the conditions of Theorem 1.4,

$$||\boldsymbol{\Sigma}_{\textit{BEE}}^{-\frac{1}{2}}(\boldsymbol{\theta})\widehat{\boldsymbol{\Sigma}}_{\textit{BEE}}(\hat{\boldsymbol{\theta}}_{\textit{BEE}})\boldsymbol{\Sigma}_{\textit{BEE}}^{-\frac{1}{2}}(\boldsymbol{\theta}) - \mathbf{I}_{p}||_{2} = O_{P}\left(\max\left\{\frac{1}{\sqrt{n_{\min}}}, \frac{\sqrt{m}}{n_{\min}}, \sqrt{\frac{\log m}{m}}\right\}\right)$$

if $n_{\min}, m \text{ and } M \to \infty \text{ and } m/n_{\min}^2 \to 0.$

Theorem 1.5 shows that $\widehat{\Sigma}_{\text{BEE}}(\theta)$ has a $\min(\sqrt{n_{\min}}, \sqrt{n_{\min}^2/m}), \sqrt{m/\log m})$ convergence rate when $m/n_{\min}^2 \to 0$. The first two convergence rates are brought by $||\widehat{\mathbf{F}}_{\text{BEE}} - \mathbf{F}_{\text{BEE}}||_2$, while the third convergence rate is yielded by $||\widehat{\mathbf{V}}_{\text{BEE}}(\widehat{\theta}_{\text{BEE}}) - \mathbf{V}_{\text{BEE}}(\theta)||_2$. Note that the SE estimation should be of the same importance as the causal effect estimation. Although the inference is made based on an unbiased estimate, it could still be invalid if the SE estimate is not reliable. As the dependability of the sandwich formula has been extensively investigated empirically, it is a reliable technique to obtain the SE estimate for MRBEE.

Theorem 1.6. Assume that $|\mathcal{O}|$ is fixed and bounded and $\gamma_1^*, \ldots, \gamma_m^*$ are a series of non-random numbers. Then under the conditions of Theorem 1.5, there exists a threshold $\kappa = F_{\chi_1^2}(C_0 \log m)$ such that $\Pr(\mathcal{O} = \hat{\mathcal{O}}) \to 1$, where $\hat{\mathcal{O}} = \{j : F_{\chi_1^2}(t_{\gamma_j}) > \kappa\}$ and C_0 is a sufficiently large constant.

Theorem 1.6 indicates that there is a theoretical threshold $\kappa = F_{\chi_1^2}(C_0 \log m)$ to consistently identify all horizontal pleiotropy. This threshold increases with a rate $O(\log m)$ to reduce the false discovery rate (FDR) and its concrete value can be chosen by a FDR control method (Benjamini, 1995). In practice, MRBEE iteratively applies the hypothesis test to remove the outliers and uses the remaining IVs to estimate θ . The stable estimate is regarded as $\hat{\theta}_{\text{BEE}}$.

1.4 Preliminary lemmas

In this subsection, we specify some lemmas that can facilitate the proofs, most of which can be found in the existing papers. We first discuss the equivalent characterizations of sub-Gaussian and sub-exponential variables.

Lemma 1.1 (Equivalent characterizations of sub-Guassian variables). Given any random variable X, the following properties are equivalent:

(I) there is a constant $K_1 \ge 0$ such that

 $\Pr(|X| \ge t) \le 2\exp(-t^2/K_1^2), \quad for \ all \ t \ge 0,$

(II) the moments of X satisfy

 $||X||_{L_p} = (E(|X|^p))^{\frac{1}{p}} \le K_2 \sqrt{p}, \text{ for all } p \ge 1,$

(III) the moment generating function (MGF) of X^2 satisfies:

 $E\{\exp(\lambda^2 X^2)\} \le \exp(K_3^2 \lambda^2), \text{ for all } \lambda \text{ staisfying } |\lambda| \le K_3^{-1},$

(IV) the MGF of X^2 is bounded at some point, namely

$$E\{\exp(X^2/K_4^2)\} \le 2$$

(V) if E(X) = 0, the MGF of X satisfies

$$E\{\exp(\lambda X)\} \le \exp(K_5^2\lambda^2), \text{ for all } \lambda \in \mathbb{R},$$

where K_1, \ldots, K_5 are certain strictly positive constants.

This lemma summarizes some well-known properties of sub-Guassian and can be found in Vershynin (2018, Proposition 2.5.2).

Lemma 1.2 (Equivalent characterizations of sub-exponential variables). Given any random variable X, the following properties are equivalent:

(I) there is a constant $K_1 \ge 0$ such that

$$\Pr(|X| \ge t) \le 2\exp(-t/K_1), \quad \text{for all } t \ge 0,$$

(II) the moments of X satisfy

$$||X||_{L_p} = (E(|X|^p))^{\frac{1}{p}} \le K_2 p, \text{ for all } p \ge 1,$$

(III) the moment generating function (MGF) of |X| satisfies:

 $E\{\exp(\lambda|X|)\} \le \exp(K_3\lambda), \text{ for all } \lambda \text{ staisfying } 0 \le \lambda \le K_3^{-1},$

(IV) the MGF of |X| is bounded at some point, namely

$$E\{\exp(|X|/K_4)\} \le 2,$$

(V) if E(X) = 0, the MGF of X satisfies

$$E\{\exp(\lambda X)\} \le \exp(K_5^2\lambda^2), \text{ for all } \lambda \le K_5^{-1},$$

where K_1, \ldots, K_5 are certain strictly positive constants.

This lemma summarizes some well-known properties of sub-exponential and can be found in Vershynin (2018, Proposition 2.7.1).

Lemma 1.3 (Product of sub-Gaussian variable is sub-exponential). Suppose that X, Z are two sub-Gaussian variable, then Y = XZ is a sub-exponential variable. Besides, if X is a bounded sub-Gaussian variable, then then Y = XZ is a sub-Gaussian variable.

The first claim of this lemma is provided by Vershynin (2018, Proposition 2.7.7). The second claim of this lemma is a direct inference of Fan et al. (2011, Lemma A.2).

Lemma 1.4 (ℓ_2 -norm of matrices with sub-Gaussian entries). Let X_1, \ldots, X_n be $n \ (p \times 1)$ independent identically distributed random vector with entries x_{i1}, \ldots, x_{ip} are sub-Gaussian with zero-mean. Besides, define the covariance matrix of X_i as

$$\boldsymbol{\Sigma} = E(\boldsymbol{X}_i \boldsymbol{X}_i^{\top})$$

and the related sample covariance matrix

$$\hat{\boldsymbol{\Sigma}} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}.$$

Then for every positive integer n,

$$E(||\hat{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma}||_2) \le C\left(\frac{p}{n} + \sqrt{\frac{p}{n}}\right)||\boldsymbol{\Sigma}||_2,$$

where C is certain positive constant.

This lemma is provided by Vershynin (2018, Theorem 4.7.1). It shows the convergence rate of sample covariance matrix is $\sqrt{(n/m)}$.

Lemma 1.5 (ℓ_2 -norm of matrices with sub-exponential entries). Let X_1, \ldots, X_n be $n \ (p \times 1)$ independent identically distributed random vector with entries x_{i1}, \ldots, x_{ip} are sub-exponential with zero-mean. Besides, define the covariance matrix of X_i as

$$\boldsymbol{\Sigma} = E(\boldsymbol{X}_i \boldsymbol{X}_i^{\top})$$

and the related sample covariance matrix

$$\hat{\boldsymbol{\Sigma}} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}$$

Then for ever $t \ge 0$, the following inequality holds with probability at least $1 - p \exp(-ct^2)$:

$$||\hat{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma}||_2 \leq \max(||\boldsymbol{\Sigma}||_2\delta, \delta^2),$$

where c is certain positive constant and $\delta = t \sqrt{p/n}$.

This lemma is the direct inference of Vershynin (2010, Theorem 5.44). Besides, by letting $t = \sqrt{p \log n}$ we further obtain

$$\mathbf{E}(\|\|\hat{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma}\|\|_{2}) = O\left(\sqrt{\frac{p\log n}{n}}\right)\|\|\boldsymbol{\Sigma}\|\|_{2},$$

if $\hat{\Sigma}$ is the sample covariance matrix of sub-exponential vector. Note that in our method, the dimension p is fixed and hence we cannot chose $t = \sqrt{p \log p}$ such that the estimation bound becomes $\sqrt{(p \log p)/n} ||\Sigma||_2$.

Lemma 1.6 (Asymptotic normal distribution of Wishart matrix). Suppose X_1, X_2, \ldots, X_n are n IID relaxation of the p-dimensional variable $X \sim \mathcal{N}(0, \Sigma)$ with a well-conditioned covariance matrix Σ . Besides, define the sample covariance matrix of Σ as

$$\hat{\boldsymbol{\Sigma}} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_i \boldsymbol{X}_i^{\top}.$$

If p is a fixed number, then as $n \to \infty$,

$$\sqrt{n}(vec(\hat{\boldsymbol{\Sigma}}) - vec(\boldsymbol{\Sigma})) \xrightarrow{D} \mathcal{N}\bigg(\mathbf{0}, (\mathbf{I}_{p^2} + \mathbf{K}_{p^2})(\boldsymbol{\Sigma} \otimes \boldsymbol{\Sigma})\bigg),$$

where \mathbf{K}_{p^2} is the so-called commutation matrix, which is able to ensure $\mathbf{K}_{p^2} \operatorname{vec}(\mathbf{A}) = \operatorname{vec}(\mathbf{A}')$ for all $(p \times p)$ matrix.

This lemma can be found in Muirhead (2009, equation (5), p90).

