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1 Supplemental Multivariable Simulations
1.1 Simulation settings for MVMR analysis in the main body
We consider the following statistical model which has the same representation as Lin (2023):

U = GγU + eU , (1)
Xk = GγXk

+ 0.25U + eXj
, j = 1, ..., 4 (2)

Y =
4∑

k=1
θjXk + Gα + U + eY . (3)

To make γX1 , ..., γX4 to have correlation, we generate it from the Gaussian-Uniform copula model:
zj1
zj2
zj3
zj4

 ∼ N




0
0
0
0

 ,


1 0.5 −0.5 0.5

0.5 1 −0.5 0.5
−0.5 −0.5 1 −0.5
0.5 0.5 −0.5 1


 , (4)

γXk,j = Φ(zjk) × 0.22, (5)

where Φ(·) is the CDF of standard normal distribution. In this simulation, we consider the compound
symmetric structure with a correlation cor(zjk, zjs) = 0.5 for all k ≠ s. As for γu, each element γuj are
independently generated from

γ∗
uj ∼ 0.3Unif(0, 0.1) + 0.7δ (6)

where δ is a point mass at zero. As for α, each element αj are independently generated from

αj ∼ 0.3N (0.1, 0.22) + 0.7δ (7)

where δ is a point mass at zero. The next part is fixing the heritability, which is achieved by

σ2
e = var(GγXk

)
h2 − 1, (8)

where h2 = 0.1 in this simulation. Finally, the random error is generated from
eU

eX1

eX2

eX3

eX4

eY

 ∼ N




0
0
0
0
0
0

 , σ2
e


1 0.5 0.5 −0.5 0.5 0.5

0.5 1 0.5 −0.5 0.5 0.5
0.5 0.5 1 −0.5 0.5 0.5

−0.5 −0.5 −0.5 1 −0.5 −0.5
0.5 0.5 0.5 −0.5 1 0.6
0.5 0.5 0.5 −0.5 0.5 1



 (9)

In Lin (2023), they did not consider the correlations among {γXk
} and the error terms, and did not fix the

heritability. These are two major adjustments me made.
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1.2 Root Mean Square Error

Figure S1: Barplot of the square-root of mean square error (RMSE). Panel A - L displays the barplots of the values of RMSE
from seven methods in the MVMR simulation. The four rows represent the four causal effects θj , j = 1, 2, 3, 4. Each column
corresponds to one of the three scenarios. The x-axis indicates the value of RMSE, while the y-axis lists the seven methods.
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1.3 Standard Error Evaluation

Figure S2: Boxplot of SE minus SD. Panel A - L displays the boxplots of the values of SE minus SD from seven methods in
the MVMR simulation. The four rows represent the four causal effects θj , j = 1, 2, 3, 4. Each column corresponds to one of the
three scenarios. The x-axis indicates the value of SE minus SD, while the y-axis lists the seven methods. If SE is correctly
estimated, the mean of SE minus SD should be close to zero, which is indicated by a dashed line.
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1.4 Coverage Frequency

Figure S3: Boxplot of the coverage frequency. Panel A - L displays the boxplots of the values of coverage frequency from seven
methods in the MVMR simulation. The four rows represent the four causal effects θj , j = 1, 2, 3, 4. Each column corresponds
to one of the three scenarios. The x-axis indicates the coverage frequency, while the y-axis lists the seven methods. If SE is
correctly estimated, the mean of coverage frequency should be around 95
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1.5 Summary Table
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1.6 Replication of Lin et al

Figure S4: Estimation results of Lin et al. Panel A - L displays the boxplots of causal effect estimates from seven methods in
the MVMR simulation. The four rows represent the four causal effects θj , j = 1, 2, 3, 4. Each column corresponds to one of the
three scenarios. The x-axis indicates the value of the causal effect estimate, while the y-axis lists the seven methods. The true
values of causal effects are denoted by dashed lines.
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1.7 Replication of Wu et al
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1.8 Bias-correction terms: Correlation matrix estimation from insignificant
GWAS statistics

We investigate the estimation error of R̂Wβ×wα , i.e., the correlation version of covariance matrix Σ̂Wβ×wα .
We first examine if increasing M results in a decreasing estimation error. Besides, we consider studying the
Frobenius norm rather than the ℓ2 norm, as ||A||2 ≤ ||A||F and the calculation of the Frobenius norm is much
less costly than the ℓ2 norm. In comparison, we also consider the correlation matrix estimate directly yielded
by the individual data, whose convergence rate is roughly O(min(

√
n1,

√
n0)). The number of replications is

1000.