1.5 Specific Lemmas

In this subsection, we specify the following lemmas that are made based on the preliminary lemmas.

Lemma 1.7 (Asymptotic normal distribution of sub-Gaussian and sub-exponential variables). Suppose X_1, \ldots, X_n are *n* independent sub-Gaussian or sub-exponential variables with mean-zero and variance $\sigma_1^2, \ldots, \sigma_n^2$. Then

$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_i \xrightarrow{D} \mathcal{N}(0, \sigma_x^2),$$

where

$$\sigma_x^2 = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \sigma_i^2.$$

Proof of Lemma 1.7. It is easy to verify the Lyapunov's condition: for all fixed $\delta > 0$,

$$\lim_{n \to \infty} \frac{1}{n^{1+\delta}} \sum_{i=1}^{n} \mathcal{E}(|X_i|^{2+2\delta}) \le \frac{\sqrt{2K_2 + 2K_2\delta^{2+2\delta}}}{n^{\delta}} \to 0$$

by the (II) of Lemma 1.1, if X_1, \ldots, X_n are sub-Gaussian variables;

$$\lim_{n \to \infty} \frac{1}{n^{1+\delta}} \sum_{i=1}^{n} \mathcal{E}(|X_i|^{2+2\delta}) \le \frac{(2K_2 + 2K_2\delta)^{2+2\delta}}{n^{\delta}} \to 0$$

by the (II) of Lemma 1.2, if X_1, \ldots, X_n are sub-exponential variables. And hence the asymptotic normal distribution holds.

Lemma 1.8 (Asymptotic normal distribution of estimation error). Let

$$\xi_j^{[s]} = \frac{1}{\sqrt{n_s}} \sum_{i=1}^{n_s} g_{ij}^{[s]} x_{i,-j}^{[s]}$$

where

$$x_{i,-j}^{[s]} = x_i^{[s]} - \beta_{js} g_{i,j}^{[s]},$$

$$s = 0, 1, ..., p, x_{i,-j}^{[0]}$$
 represents $y_{i,-j}^{[0]}$ and $\beta j 0$ represent α_j . Then

$$\xi_j^{[s]} \xrightarrow{D} \mathcal{N}(0, \sigma_{x_s x_s} - \sigma_{\beta_s \beta_s}),$$

where $\sigma_{x_0x_0}$ represents σ_{yy} and $\sigma_{\beta_0\beta_0}$ represents $\boldsymbol{\theta}^{\top}\boldsymbol{\Sigma}_{\beta\beta}\boldsymbol{\theta}$.

Proof of Lemma 1.8. Note that both $g_{ij}^{[s]}$ and $x_{i,-j}^{[s]}$ are sub-Gaussian $(x_{i,-j}^{[s]}$ is the product of a sub-Gaussian variable and a bounded sub-Gaussian variable), and it holds $\mathcal{E}(g_{ij}^{[s]}x_{i,-j}^{[s]}) = 0$ and

$$\operatorname{var}(g_{ij}^{[s]}x_{i,-j}^{[s]}) = \operatorname{var}(g_{ij}^{[s]}) \times \operatorname{var}(x_{i,-j}^{[s]}) = \sigma_{x_s x_s} - \sigma_{\beta_s \beta_s}.$$
(5)

As a result,

$$\xi_j^{[s]} = \frac{1}{\sqrt{n_s}} \sum_{i=1}^{n_s} g_{ij}^{[s]} x_{i,-j}^{[s]} \xrightarrow{D} \mathcal{N}(0, \sigma_{x_s x_s} - \sigma_{\beta_s \beta_s}), \tag{6}$$

according Lemma 1.7.

Lemma 1.9 (Asymptotic normality of bias-correction terms). Let

$$\boldsymbol{\zeta}_{j} = \left(\frac{n_{\min}}{n_{1}}\xi_{j}^{[1]}, \frac{n_{\min}}{n_{2}}\xi_{j}^{[2]}, \dots, \frac{n_{\min}}{n_{p}}\xi_{j}^{[p]}, \frac{n_{\min}}{n_{0}}\xi_{j}^{[0]}\right)^{\top}.$$

Under the conditions (C1)-(C4),

$$\lim_{m\to\infty}\frac{1}{\sqrt{m}}\sum_{j=1}^m(\operatorname{vec}(\boldsymbol{\zeta}_j\boldsymbol{\zeta}_j^{\top})-\operatorname{vec}(\boldsymbol{\Psi}_{W_\beta\times w_\alpha}))\xrightarrow{D}\mathcal{N}\bigg(\mathbf{0},(\mathbf{I}_{(p+1)^2}+\mathbf{K}_{(p+1)^2})(\boldsymbol{\Psi}_{W_\beta\times w_\alpha}\otimes \boldsymbol{\Psi}_{W_\beta\times w_\alpha})\bigg).$$

as $n_{\min}, m \to \infty$.

Proof of Lemma 1.9. By using Lemma 1.7, ζ_j follows $\mathcal{N}(0, \Psi_{W_\beta \times w_\alpha})$ as $n_{\min} \to \infty$. Then by using Lemma 1.6, this lemma holds.

Lemma 1.10 (Asymptotic normality of residual term). Under the conditions (C1)-(C4),

$$\lim_{m \to \infty} \frac{1}{\sqrt{m}} \sum_{j=1}^m \sqrt{m} \beta_j \xi_j^{[s]} \xrightarrow{D} \mathcal{N}(0, \sigma_{x_s x_s} \Sigma_{\beta\beta}),$$

and

$$\lim_{m \to \infty} \frac{1}{m} \sum_{j=1}^m \sqrt{m} \beta_j \sqrt{m} \beta_j^\top \xi_j^{[s]} \xi_j^{[k]} \xrightarrow{P} \frac{n_{sk}}{\sqrt{n_s n_k}} \sigma_{x_s x_k} \boldsymbol{\Sigma}_{\beta\beta},$$

for s = 0, ..., p, where $\sigma_{x_0 x_k}$ represents $\sigma_{y x_k} = \sum_{l=1}^p \theta_l \sigma_{x_l x_k}$.

Proof of Lemma 1.10. By condition (C4), $\sqrt{m}\beta_j$ is independent of $\xi_j^{[s]}$. By Lemma 1.3, $\sqrt{m}\beta_j\xi_j^{[s]}$ is subexponential with mean **0** and covariance matrix

$$\operatorname{cov}(\sqrt{m}\beta_{j}\xi_{j}^{[s]}) = \operatorname{cov}(\sqrt{m}\beta_{j}) \times \operatorname{var}(\xi_{j}^{[s]})$$
$$= (\sigma_{x_{s}x_{s}} - \sigma_{\beta_{s}\beta_{s}})\boldsymbol{\Sigma}_{\beta\beta}.$$
(7)

Hence, by Lemma 1.6,

$$\lim_{m \to \infty} \frac{1}{\sqrt{m}} \sum_{j=1}^m \sqrt{m} \beta_j \xi_j^{[s]} \xrightarrow{D} \mathcal{N}(0, \sigma_{x_s x_s} \Sigma_{\beta \beta}).$$

On the other hand, $\beta_j \xi_j^{[s]}$ is sub-exponential variable according to Lemma 1.3, and

$$\operatorname{cov}(\sqrt{m}\beta_{j}\xi_{j}^{[s]},\sqrt{m}\beta_{j}\xi_{j}^{[k]}) = \operatorname{cov}(\xi_{j}^{[s]},\xi_{j}^{[k]}) \times \Sigma_{\beta\beta}$$
$$= \frac{n_{sk}}{\sqrt{n_{s}n_{k}}}(\sigma_{x_{s}x_{k}} - \sigma_{\beta_{s}\beta_{k}})\Sigma_{\beta\beta}.$$
(8)

Hence, by using Lemma 1.5

$$\lim_{m \to \infty} \frac{1}{m} \sum_{j=1}^m \sqrt{m} \beta_j \sqrt{m} \beta_j^\top \xi_j^{[s]} \xi_j^{[k]} \xrightarrow{P} \frac{n_{sk}}{\sqrt{n_s n_k}} \sigma_{x_s x_k} \Sigma_{\beta\beta}.$$

1.6 Proofs of Theorems for IVW

Proof of Theorem 1.1. As for the estimation error $\boldsymbol{\omega}_{\alpha}$, we have

$$w_{\alpha_j} = \frac{\boldsymbol{g}_j^{[0]\top} \boldsymbol{y}^{[0]}}{n_0} - \alpha_j = \frac{\boldsymbol{g}_j^{[0]\top} \boldsymbol{y}_{-j}^{[0]}}{n_0},\tag{9}$$

where

$$\boldsymbol{y}_{-j}^{[0]} = \boldsymbol{y}^{[0]} - \alpha_j \boldsymbol{g}_j^{[0]} = \sum_{s \neq j}^m \alpha_t \boldsymbol{g}_t^{[0]} + \mathbf{U}^{[0]} \boldsymbol{\theta} + \boldsymbol{v}^{[0]},$$
(10)

and $\mathbf{U}^{[0]}$ and $\boldsymbol{v}^{[0]}$ are the corresponding noise terms in the outcome GWAS cohort. According to Lemma 1.8,

$$\xi_j^{[0]} = \frac{1}{\sqrt{n_0}} \sum_{i=1}^{n_0} g_{ij}^{[0]} y_{i,-j}^{[0]} \xrightarrow{D} \mathcal{N}(0, \sigma_{yy} - \boldsymbol{\theta}^\top \boldsymbol{\Sigma}_{\beta\beta} \boldsymbol{\theta}).$$
(11)