For this purpose, we set M = 250, 500, . . . , 2000, n1 = n0 = 2000, 20000, and no/n0 = 0.5. Figure S5 shows
the investigation, from which we witness: (1), as M increases, the Frobenius norm of R̂Wβ×wα

is reduced; (2)
directly estimating R̂Wβ×wα

from the individual data is always more precise than indirectly estimating it
from insignificant GWAS statistics. In addition, although the estimation error of R̂Wβ×wα only depends on
M , low sample sizes will introduce finite-sample bias into the estimation.

We then study if increasing n1 and n0 will influence the estimation error of R̂Wβ×wα
. For this purpose,

we set M = 250, 500, 1000 and let n1 and n0 increase from 5000 to 40000 with a lag 5000. The number of
replications is 1000. Figure S6 exhibits the results, from which we observe: increasing n1 and n0 cannot
reduce estimation error of R̂Wβ×wα

. These results confirm our theory: the estimation error of R̂Wβ×wα
only

depends on M .
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2 Supplemental Univariable Simulations
2.1 Overlapping Fraction
We briefly introduce the simulation settings for UVMR. First, we generate a binomial variable from Binom(2, bj)
where bj ∼ Unif(0.05, 0.5) and standardize it as gij , the direct effect βj from N (0, 1/m), and ui, vi from a
normal distribution with correlation coefficient 0.5. The variances of ui and vi are chosen such that the
IV-heritabilities are σββ/σxx = 0.3 and θ2 × (σββ/σyy) = 0.15, respectively. We specify the causal effect
θ = 0.3/

√
2. We compare MRBEE with IVW, DIVW, MR-RAPS, MR-Egger, MR-Lasso, MR-Median, IMRP,

MR-Conmix, and MR-MiX, where most are implemented by using the R package MendelianRandomization.
We fix n0 = n1 = 20000, specify n01 according to the overlapping fraction, and assume no UHP or CHP. The
so-called overlapping fraction is n01/n0, where the special fraction such that E(SIVW(θ)) = 0 is n01/n0 ≈ 0.77.
The number of independent replications is 1000.

First, we study the influences of overlapping fraction n01/n0 and the number of IVs m, with the results
displayed in Fig.S7. It is easy to see that only MRBEE is able to yield an unbiased estimate of θ in all cases.
For a special overlapping fraction n01/n0 ≈ 0.77, all approaches become unbiased except MR-RAPS and
DIVW. These two methods perform badly because are based on no sample overlap assumption, which in
turn add extra biases to the estimates as long as sample overlap exists. The SEs of causal effect estimates
for all methods increases as the overlapping fraction decreases but remains unchanged by the increase of m,
confirming that the convergence rates of causal estimates are mainly determined by nmin.

As for the SE estimation, we display the boxplot of ŝe(θ̂) − se(θ̂) where se(θ̂) is approximated by the empirical
SE calculated from the independent replications. It is evident that the SE estimates produced by all
approaches have reduced variances as m grows. However, only MRBEE and DIVW can provide consistent
SE estimates, confirming the accuracy of their SE formulas. MR-ConMix is extremely likely to underestimate
the standard error, while MR-Egger, MR-Lasso, MR-Median, and MR-Mix constantly overestimate it. IVW
underestimates the SE when the fraction is large and overestimates it when the fraction is small. In contrast,
MR-RAPS seems to overestimate the SE unless the overlapping fraction is 0%.

The coverage frequency refers to the frequency that the confidence interval covers the true causal effect
among simulations. Here, this confidence interval is constructed by doubling ŝe(θ̂), meaning that the coverage
frequency corresponding to neither an inflated type-I error nor an inflated type-II error should be 0.95. We
observed that only MRBEE enjoys a coverage frequency around 0.95. When m = 250, MR-Egger, MR-Lasso,
and MR-Median suffer from inflated type-II errors, likely because these methods cannot estimate the SE
properly. These approaches also result in inflated type-I errors caused by weak instrument bias as m increases.
Additionally, because MR-Mix overestimates the SE, it consistently exhibits a substantially inflated type-II
error. Furthermore, IMRP and MR-ConMix consistently have inflated type I errors because they frequently
underestimate the SE.
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Figure S7: Investigation of UVMR approaches for univariable MR with sample sizes n0 = n1 = 20000, in terms of overlapping
fraction and number of instrumental variants.
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2.2 Sample size
In this section, we examine the influence of sample sizes. Here, we fix the number of variants m = 500 and
consider n0 = n1 = 20K; n0 = 40K,n1 = 20K; n0 = 20K,n1 = 40K; and n0 = n1 = 40K four cases. Recall
that the overlapping fraction is defined as n01/n0, and 100%, 77%,50%, and 0% four cases will be studied.
Other setting remains the same as the one shown in section 4.1 in the main paper.