As for the estimation error $w_{\beta_{js}}$, we have

$$w_{\beta_{js}} = \frac{g_j^{[s]\top} x^{[s]}}{n_s} - \beta_{js} = \frac{g_j^{[s]\top} x^{[s]}_{-j}}{n_s},$$
(12)

where

$$\boldsymbol{x}_{-j}^{[s]} = \boldsymbol{x}^{[s]} - \boldsymbol{g}_{j}^{[s]} \beta_{js} = \sum_{t \neq j} \beta_{ts} \boldsymbol{g}_{t}^{[s]} + \boldsymbol{u}^{[s]}.$$
(13)

Let

$$\xi_{j}^{[s]} = \frac{\boldsymbol{g}_{j}^{[s]\top} \boldsymbol{x}_{-j}^{[s]}}{\sqrt{n_{s}}} = \frac{1}{\sqrt{n_{s}}} \sum_{i=1}^{n_{s}} g_{ij}^{[s]} x_{i,-j}^{[s]},$$
(14)

where $x_{i,-j}^{[s]}$ is the *i*th element in vector $\boldsymbol{x}_{-j}^{[s]}$. According to Lemma 1.8,

$$\xi_j^{[s]} = \frac{1}{\sqrt{n_s}} \sum_{i=1}^{n_s} g_{ij}^{[s]} x_{i,-j}^{[s]} \xrightarrow{D} \mathcal{N}(0, \sigma_{x_s x_s} - \sigma_{\beta_s \beta_s}).$$
(15)

Now we show the covariance between $\xi_j^{[s]}$ and $\xi_j^{[k]} \colon$

$$\operatorname{cov}(\xi_{j}^{[s]},\xi_{j}^{[k]}) = \operatorname{E}\left(\frac{\boldsymbol{x}_{-j}^{[s]\top}\boldsymbol{g}_{j}^{[s]}\boldsymbol{g}_{j}^{[k]\top}\boldsymbol{x}_{-j}^{[k]}}{\sqrt{n_{s}n_{k}}}\right),\tag{16}$$

where $\boldsymbol{x}_{-j}^{[0]}$ represents $\boldsymbol{y}_{-j}^{[0]}$ for simplicity. Denote $\mathbf{Q}^{[sk]} = (Q_{it}^{[sk]})$ being a $(n_s \times n_k)$ matrix whose (i, t)th element is

$$Q_{it}^{[sk]} = \mathcal{E}(g_{ij}^{[s]}g_{tj}^{[k]}) = \begin{cases} 1, & (i,t) \in \mathcal{Q}^{[sk]}, \\ 0, & (i,t) \notin \mathcal{Q}^{[sk]}, \end{cases}$$
(17)

where

$$\mathcal{Q}^{[sk]} = \{(i,t): g_{ij}^{[s]} \text{ and } g_{tj}^{[k]} \text{ come from the same individual}\}.$$
(18)

As a result,

$$\operatorname{cov}(\xi_{j}^{[s]},\xi_{j}^{[k]}) = \operatorname{E}\left(\frac{\boldsymbol{x}_{-j}^{[s]\top}\mathbf{Q}^{[sk]}\boldsymbol{x}_{-j}^{[k]}}{\sqrt{n_{s}n_{k}}}\right) = \frac{1}{\sqrt{n_{s}n_{k}}}\sum_{(i,t)\in\mathcal{Q}^{[sk]}}\operatorname{E}(x_{i,-j}^{[s]}x_{t,-j}^{[k]})$$
$$= \frac{n_{sk}}{\sqrt{n_{s}n_{k}}}\left(\sigma_{x_{s}x_{k}} - \sigma_{\beta_{s}\beta_{k}}\right),$$
(19)

where $\sigma_{x_0x_k}$ represents σ_{yx_k} for simplicity, and $\sigma_{\beta_0\beta_k}$ represents

$$\sigma_{\beta_0\beta_k} = \operatorname{cov}(\sqrt{m}\beta_j^{\top}\boldsymbol{\theta}, \sqrt{m}\beta_{jk}) = \sum_{l=1}^p \theta_l \sigma_{\beta_l\beta_k}.$$
(20)

Finally, we show $\xi_j^{[s]}$ is uncorrelated with $\xi_t^{[s]}$ for all $t \neq j$ and $s = 0, \ldots, p$. Specifically,

$$\operatorname{cov}(\xi_j^{[s]}, \xi_t^{[s]}) = \operatorname{E}\left(\frac{\boldsymbol{x}_{-j}^{[s]\top} \boldsymbol{g}_j^{[s]\top} \boldsymbol{x}_{-j}^{[s]}}{n_s}\right).$$
(21)

According the model setting, $\boldsymbol{g}_{j}^{[s]}$ is independent of $\boldsymbol{g}_{t}^{[s]}$ for all $t \neq s$. Therefore, $\operatorname{cov}(\xi_{j}^{[s]}, \xi_{t}^{[s]}) = 0$.

Note that if $m \to \infty$, $\Sigma_{\beta\beta} = \frac{1}{m} \Psi_{\beta\beta}$ vanishes. And so Theorem 1.1 is proved.

Proof of Theorem 1.2. Before showing the proof, we first recall the following definitions: m is the number of IVs, n_{\min} is the minimum sample size,

$$\begin{split} \boldsymbol{\Sigma}_{\beta\beta} &= \lim_{m \to \infty} \frac{1}{m} \sum_{j=1}^{m} \beta_{j} \beta_{j}^{\top}, \quad \boldsymbol{\Psi}_{\beta\beta} = m \boldsymbol{\Sigma}_{\beta\beta}, \\ \boldsymbol{\Sigma}_{W_{\beta}W_{\beta}} &= \lim_{m \to \infty} \frac{1}{m} \sum_{j=1}^{m} \boldsymbol{w}_{\beta_{j}} \boldsymbol{w}_{\beta_{j}}^{\top}, \quad \boldsymbol{\Psi}_{W_{\beta}W_{\beta}} = n_{\min} \boldsymbol{\Sigma}_{W_{\beta}W_{\beta}}, \\ \boldsymbol{\sigma}_{W_{\beta}w_{\alpha}} &= \lim_{m \to \infty} \frac{1}{m} \sum_{j=1}^{m} w_{\alpha_{j}} \boldsymbol{w}_{\beta_{j}}, \quad \boldsymbol{\psi}_{W_{\beta}w_{\alpha}} = n_{\min} \boldsymbol{\sigma}_{W_{\beta}w_{\alpha}}, \\ \sigma_{w_{\alpha}w_{\alpha}} &= \lim_{m \to \infty} \frac{1}{m} \sum_{j=1}^{m} w_{\alpha_{j}}^{2}, \quad \boldsymbol{\psi}_{w_{\alpha}w_{\alpha}} = n_{\min} \boldsymbol{\sigma}_{w_{\alpha}w_{\alpha}}. \end{split}$$

The score function of IVW is

$$-\frac{1}{m}\hat{\mathbf{B}}^{\top}(\hat{\boldsymbol{a}}-\hat{\mathbf{B}}\hat{\boldsymbol{\theta}}_{\mathrm{IVW}}) = -\frac{1}{m}\hat{\mathbf{B}}^{\top}(\hat{\boldsymbol{a}}-\hat{\mathbf{B}}\boldsymbol{\theta}) + \frac{1}{m}\hat{\mathbf{B}}^{\top}\hat{\mathbf{B}}(\hat{\boldsymbol{\theta}}_{\mathrm{IVW}}-\boldsymbol{\theta})$$
(22)

which leads to

$$\mathbf{H}_{\mathrm{IVW}}(\hat{\boldsymbol{\theta}}_{\mathrm{IVW}} - \boldsymbol{\theta}) = -\boldsymbol{S}_{\mathrm{IVW}}(\boldsymbol{\theta}), \qquad (23)$$

where

$$\mathbf{H}_{\text{IVW}} = \frac{1}{m} \hat{\mathbf{B}}^{\top} \hat{\mathbf{B}}, \quad \boldsymbol{S}_{\text{IVW}}(\boldsymbol{\theta}) = -\frac{1}{m} \hat{\mathbf{B}}^{\top} (\hat{\boldsymbol{a}} - \hat{\mathbf{B}} \boldsymbol{\theta}).$$
(24)

We first work with the Hessian matrix \mathbf{H}_{IVW} :

$$m\mathbf{H}_{\rm IVW} = \hat{\mathbf{B}}^{\top}\hat{\mathbf{B}} = \mathbf{B}^{\top}\mathbf{B} + \mathbf{B}^{\top}\mathbf{W}_{\beta} + \mathbf{W}_{\beta}^{\top}\mathbf{B} + \mathbf{W}_{\beta}^{\top}\mathbf{W}_{\beta}$$
$$= \mathbf{J}_{1} + \mathbf{J}_{2} + \mathbf{J}_{3} + \mathbf{J}_{4}.$$
(25)

As for \mathbf{J}_1 ,

$$\mathbf{J}_1 = \sum_{j=1}^m \boldsymbol{\beta}_j \boldsymbol{\beta}_j^\top \xrightarrow{P} \boldsymbol{\Psi}_{\beta\beta}.$$
 (26)

As for \mathbf{J}_2 ,

$$\|\sqrt{n}_{\min}\mathbf{J}_{2}\|_{2} = \left\|\frac{1}{\sqrt{m}}\sum_{j=1}^{m}(\sqrt{n}_{\min}\boldsymbol{w}_{\beta_{j}})(\sqrt{m}\boldsymbol{\beta}_{j})^{\top}\right\|_{2}$$

$$\leq \sqrt{\left\|\frac{1}{m}\sum_{j=1}^{m}(\sqrt{n}_{\min}\boldsymbol{w}_{\beta_{j}})(\sqrt{n}_{\min}\boldsymbol{w}_{\beta_{j}})^{\top}\right\|_{2}} \times \sqrt{\left\|\frac{1}{m}\sum_{j=1}^{m}(\sqrt{m}\boldsymbol{\beta}_{j})(\sqrt{m}\boldsymbol{\beta}_{j})^{\top}\right\|_{2}}$$

$$\leq \lambda_{\max}^{\frac{1}{2}}(\boldsymbol{\Psi}_{W_{\beta}W_{\beta}}) \times \lambda_{\max}^{\frac{1}{2}}(\boldsymbol{\Psi}_{\beta\beta}), \qquad (27)$$

which means

$$\|\mathbf{J}_2\|_2 = O_P(1/\sqrt{n_{\min}}). \tag{28}$$

As for \mathbf{J}_3 , it has the same order as \mathbf{J}_2 . As for \mathbf{J}_4 ,

$$\frac{n_{\min}}{m} \mathbf{J}_4 = \frac{1}{m} \sum_{j=1}^m (\sqrt{n_{\min}} \boldsymbol{w}_{\beta_j}) (\sqrt{n_{\min}} \boldsymbol{w}_{\beta_j})^\top \xrightarrow{P} \boldsymbol{\Psi}_{W_\beta W_\beta}$$
(29)

Hence:

(1) If $m/n_{\min} \to 0$,

$$\|\mathbf{J}_4\|_2 \le \lambda_{\max}(\mathbf{\Psi}_{W_\beta W_\beta}) \times \frac{m}{n_{\min}} \to 0.$$
(30)

Therefore,

$$m\mathbf{H}_{\mathrm{IVW}} \xrightarrow{P} \Psi_{\beta\beta}.$$
 (31)

(2) If $m/n_{\min} \to c_0 \in (0,\infty)$, then

$$\mathbf{J}_4 = \frac{m}{n_{\min}} \times \frac{1}{m} \sum_{j=1}^m (\sqrt{n_{\min}} \boldsymbol{w}_{\beta_j}) (\sqrt{n_{\min}} \boldsymbol{w}_{\beta_j})^\top \xrightarrow{P} c_0 \boldsymbol{\Psi}_{W_\beta W_\beta}.$$
(32)

Therefore,

$$m\mathbf{H}_{\mathrm{IVW}} \xrightarrow{P} \Psi_{\beta\beta} + c_0 \Psi_{W_{\beta}W_{\beta}}.$$
 (33)

(3) If $m/n_{\min} \to \infty$ and $m/n_{\min}^{1+\tau} \to c_0 \in (0, +\infty)$ with certain constant $\tau > 0$, then

$$\frac{1}{n_{\min}^{\tau}} \mathbf{J}_{4} = \frac{m}{n_{\min}^{1+\tau}} \times \frac{1}{m} \sum_{j=1}^{m} (\sqrt{n_{\min}} \boldsymbol{w}_{\beta_{j}}) (\sqrt{n_{\min}} \boldsymbol{w}_{\beta_{j}})^{\top} \xrightarrow{P} c_{0} \boldsymbol{\Psi}_{W_{\beta}W_{\beta}}.$$
(34)

Therefore,

$$\frac{m}{n_{\min}^{\tau}}\mathbf{H}_{\mathrm{IVW}} = c_0 n_{\min} \mathbf{H}_{\mathrm{IVW}} \xrightarrow{P} c_0 \Psi_{W_{\beta}W_{\beta}}.$$
(35)

We then work with $\boldsymbol{S}_{\text{IVW}}(\theta)$:

$$m \mathbf{S}_{\text{IVW}}(\theta) = -\mathbf{B}^{\top} \boldsymbol{w}_{\alpha} - \mathbf{W}_{\beta}^{\top} \boldsymbol{w}_{\alpha} + \mathbf{B}^{\top} \mathbf{W}_{\beta} \boldsymbol{\theta} + \mathbf{W}_{\beta}^{\top} \mathbf{W}_{\beta} \boldsymbol{\theta}$$
$$= \boldsymbol{K}_{1} + \boldsymbol{K}_{2} + \boldsymbol{K}_{3} + \boldsymbol{K}_{4}.$$
(36)

As for $\boldsymbol{K}_1 + \boldsymbol{K}_3$,

$$\sqrt{n}_{\min}(\boldsymbol{K}_1 + \boldsymbol{K}_3) = \frac{1}{\sqrt{m}} \sum_{j=1}^m (-\sqrt{n}_{\min} \boldsymbol{w}_{\alpha_j} + \sqrt{n}_{\min} \boldsymbol{w}_{\beta_j}^\top \boldsymbol{\theta}) (\sqrt{m} \boldsymbol{\beta}_j) \xrightarrow{D} \mathcal{N}(\boldsymbol{0}, \psi_{\boldsymbol{\theta}} \boldsymbol{\Psi}_{\beta\beta}),$$
(37)

where

$$\psi_{\theta} = \psi_{w_{\alpha}w_{\alpha}} + \boldsymbol{\theta}^{\top} \boldsymbol{\Psi}_{W_{\beta}W_{\beta}} \boldsymbol{\theta} - 2\boldsymbol{\theta}^{\top} \boldsymbol{\psi}_{W_{\beta}w_{\alpha}}.$$
(38)

As for \boldsymbol{K}_2 ,

$$\frac{n_{\min}}{m}\boldsymbol{K}_{2} = -\frac{1}{m}\sum_{j=1}^{m}(\sqrt{n}_{\min}w_{\alpha_{j}})(\sqrt{n}_{\min}\boldsymbol{w}_{\beta_{j}}) \xrightarrow{P} -\boldsymbol{\psi}_{W_{\beta}w_{\alpha}}.$$
(39)

As for K_4 ,

$$\frac{n_{\min}}{m}\boldsymbol{K}_{4} = \left(\frac{1}{m}\sum_{j=1}^{m}(\sqrt{n_{\min}}\boldsymbol{w}_{\beta_{j}}\sqrt{n_{\min}}\boldsymbol{w}_{\beta_{j}}\right)\boldsymbol{\theta} \stackrel{P}{\longrightarrow} \boldsymbol{\Psi}_{W_{\beta}W_{\beta}}\boldsymbol{\theta},\tag{40}$$

Jointing these results, we summary the asymptotic behavior of $\hat{\boldsymbol{\theta}}_{\text{IVW}}:$

(1) If $m/\sqrt{n}_{\min} \to 0$, then

$$\sqrt{n_{\min}}||\boldsymbol{K}_2 + \boldsymbol{K}_4|| = O_P\left(\frac{m}{\sqrt{n_{\min}}}\right) = o_P(1).$$
(41)

Therefore,

$$\sqrt{n}_{\min} \times m \boldsymbol{S}_{\text{IVW}}(\boldsymbol{\theta}) = \sqrt{n}_{\min}(\boldsymbol{K}_1 + \boldsymbol{K}_3) + o_P(1) \stackrel{D}{\longrightarrow} \mathcal{N}(\boldsymbol{0}, \psi_{\boldsymbol{\theta}} \boldsymbol{\Psi}_{\boldsymbol{\beta}\boldsymbol{\beta}}).$$
(42)

Note that when $m/n_{\min} \to 0, \ m\mathbf{H}_{\text{IVW}} \xrightarrow{P} \Psi_{\beta\beta}$. Therefore,

$$\sqrt{n}_{\min}(\hat{\boldsymbol{\theta}}_{\text{IVW}} - \boldsymbol{\theta}) = -\sqrt{n}_{\min}(m\mathbf{H}_{\text{IVW}})^{-1}(m\boldsymbol{S}_{\text{IVW}}(\boldsymbol{\theta})) \xrightarrow{D} \mathcal{N}(\mathbf{0}, \psi_{\boldsymbol{\theta}} \boldsymbol{\Psi}_{\boldsymbol{\beta}\boldsymbol{\beta}}^{-1}),$$
(43)

(2) If $m/\sqrt{n_{\min}} \to c_0$, then

$$\sqrt{n_{\min}}(\mathbf{K}_2 + \mathbf{K}_4) \to -c_0 \psi_{W_\beta w_\alpha} + c_0 \Psi_{W_\beta W_\beta} \boldsymbol{\theta}, \tag{44}$$

and hence

$$\sqrt{n}_{\min} \times m \boldsymbol{S}_{\text{IVW}}(\boldsymbol{\theta}) \xrightarrow{D} \mathcal{N}(-c_0(\boldsymbol{\psi}_{W_\beta w_\alpha} + \boldsymbol{\Psi}_{W_\beta W_\beta}\boldsymbol{\theta}), \boldsymbol{\psi}_{\boldsymbol{\theta}} \boldsymbol{\Psi}_{\beta\beta}).$$
(45)

Note that when $m/n_{\min} \to 0, \ m\mathbf{H}_{\text{IVW}} \xrightarrow{P} \Psi_{\beta\beta}$. Therefore,

$$\sqrt{n_{\min}}(\hat{\boldsymbol{\theta}}_{\text{IVW}} - \boldsymbol{\theta}) = -\sqrt{n_{\min}} (m \mathbf{H}_{\text{IVW}})^{-1} (m \boldsymbol{S}_{\text{IVW}}(\boldsymbol{\theta}))$$
$$\stackrel{D}{\longrightarrow} \mathcal{N}(c_0 \boldsymbol{\Psi}_{\beta\beta}^{-1}(\boldsymbol{\psi}_{W_\beta w_\alpha} - \boldsymbol{\Psi}_{W_\beta W_\beta} \boldsymbol{\theta}), \psi_{\boldsymbol{\theta}} \boldsymbol{\Psi}_{\beta\beta}^{-1}).$$
(46)

(3) If $m/\sqrt{n_{\min}} \to \infty$ and $m/n_{\min} \to c_0$, then $||\mathbf{K}_1 + \mathbf{K}_3||_2 = O_P(1/\sqrt{n_{\min}})$,

$$\boldsymbol{K}_{2} + \boldsymbol{K}_{4} \xrightarrow{P} -c_{0} \boldsymbol{\psi}_{W_{\beta}w_{\alpha}} + c_{0} \boldsymbol{\Psi}_{W_{\beta}W_{\beta}} \boldsymbol{\theta}, \qquad (47)$$

and

$$m\mathbf{H}_{\mathrm{IVW}} \xrightarrow{P} \Psi_{\beta\beta} + c_0 \Psi_{W_{\beta}W_{\beta}}.$$
 (48)

Hence,

$$\hat{\boldsymbol{\theta}}_{\text{IVW}} - \boldsymbol{\theta} \xrightarrow{P} c_0 (\boldsymbol{\Psi}_{\beta\beta} + c_0 \boldsymbol{\Psi}_{W_\beta W_\beta})^{-1} (\boldsymbol{\psi}_{W_\beta w_\alpha} - \boldsymbol{\Psi}_{W_\beta W_\beta} \boldsymbol{\theta}).$$
(49)

Note that if $c_0 = 0$, then (iii) in Theorem 1.2 holds.