Figure S8 displays the results of this examination. Preliminary, it illustrates neither increasing n0 nor
increasing n1 along is able to make the causal effect estimate more accuracy. Besides, increasing the sample
sizes of the exposure GWAS and the outcome GWAS has different impacts: the former decreases the
measurement error bias, while the latter reduces the variance of all causal effect estimates. The reason is
that the estimation error of α̂j will not cause estimation bias, in contrast, it is indeed the random error term
of the multivariate MR model. Furthermore, only the MR-BEE is able to produce unbiased causal effect
estimate and reliable SE estimate in all cases.
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Figure S8: The investigation of univariate MR in terms of sample sizes.
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Figure S9: The investigation of univariate MR in terms of type-I error.

2.3 Type-I error
Now we turn to examine whether MRBEE and existing approaches produce inflated type-I error rates when
UHP is present. Note that the UHP γuj must exist otherwise the IV-heritability of outcome will be zero
when θ = 0. We independently generate γuj from the same distribution as βj . The simulation settings
are: IV-heritability of exposure = 0.3, IV-heritability of outcome = 0.15, n01/n0 = 0.5, and the number of
replications is 1000.

Figure S9 exhibits the results, from which some phenomena are consistently observed; e.g., increasing n1 and
n0 simultaneously reduces the variances of all causal estimates, while increasing m increases weak instrument
bias. Since θ = 0 implies that only the confounder bias (n01/n0σuv) exists, all the weak instrument biases
are upward. (The correlation coefficient between ui and vi is 0.5.) In addition, all the existing approaches
incur inflated type-I errors as m rises. The result suggests that the weak instrument bias is likely to explain
some significant causal relationships observed in the literature. However, using MRBEE can produce reliable
causal inferences..

26



2.4 Winner’s curse
In this section, we examine the impact winner’s curse. We use the exactly same setting as the one in section
4.1. To simulate the winner’s curse, we only use the variants with absolute t-statistics (i.e., |β̂/se(β̂)|) larger
than 1 or 2.

Figure S10 displays the results of this examination. It shows the winner’s curse will not introduce a significant
bias into MR-BEE as long as the overlapping fraction is not zero. As for other MR approaches that suffer
from biases, we observed that the winner’s curse will indeed slightly reduce the biases but inflate the variances.
We believe that only selecting the significant variants will reduce the weak instrument bias somehow, because
the weak instrument bias is determined by the ratio of signal-by-noise, i.e.,

ψββ

m
v.s. σWβWβ

, (10)

where ψββ =
∑m

j=1 var(βj). If ψββ/m is significantly larger than σWβWβ
, the bias of the IVW estimate should

disappear due to the structure of “weak instrument bias x estimation error bias”.

In addition, as the overlapping fraction decreases, the MR-BEE also encounters small bias especially when
this fraction is zero. The reason for this problem is

1
m

m∑
j=1

βjωβj
→ 0, 1

|W|
∑
j∈W

βjωβj
̸→ 0, (11)

where W is the set of all “winners”. In this case, extra selection bias arises but MR-BEE fails to account for
it. Fortunately, such a bias is usually modest and it seems only existing when the overlapping fraction is 0.
Increasing the sample size to identify more causal variants is one of the practical ways to resolve the winner’s
curse in this case.
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Figure S10: The investigation of univariate MR in terms of winner’s curse.
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2.5 Outlier test
In this section, we investigate if the MR-BEE with the IMRP pleiotropy test is able to remove the pleiotropy
as resembling the outlier detection. The methods for comparsion include IMRP, MR-Lasso and MR-ConMix.
Detailed setting of outliers can be found in the subsection of outlier detection setting. Here, we consider three
criteria: estimation error of causal effect, true negative (TN) and true positive (TP). Here, the TN refers to
the proportion of removing all outliers, while the TP refers to the proportion of not removing any valid IV.
For IMRP and MR-BEE, we need to specify the threshold κ. For IMRP, we consider two thresholds: κ = 0.05
and κ = 0.05/s where s is the number of real outliers. Regarding MR-BEE with IMRP, we not only consider
this two thresholds but also consider two FDR control methods “BH” and “Sidak”, where the thresholds in
these two methods are 0.05. Details of the FDR control methods can be found in R package FDRestimation.