(4) If $m/n_{\min} \to \infty$ and $m/n_{\min}^{1+\tau} \to c_0$, then

$$\frac{1}{n_{\min}^{\tau}} (\boldsymbol{K}_2 + \boldsymbol{K}_4) \xrightarrow{P} -c_0 \boldsymbol{\psi}_{W_\beta w_\alpha} + c_0 \boldsymbol{\Psi}_{W_\beta W_\beta} \boldsymbol{\theta}$$
(50)

and

$$\frac{m}{n_{\min}^{\tau}} \mathbf{H}_{\mathrm{IVW}} \xrightarrow{P} c_0 \Psi_{W_{\beta} W_{\beta}}.$$
(51)

Therefore,

$$\hat{\boldsymbol{\theta}}_{\text{IVW}} \xrightarrow{P} \boldsymbol{\Psi}_{W_{\beta}W_{\beta}}^{-1} \boldsymbol{\psi}_{W_{\beta}w_{\alpha}}.$$
(52)

Now Theorem 1.2 is proved.

1.7 Proofs of Theorems for MRBEE

Proofs of Theorem 1.3. Note that

$$\mathbf{0} = \mathbf{S}_{\text{BEE}}(\hat{\boldsymbol{\theta}}_{\text{BEE}}) = \mathbf{S}_{\text{BEE}}(\boldsymbol{\theta}) + \mathbf{H}_{\text{BEE}}(\hat{\boldsymbol{\theta}}_{\text{BEE}} - \boldsymbol{\theta}), \tag{53}$$

where

$$\boldsymbol{S}_{\text{BEE}}(\boldsymbol{\theta}) = -\frac{1}{m} \hat{\mathbf{B}}^{\top} (\hat{\boldsymbol{\alpha}} - \hat{\mathbf{B}}\boldsymbol{\theta}) - \boldsymbol{\Sigma}_{W_{\beta}W_{\beta}}\boldsymbol{\theta} + \boldsymbol{\sigma}_{W_{\beta}w_{\alpha}}, \qquad (54)$$

and

$$\mathbf{H}_{\text{BEE}} = \frac{1}{m} \hat{\mathbf{B}}^{\top} \hat{\mathbf{B}} - \boldsymbol{\Sigma}_{W_{\beta} W_{\beta}}.$$
(55)

As for $\boldsymbol{S}_{\text{BEE}}(\boldsymbol{\theta})$,

$$m\boldsymbol{S}_{\text{BEE}}(\boldsymbol{\theta}) = -(\mathbf{B} + \mathbf{W}_{\beta})^{\top} (\boldsymbol{\alpha} + \boldsymbol{w}_{\alpha} - \mathbf{B}\boldsymbol{\theta} - \mathbf{W}_{\beta}\boldsymbol{\theta}) - m\boldsymbol{\Sigma}_{W_{\beta}W_{\beta}} + m\boldsymbol{\sigma}_{W_{\beta}w_{\alpha}}$$
$$= -\left\{\mathbf{B}^{\top}(\boldsymbol{w}_{\alpha} - \mathbf{W}_{\beta}\boldsymbol{\theta})\right\} + \left\{\left(\mathbf{W}_{\beta}^{\top}\mathbf{W}_{\beta} - m\boldsymbol{\Sigma}_{W_{\beta}W_{\beta}}\right)\boldsymbol{\theta}\right\} - \left\{\mathbf{W}_{\beta}^{\top}\boldsymbol{w}_{\alpha} - m\boldsymbol{\sigma}_{W_{\beta}w_{\alpha}}\right\}$$
$$= \boldsymbol{K}_{1} + \boldsymbol{K}_{2} + \boldsymbol{K}_{3}.$$
(56)

Here, we define a new vector $\boldsymbol{\vartheta} = (\boldsymbol{\theta}^{\top}, 1)^{\top}$, an alternative vector

$$\boldsymbol{\zeta}_{j} = \left(\frac{n_{\min}}{n_{1}}\xi_{j}^{[1]}, \frac{n_{\min}}{n_{2}}\xi_{j}^{[2]}, \dots, \frac{n_{\min}}{n_{p}}\xi_{j}^{[p]}, \frac{n_{\min}}{n_{0}}\xi_{j}^{[0]}\right)^{\top},$$

where

$$\xi_j^{[s]} = \frac{1}{\sqrt{n_s}} \sum_{i=1}^{n_s} g_{ij}^{[s]} x_{is}^{[s]}, \quad s = 0, 1, \dots, p,$$

and a new covariance matrix

$$\operatorname{cov}(\boldsymbol{\zeta}_j) = \boldsymbol{\Psi}_{W_{\beta} \times w_{\alpha}} = \begin{pmatrix} \boldsymbol{\Psi}_{W_{\beta} W_{\beta}} & \boldsymbol{\psi}_{W_{\beta} w_{\alpha}} \\ \boldsymbol{\psi}_{W_{\beta} w_{\alpha}}^{\top} & \boldsymbol{\psi}_{w_{\alpha} w_{\alpha}} \end{pmatrix}.$$
(57)

As for \boldsymbol{K}_1 , it can be rewritten as

$$\sqrt{n_{\min}} \mathbf{K}_{1} = -\sum_{j=1}^{m} \sqrt{n_{\min}} (w_{\alpha_{j}} - \boldsymbol{w}_{\beta_{j}}^{\top} \boldsymbol{\theta}) \boldsymbol{\beta}_{j} = \frac{1}{\sqrt{m}} \sum_{j=1}^{m} (\sqrt{n_{\min}} \boldsymbol{\zeta}_{j}^{\top} \boldsymbol{\vartheta}) (\sqrt{m} \boldsymbol{\beta}_{j})$$
$$\xrightarrow{D} \mathcal{N}(\mathbf{0}, \psi_{\theta} \boldsymbol{\Psi}_{\beta\beta}), \tag{58}$$

where ψ_{θ} defined in (38) can be rewritten as

$$\psi_{\theta} = \boldsymbol{\vartheta}^{\top} \boldsymbol{\Psi}_{W_{\beta} \times w_{\alpha}} \boldsymbol{\vartheta}. \tag{59}$$

As for $K_2 + K_3$, it can be rewritten as

$$\mathbf{K}_{2} + \mathbf{K}_{3} = \mathbf{I}_{p+1}^{1:p} \begin{pmatrix} \mathbf{W}_{\beta}^{\top} \mathbf{W}_{\beta} - m \mathbf{\Sigma}_{W_{\beta}W_{\beta}} & \mathbf{W}_{\beta}^{\top} \mathbf{w}_{\alpha} - m \boldsymbol{\sigma}_{W_{\beta}w_{\alpha}} \\ \mathbf{w}_{\alpha}^{\top} \mathbf{W}_{\beta} - m \boldsymbol{\sigma}_{W_{\beta}w_{\alpha}}^{\top} & \mathbf{w}_{\alpha}^{\top} \mathbf{w}_{\alpha} - m \boldsymbol{\sigma}_{w_{\alpha}w_{\alpha}} \end{pmatrix} \begin{pmatrix} \boldsymbol{\theta} \\ -1 \end{pmatrix} \\
= \frac{\sqrt{m}}{n_{\min}} \mathbf{I}_{p+1}^{1:p} \left(\frac{1}{\sqrt{m}} \sum_{j=1}^{m} \boldsymbol{\zeta}_{j} \boldsymbol{\zeta}_{j}^{\top} - \boldsymbol{\Psi}_{W_{\beta} \times w_{\alpha}} \right) \boldsymbol{\vartheta} \\
= \frac{\sqrt{m}}{n_{\min}} \mathbf{I}_{p+1}^{1:p} \mathbf{K}_{4} \boldsymbol{\vartheta},$$
(60)

where $\mathbf{I}_{p+1}^{1:p}$ is a $(p\times (p+1))$ matrix consisting of the first p row of \mathbf{I}_{p+1} and

$$\mathbf{K}_4 = \frac{1}{\sqrt{m}} \sum_{j=1}^m \boldsymbol{\zeta}_j \boldsymbol{\zeta}_j^\top - \boldsymbol{\Psi}_{W_\beta \times w_\alpha}.$$
 (61)

According to Lemma 1.6,

$$\operatorname{vec}(\mathbf{K}_{4}) \xrightarrow{D} \mathcal{N}\bigg(\mathbf{0}, (\mathbf{I}_{(p+1)^{2}} + \mathbf{K}_{(p+1)^{2}})(\Psi_{W_{\beta} \times w_{\alpha}} \otimes \Psi_{W_{\beta} \times w_{\alpha}})\bigg).$$
(62)

As a result,

$$\frac{n_{\min}}{\sqrt{m}}(\boldsymbol{K}_2 + \boldsymbol{K}_3) \xrightarrow{D} \mathcal{N}(\boldsymbol{0}, \boldsymbol{\Sigma}_{\mathrm{BC}})$$
(63)

where

$$\boldsymbol{\Sigma}_{\mathrm{BC}} = \underbrace{\left[\boldsymbol{\vartheta}^{\top} \otimes \mathbf{I}_{p+1}^{1:p}\right]}_{p \times (p+1)^2} \underbrace{\left[(\mathbf{I}_{(p+1)^2} + \mathbf{K}_{(p+1)^2})(\boldsymbol{\Psi}_{W_{\beta} \times w_{\alpha}} \otimes \boldsymbol{\Psi}_{W_{\beta} \times w_{\alpha}})\right]}_{(p+1)^2 \times (p+1)^2} \underbrace{\left[\boldsymbol{\vartheta}^{\top} \otimes \mathbf{I}_{p+1}^{1:p}\right]^{\top}}_{(p+1)^2 \times p}.$$
(64)

Now we show K_1 and $K_2 + K_3$ are uncorrelated. Note that β_j is independent of w_{β_j} and w_{α_j} , and hence K_1 and $K_2 + K_3$ are uncorrelated. So far, we can obtain:

(1) If
$$m/n_{\min} \to 0$$
,
 $\sqrt{n}_{\min} \times m \boldsymbol{S}_{BEE}(\boldsymbol{\theta}) = \sqrt{n}_{\min} \boldsymbol{K}_1 + o_P(1) \xrightarrow{D} \mathcal{N}(\boldsymbol{0}, \psi_{\boldsymbol{\theta}} \boldsymbol{\Psi}_{\beta\beta}).$
(65)

(2) If $m/n_{\min} \to c_0$,

$$\sqrt{n_{\min}} \times m \boldsymbol{S}_{\text{BEE}}(\boldsymbol{\theta}) = \sqrt{n_{\min}} \boldsymbol{K}_1 + \sqrt{n_{\min}} (\boldsymbol{K}_2 + \boldsymbol{K}_3) \xrightarrow{D} \mathcal{N}(\boldsymbol{0}, \psi_{\boldsymbol{\theta}} \boldsymbol{\Psi}_{\boldsymbol{\beta}\boldsymbol{\beta}} + c_0 \boldsymbol{\Sigma}_{\text{BC}}).$$
(66)

(3) If $m/n_{\min} \to \infty$ and $\sqrt{m}/n_{\min} \to 0$,

$$\frac{n_{\min}}{\sqrt{m}} \times m \boldsymbol{S}_{\text{BEE}}(\boldsymbol{\theta}) = \frac{n_{\min}}{\sqrt{m}} (\boldsymbol{K}_2 + \boldsymbol{K}_3) + \frac{n_{\min}}{\sqrt{m}} \boldsymbol{K}_1 \xrightarrow{D} \mathcal{N}(\boldsymbol{0}, \boldsymbol{\Sigma}_{\text{BC}}),$$
(67)

where

$$\frac{n_{\min}}{\sqrt{m}}\boldsymbol{K}_1 = \sqrt{\frac{n_{\min}}{m}} \times \sqrt{n_{\min}}\boldsymbol{K}_1 = O_P\left(\sqrt{\frac{n_{\min}}{m}}\right) = o_P(1).$$
(68)

Now we move to $\mathbf{H}_{\mathrm{BEE}}:$

$$m\mathbf{H}_{\text{BEE}} = \mathbf{B}^{\top}\mathbf{B} + \left(\mathbf{W}_{\beta}^{\top}\mathbf{W}_{\beta} - m\boldsymbol{\Sigma}_{W_{\beta}W_{\beta}}\right) + \mathbf{B}^{\top}\mathbf{W}_{\beta} + \mathbf{W}_{\beta}^{\top}\mathbf{B}$$
$$= \mathbf{J}_{1} + \mathbf{J}_{2} + \mathbf{J}_{3} + \mathbf{J}_{4}.$$
(69)

As for $\mathbf{J}_1 = \mathbf{B}^\top \mathbf{B}$, we have

$$||\mathbf{J}_{1} - \boldsymbol{\Psi}_{\beta\beta}||_{2} = \left\|\frac{1}{m} \sum_{j=1}^{m} \sqrt{m} \beta_{j} \sqrt{m} \beta_{j}^{\top} - \boldsymbol{\Psi}_{\beta\beta}\right\|_{2}$$
$$= O_{P}\left(\frac{1}{\sqrt{m}}\right).$$
(70)

As for $\mathbf{J}_2 = \mathbf{W}_{\beta}^{\top} \mathbf{W}_{\beta} - m \boldsymbol{\Sigma}_{W_{\beta} W_{\beta}}$, we have

$$\mathbf{J}_{2} = \sum_{j=1}^{m} \left(\boldsymbol{w}_{\beta_{j}} \boldsymbol{w}_{\beta_{j}}^{\top} - \boldsymbol{\Sigma}_{W_{\beta}W_{\beta}} \right) = \frac{\sqrt{m}}{n_{\min}} \frac{1}{\sqrt{m}} \sum_{j=1}^{m} \left(\boldsymbol{\xi}_{j} \boldsymbol{\xi}_{j}^{\top} - \boldsymbol{\Psi}_{W_{\beta}W_{\beta}} \right).$$
(71)

As a result,

$$\frac{n_{\min}}{\sqrt{m}}\operatorname{vec}(\mathbf{J}_2) \xrightarrow{D} \mathcal{N}(\mathbf{0}, (\mathbf{I}_{p^2} + \mathbf{K}_{p^2})(\Psi_{W_\beta W_\beta} \otimes \Psi_{W_\beta W_\beta})),$$
(72)

which means $||\mathbf{J}_2|| = O_P(\sqrt{m}/n_{\min})$. As for $\mathbf{J}_3 = \mathbf{B}^\top \mathbf{W}_\beta$,

$$\begin{aligned} \sqrt{n_{\min}} ||\mathbf{J}_{3}||_{2} &= \left\| \frac{1}{\sqrt{m}} \sum_{j=1}^{m} \sqrt{m} \beta_{j} \sqrt{n_{\min}} \boldsymbol{\omega}_{\beta_{j}}^{\top} \right\|_{2} \\ &\leq \sqrt{\left\| \frac{1}{m} \sum_{j=1}^{m} \sqrt{m} \beta_{j} \sqrt{m} \beta_{j}^{\top} \right\|_{2}} \sqrt{\left\| \frac{1}{m} \sum_{j=1}^{m} \sqrt{n_{\min}} \boldsymbol{\omega}_{\beta_{j}} \sqrt{n_{\min}} \boldsymbol{\omega}_{\beta_{j}}^{\top} \right\|_{2}} \\ &\leq \lambda_{\max}^{\frac{1}{2}} (\boldsymbol{\Psi}_{\beta\beta}) \times \lambda_{\max}^{\frac{1}{2}} (\boldsymbol{\Psi}_{W_{\beta}W_{\beta}}), \end{aligned}$$

$$(73)$$

which means

$$||\mathbf{J}_3||_2 = O_P\left(\frac{1}{\sqrt{n_{\min}}}\right) \tag{74}$$

As for \mathbf{J}_4 , it is easy to see $||\mathbf{J}_4||_2^2 = ||\mathbf{J}_3||_2^2$. Hence, for all three scenarios in Theorem 1.3,

$$||m\mathbf{H}_{\text{BEE}} - \Psi_{\beta\beta}||_2 = O_P \bigg\{ \max\bigg(\frac{1}{\sqrt{m}}, \frac{1}{\sqrt{n}_{\min}}, \frac{\sqrt{m}}{n_{\min}}\bigg) \bigg\}.$$
(75)

And hence, according to the Slutsky's theorem,

(1) If $m/n_{\min} \to 0$,

$$\sqrt{n}_{\min}(\hat{\boldsymbol{\theta}}_{\text{BEE}} - \boldsymbol{\theta}) = -\sqrt{n}_{\min}\boldsymbol{\Psi}_{\beta\beta}^{-1}\boldsymbol{K}_1 \xrightarrow{D} \mathcal{N}(\boldsymbol{0}, \psi_{\boldsymbol{\theta}}\boldsymbol{\Psi}_{\beta\beta}^{-1}).$$
(76)

(2) If $m/n_{\min} \to c_0$,

$$\sqrt{n}_{\min}(\hat{\boldsymbol{\theta}}_{BEE} - \boldsymbol{\theta}) = -\sqrt{n}_{\min}\boldsymbol{\Psi}_{\beta\beta}^{-1}(\boldsymbol{K}_1 + \boldsymbol{K}_2 + \boldsymbol{K}_3) \xrightarrow{D} \mathcal{N}(\boldsymbol{0}, \psi_{\theta}\boldsymbol{\Psi}_{\beta\beta}^{-1} + c_0\boldsymbol{\Psi}_{\beta\beta}^{-1}\boldsymbol{\Psi}_{BC}\boldsymbol{\Psi}_{\beta\beta}^{-1}).$$
(77)

(2) If
$$m/n_{\min} \to \infty$$
 and $m/n_{\min}^2 \to 0$,

$$\sqrt{n_{\min}^2/m}(\hat{\boldsymbol{\theta}}_{\text{BEE}} - \boldsymbol{\theta}) = -\frac{n_{\min}}{\sqrt{m}} \boldsymbol{\Psi}_{\beta\beta}^{-1}(\boldsymbol{K}_2 + \boldsymbol{K}_3) \xrightarrow{D} \mathcal{N}(\boldsymbol{0}, \boldsymbol{\Psi}_{\beta\beta}^{-1} \boldsymbol{\Psi}_{\text{BC}} \boldsymbol{\Psi}_{\beta\beta}^{-1}).$$
(78)

Thus, Theorem 1.3 is proved.

Proof of Theorem 1.4. Similar to $\xi_j^{[s]}$, we define $\eta_j^{\{s\}}$ as

$$\eta_j^{\{s\}} = \frac{\boldsymbol{g}_j^{\{s\}\top} \boldsymbol{x}^{[s]}}{\sqrt{n_s}} = \frac{1}{\sqrt{n_s}} \sum_{i=1}^{n_s} g_{ij}^{\{s\}} \boldsymbol{x}_i^{[s]}.$$
(79)

By using similar deduction as which in the proof of Theorem 1,

$$\eta_j^{\{s\}} \xrightarrow{D} \mathcal{N}(0, \sigma_{x_s x_s}) \tag{80}$$

and

$$\operatorname{cov}(\eta_j^{\{s\}}, \eta_j^{\{k\}}) = \frac{n_{sk}}{\sqrt{n_s n_k}} \sigma_{x_s x_k}.$$
(81)

Denote $\boldsymbol{\eta}_j = (\eta_j^{\{1\}}, \dots, \eta_j^{\{p\}}, \eta_j^{\{0\}})$ where $\eta_j^{\{0\}}$ represents $\frac{1}{\sqrt{n_0}} \boldsymbol{g}_j^{\{s\}\top} \boldsymbol{y}^{[0]}$. Then we have

$$\operatorname{cov}(\boldsymbol{\eta}_j) = \mathbf{D}_{\eta}^{-1} \boldsymbol{\Sigma}_{W_{\beta} \times w_{\alpha}} \mathbf{D}_{\eta}^{-1},$$
(82)

where

$$\mathbf{D}_{\eta} = \operatorname{diag}\left(\frac{1}{\sqrt{n_1}}, \dots, \frac{1}{\sqrt{n_p}}, \frac{1}{\sqrt{n_0}}\right).$$
(83)

By using Lemma 1.4,

$$\left\|\frac{1}{M}\sum_{j=1}^{M}\boldsymbol{\eta}_{j}\boldsymbol{\eta}_{j}^{\top} - \operatorname{cov}(\boldsymbol{\eta}_{j})\right\|_{2} = O_{P}\left(\frac{1}{\sqrt{M}}\right),\tag{84}$$

and hence

$$\|\boldsymbol{\Sigma}_{W_{\beta} \times w_{\alpha}}^{-\frac{1}{2}} \hat{\boldsymbol{\Sigma}}_{W_{\beta} \times w_{\alpha}} \boldsymbol{\Sigma}_{W_{\beta} \times w_{\alpha}}^{\frac{1}{2}} - \mathbf{I}_{p+1}\|_{2} \leq \lambda_{\min}^{-1}(\operatorname{cov}(\boldsymbol{\eta}_{j})) \left\| \frac{1}{M} \sum_{j=1}^{M} \boldsymbol{\eta}_{j} \boldsymbol{\eta}_{j}^{\top} - \operatorname{cov}(\boldsymbol{\eta}_{j}) \right\|_{2} = O_{P}\left(\frac{1}{\sqrt{M}}\right).$$

$$(85)$$

Thus, Theorem 1.4 is proved.

Proof of Theorem 1.5. Note that

$$S_{j}(\boldsymbol{\theta}) = -(\hat{\alpha}_{j} - \boldsymbol{\theta}^{\top} \hat{\beta}_{j})\hat{\beta}_{j} - \boldsymbol{\Sigma}_{W_{\beta}W_{\beta}}\boldsymbol{\theta} + \boldsymbol{\sigma}_{W_{\beta}w_{\alpha}}$$
$$= (w_{\alpha_{j}} - \boldsymbol{\theta}^{\top} \boldsymbol{w}_{\beta_{j}})\boldsymbol{\beta}_{j} + \left\{ (w_{\alpha_{j}} - \boldsymbol{\theta}^{\top} \boldsymbol{w}_{\beta_{j}})\boldsymbol{w}_{\beta_{j}} - \boldsymbol{\Sigma}_{W_{\beta}W_{\beta}}\boldsymbol{\theta} + \boldsymbol{\sigma}_{W_{\beta}w_{\alpha}} \right\}$$
$$= \boldsymbol{J}_{1j} + \boldsymbol{J}_{2j}.$$
(86)

Note that both J_{1j} and J_{2j} are sub-exponential variables with zero mean and covariance matrix

$$\operatorname{cov}(\boldsymbol{J}_{1j}) = \frac{1}{mn_{\min}} \psi_{\theta} \boldsymbol{\Psi}_{\beta\beta}, \quad \operatorname{cov}(\boldsymbol{J}_{2j}) = \frac{1}{n_{\min}^2} \boldsymbol{\Sigma}_{\mathrm{BC}}.$$
(87)

Therefore, we obtain

$$\operatorname{cov}(\boldsymbol{S}_{j}(\boldsymbol{\theta})) = \boldsymbol{\Sigma}_{S} = \begin{cases} \frac{1}{mn_{\min}} \psi_{\boldsymbol{\theta}} \boldsymbol{\Psi}_{\boldsymbol{\beta}\boldsymbol{\beta}}, & \text{if } m/n_{\min} \to 0, \\ \frac{1}{mn_{\min}} \psi_{\boldsymbol{\theta}} \boldsymbol{\Psi}_{\boldsymbol{\beta}\boldsymbol{\beta}} + \frac{c_{0}}{mn_{\min}} \boldsymbol{\Sigma}_{\mathrm{BC}}, & \text{if } m/n_{\min} \to c_{0}, \\ \frac{1}{n_{\min}^{2}} \boldsymbol{\Sigma}_{\mathrm{BC}}, & \text{if } m/n_{\min} \to \infty \text{ and } \sqrt{m}/n_{\min} \to 0. \end{cases}$$
(88)

Then by using Lemma 1.5,

$$\left\|\frac{1}{m}\sum_{j=1}^{m} \boldsymbol{S}_{j}(\boldsymbol{\theta})\boldsymbol{S}_{j}(\boldsymbol{\theta})^{\top} - \boldsymbol{\Sigma}_{S}\right\|_{2} = O_{P}\left(\sqrt{\frac{\log m}{m}}\right)||\boldsymbol{\Sigma}_{S}||_{2}.$$
(89)

By using the Slutsky's theorem,

$$\left\|\frac{1}{m}\sum_{j=1}^{m}\hat{\boldsymbol{S}}_{j}(\hat{\boldsymbol{\theta}}_{\text{BEE}})\hat{\boldsymbol{S}}_{j}(\hat{\boldsymbol{\theta}}_{\text{BEE}})^{\top} - \boldsymbol{\Sigma}_{S}\right\|_{2} = O_{P}\left(\sqrt{\frac{\log m}{m}}\right)||\boldsymbol{\Sigma}_{S}||_{2}.$$
(90)

where

$$\hat{\boldsymbol{S}}_{j}(\hat{\boldsymbol{\theta}}_{\text{BEE}}) = -(\hat{\boldsymbol{\theta}}_{\text{BEE}}^{\top}\hat{\boldsymbol{\beta}}_{j} - \hat{\alpha}_{j})\hat{\boldsymbol{\beta}}_{j} + \hat{\boldsymbol{\Sigma}}_{W_{\beta}W_{\beta}}\hat{\boldsymbol{\theta}}_{\text{BEE}} - \hat{\boldsymbol{\sigma}}_{W_{\beta}w_{\alpha}}$$
(91)

On the other hand, according to the proof of Theorem 1.3,

$$\|m\hat{\mathbf{F}}_{\text{BEE}} - \boldsymbol{\Psi}_{\beta\beta}\|_{2} = O_{P} \bigg\{ \max\left(\frac{1}{\sqrt{m}}, \frac{1}{\sqrt{n}_{\min}}, \frac{\sqrt{m}}{n_{\min}}\right) \bigg\}.$$
(92)

Note that Bickel and Levina (2008, A22(p223)) illustrates

$$\|\mathbf{A}_{1}\mathbf{A}_{2}\mathbf{A}_{3} - \mathbf{B}_{1}\mathbf{B}_{2}\mathbf{B}_{3}\|_{2} = O_{P}\left\{\max\left(||\mathbf{A}_{1} - \mathbf{B}_{1}||_{2}, ||\mathbf{A}_{2} - \mathbf{B}_{2}||_{2}, ||\mathbf{A}_{3} - \mathbf{B}_{3}||_{2}\right)\right\},\tag{93}$$

where $A_1, A_2, A_3, B_1, B_2, B_3$ are six matrices with non-diverging maximum singular values. Hence,

$$\begin{aligned} ||\hat{\boldsymbol{\Sigma}}_{\text{BEE}}(\hat{\boldsymbol{\theta}}_{\text{BEE}}) - \boldsymbol{\Sigma}_{\text{BEE}}(\boldsymbol{\theta})||_{2} &= \left\| (m\hat{\mathbf{F}}_{\text{BEE}})^{-1} \left(\sum_{j=1}^{m} \hat{\boldsymbol{S}}_{j}(\hat{\boldsymbol{\theta}}_{\text{BEE}}) \hat{\boldsymbol{S}}_{j}(\hat{\boldsymbol{\theta}}_{\text{BEE}})^{\top} \right) (m\hat{\mathbf{F}}_{\text{BEE}})^{-1} - m\boldsymbol{\Psi}_{\boldsymbol{\beta}\boldsymbol{\beta}}^{-1}\boldsymbol{\boldsymbol{\Sigma}}_{\boldsymbol{S}}\boldsymbol{\Psi}_{\boldsymbol{\beta}\boldsymbol{\beta}}^{-1} \right\|_{2} \\ &= O_{P} \left\{ \max\left(\sqrt{\frac{\log m}{m}}, \frac{1}{\sqrt{n}_{\min}}, \frac{\sqrt{m}}{n_{\min}} \right) \right\} ||m\boldsymbol{\Sigma}_{\boldsymbol{S}}||_{2}, \end{aligned}$$
(94)

and consequently

$$||\boldsymbol{\Sigma}_{\text{BEE}}^{-\frac{1}{2}}(\boldsymbol{\theta})\hat{\boldsymbol{\Sigma}}_{\text{BEE}}(\boldsymbol{\theta})\boldsymbol{\Sigma}_{\text{BEE}}^{-\frac{1}{2}}(\boldsymbol{\theta}) - \mathbf{I}_{p}||_{2} = O_{P}\left\{\max\left(\sqrt{\frac{\log m}{m}}, \frac{1}{\sqrt{n}_{\min}}, \frac{\sqrt{m}}{n_{\min}}\right)\right\}.$$
(95)

Thus, Theorem 1.5 is proved.

Proof of Theorem 1.6. Note that $||\hat{\theta}_{\text{BEE}} - \theta||_2 = O_P(n_{\min}^{-\frac{1}{2}})$ and hence $\hat{\alpha}_j - \hat{\beta}_j^{\top} \hat{\theta}_{\text{BEE}}$ and $\hat{\alpha}_j - \hat{\beta}_j^{\top} \theta$ have the same distribution. For $j \in \mathcal{O}^c$,

$$\hat{\gamma}_{j} = \varepsilon_{j} = \hat{\alpha}_{j} - \hat{\beta}_{j}^{\top} \hat{\theta}_{BEE} = w_{\alpha_{j}} - \boldsymbol{w}_{\beta_{j}}^{\top} \boldsymbol{\theta} + \boldsymbol{w}_{\beta_{j}}^{\top} (\hat{\boldsymbol{\theta}}_{BEE} - \boldsymbol{\theta}) \sim \mathcal{N}(0, \sigma_{\varepsilon\varepsilon}),$$
(96)

where

$$\sigma_{\varepsilon\varepsilon} = \boldsymbol{\theta}^{\top} \boldsymbol{\Sigma}_{W_{\beta}w_{\alpha}} \boldsymbol{\theta} + \sigma_{\omega_{\gamma}\omega_{\gamma}} - 2\boldsymbol{\theta}^{\top} \boldsymbol{\sigma}_{W_{\beta}w_{\alpha}}.$$
(97)

As a result,

$$\frac{\hat{\gamma}_j^2}{\sigma_{\varepsilon\varepsilon}} \sim \chi_1^2. \tag{98}$$

Denote $\kappa^* = F_{\chi_1^2}^{-1}(\kappa)$. Then by using Lemma A.1 of Huang et al. (2012),

$$\Pr\left(\max_{j\in\mathcal{O}^{c}}\frac{\hat{\gamma}_{j}^{2}}{\sigma_{\varepsilon\varepsilon}}\leq\kappa^{*}\right)=1-\Pr\left(\max_{j\in\mathcal{O}^{c}}\frac{\hat{\gamma}_{j}^{2}}{\sigma_{\varepsilon\varepsilon}}>\kappa^{*}\right)$$
$$\geq1-\left(m-|\mathcal{O}|\right)\Pr\left(\frac{\hat{\gamma}_{j}^{2}}{\sigma_{\varepsilon\varepsilon}}>\kappa^{*}\right)$$
$$\geq1-m\Pr\left(\frac{\hat{\gamma}_{j}^{2}}{\sigma_{\varepsilon\varepsilon}}>\kappa^{*}\right)$$
$$\geq1-m\exp\left(-\frac{\left(\sqrt{2\kappa^{*}-1}-1\right)^{2}}{4}\right).$$
(99)

By letting $\kappa^* = C_0 \log m$ with C_0 being a sufficiently large constant,

$$\Pr\left(\max_{j\in\mathcal{O}^c}\frac{\hat{\gamma}_j^2}{\sigma_{\varepsilon\varepsilon}} \le \kappa^*\right) \ge 1 - \exp\left(\log m - \frac{2C_0\log m - 2\sqrt{C_0\log m - 1}}{4}\right)$$
$$\ge 1 - \exp\left(-\frac{(2C_0 - 4)\log m - 2\sqrt{C_0\log m - 1}}{4}\right) \to 1, \tag{100}$$

if $m \to \infty$.

On the other hand, for $j \in \mathcal{O}$,

$$\hat{\gamma}_j = \gamma_j + \varepsilon_j,\tag{101}$$

and hence

$$\frac{\hat{\gamma}_j^2}{\sigma_{\varepsilon\varepsilon}} \sim \chi_1^2 \left(\frac{\gamma_j^2}{\sigma_{\varepsilon\varepsilon}}\right),\tag{102}$$

where $\chi_1^2(\lambda)$ refers to the noncentral chi-squared distribution with degree of freedom 1 and noncentrality parameter λ . Let $F_{\chi_1^2(\lambda)}(\cdot)$ be the CDF of this noncentral chi-squared distribution, which is indeed equal to

$$F_{\chi_1^2(\lambda)}(x) = 1 - \left(Q(\sqrt{x} - \sqrt{\lambda}) + Q(\sqrt{x} + \sqrt{\lambda})\right),\tag{103}$$

where $F_{\chi_1^2(\lambda)}(\cdot)$ be the CDF of $\chi_1^2(\lambda)$ and Q(x) is the Gaussian Q-function, i.e., $Q(x) = 1 - \Phi(x)$ and $\Phi(x)$ is the CDF of standard normal distribution.

Note that there should exist a constant D_0 such that

$$\frac{\gamma_j^2}{\sigma_{\varepsilon\varepsilon}} \ge D_0 n_{\min} \tag{104}$$

where D_0 is a sufficient large constant. And

$$\Pr\left(\min_{j\in\mathcal{O}}\frac{\hat{\gamma}_{j}^{2}}{\sigma_{\varepsilon\varepsilon}} \ge \kappa^{*}\right) = 1 - \Pr\left(\min_{j\in\mathcal{O}^{c}}\frac{\hat{\gamma}_{j}^{2}}{\sigma_{\varepsilon\varepsilon}} < \kappa^{*}\right)$$
$$\ge 1 - \Pr\left(\frac{\hat{\gamma}_{j}^{2}}{\sigma_{\varepsilon\varepsilon}} < \kappa^{*}\right), \quad j \text{ is arbitrary element in } \mathcal{O}.$$
(105)

Hence,

$$\Pr\left(\min_{j\in\mathcal{O}}\frac{\hat{\gamma}_{j}^{2}}{\sigma_{\varepsilon\varepsilon}} \ge \kappa^{*}\right) \ge Q(\sqrt{\kappa^{*}} - \sqrt{D_{0}n_{\min}}) + Q(\sqrt{\kappa^{*}} + \sqrt{D_{0}n_{\min}})$$
$$\ge Q(\sqrt{C_{0}\log m} - \sqrt{D_{0}n_{\min}}) + Q(\sqrt{C_{0}\log m} + \sqrt{D_{0}n_{\min}}) \to 1$$
(106)

if $m, n_{\min} \to \infty$. Thus, Theorem 1.6 is proved.

References

- Bickel, P.J. and Levina, E. (2008). Regularized estimation of large covariance matrices. <u>The Annals of</u> Statistics. **36**(1), pp. 199-227.
- Fisher, R.A. (1919). The correlation between relatives on the supposition of Mendelian inheritance. <u>Earth</u> and Environmental Science Transactions of the Royal Society of Edinburgh. **52**(2), pp. 339-433.
- Bulik-Sullivan, B.K., Loh, P.R., Finucane, H.K., Ripke, S., Yang, J., Schizophrenia Working Group of the Psychiatric Genomics Consortium, Patterson, N., Daly, M.J., Price, A.L. and Neale, B.M. (2015). LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. <u>Nature</u> genetics. 47(3), pp. 291-295.
- Fan, J. and Li R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association. 96(456), pp. 1348-60.
- Fan, J., Liao, Y. and Mincheva, M. (2011). High dimensional covariance matrix estimation in approximate factor models. The Annals of Statistics. 39(6), pp. 3320–3356.
- Huang, J., Breheny, P. and Ma, S. (2012). A selective review of group selection in high-dimensional models. Statistical Science, 27(4), pp. 481-499.
- Muirhead, R.J., (2009). Aspects of multivariate statistical theory. John Wiley & Sons.
- Vershynin, R. (2010). Introduction to the non-asymptotic analysis of random matrices. <u>arXiv</u> preprint. arXiv:1011.3027.
- Vershynin, R. (2018). <u>High-dimensional probability</u>: An introduction with applications in data science. Cambridge university press.
- Jankova, J and Van De Geer, S. (2018). Semiparametric efficiency bounds for high-dimensional models <u>The</u> <u>Annals of Statistics</u>, **46**(5), pp. 2336-2359.
- Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal statistical society: series B (Methodological), 57(1), pp.289-300.
- Lin, Z., Xue, H. and Pan, W. (2023). Robust multivariable Mendelian randomization based on constrained maximum likelihood. The American Journal of Human Genetics, 110(4), pp.592-605.