Figure S11 displays the results of outlier detection. As for estimation error, MR-BEE with threshold κ = 0.05
suffers from a small selection bias, because this estimator is supposed to remove many valid IVs because of
false discovery. As for MR-BEE with other thresholds, they do not suffer from bias. As for other methods,
they incur large bias introduced by the weak instrument bias and estimation error bias.

As for TN, the results show all methods are able to remove the true outliers. As for TP, however, only the
MR-Lasso is able to keep all valid IVs. MR-BEE and IMRP with the oracle threshold (i.e., κ = 0.05/s) have
large probabilities to keep every valid IV with the increasing of outlier fractions, but this probability is not 1.
Other methods cannot keep valid IVs at all, although the causal effect estimates may not have biases. These
results show that there exists a theoretical threshold κ ≍ Fχ2(logm) to distinguish the outliers and the valid
IVs, but this threshold may be difficult to specify in practice. In contrast, the MR-Lasso seems to enjoy the
oracle property thanks to the consistency of lasso-type regularizer (Fan, 2001).
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Figure S11: The investigation of univariate MR in terms of outlier detection.
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2.6 Verification of Asymptotic Theroy
We next verify if the asymptotic normal distributions in Theorem 1.2 and Theorem 1.2 are correct. For a
general estimate θ̂, the asymptotic bias and SE are

√
sn(θ̂ − θ) and

√
snse(θ̂), respectively, where

√
sn is the

convergence rate of θ̂. If this estimate is strongly asymptotically unbiased, the asymptotic bias sn(θ̂ − θ)
should also be 0. Besides, if two estimates have equal asymptotic SEs, they are equally powerful in terms of
statistical efficiency. We select MR-BEE, IVW, MR-Median, and MR-Lasso to compare, only consider two
overlapping fractions: 100% and 0%, set n0 = n1 = nmin, and fix the causal effect θ = 0.5. As for m and
nmin, we focus on the following four cases:

(1) m = 2500, 5000, . . . , 50000 and m0.9/n = c0 = 0.1 and 0.2; we examine the direct bias: θ̂−θ, asymptotic
SE:

√
n2

min/m se(θ̂), and coverage frequency;

(2) m = 250, 500, . . . , 5000 and m/n = c0 = 0.1 and 0.2; we examine the direct bias: θ̂ − θ, asymptotic SE:√
nmin se(θ̂), and coverage frequency;

(3) m = 250, 500, . . . , 5000 and m2/n = c0 = 5 and 10; we examine the asymptotic bias:
√
nmin(θ̂ − θ),

asymptotic SE:
√
nmin se(θ̂), and coverage frequency;

(4) m = 250, 500, . . . , 5000 and m3/n = c0 = 5 and 10; we examine the asymptotic bias:
√
nmin(θ̂ − θ),

asymptotic SE:
√
nmin se(θ̂), and coverage frequency.

Note that we directly generate the estimation errors Wβ and wα according to Theorem 1 because nmin in
cases (3) and (4) can be larger than one million. %The calculations involving individual-data are extremely
time-consuming in these cases.

Fig. S12 demonstrates the simulation results. In case (1), θ̂BEE is unbiased while the other three estimates
suffer from non-removable biases. For the asymptotic SE,

√
n2

min/m se(θ̂BEE) remains unchanged when nmin
and m are sufficiently large (e.g., the bars colored in blue), verifying conclusion (iii) in Theorem 1.3. However,
the coverage frequency of MR-BEE is a little larger than 0.95, meaning that the SE of θ̂BEE is overestimated
in this extreme case. This phenomenon is reasonable because Theorem 1.4 points out that the convergence
rate of the sandwich formula is min(

√
nmin, nmin/

√
m,

√
m/ logm), which slows down as m increases. In case

(2), the direct bias of θ̂IVW is unchanged as nmin tends to infinity, confirming conclusion (iii) in Theorem 1.2.
As for θ̂BEE, its asymptotic SE is a little larger than θ̂IVW, verifying item (ii) in Theorem 1.3.

In case (3), the asymptotic bias of θ̂IVW is constant as nmin goes to infinity, illustrating that θ̂IVW is not
strongly asymptotically unbiased. As a result, the coverage frequencies of θ̂IVW are significantly smaller than
0.95, confirming our claim that any inference made based on θ̂IVW is invalid. Besides, the asymptotic SEs
of θ̂BEE and θ̂IVW are essentially the same, indicating that θ̂BEE and θ̂IVW are equally efficient as long as
m/nmin → 0. In case (4), the asymptotic bias of IVW, MR-Median, and MR-Lasso vanish as nmin increases
and their coverage frequencies are around 0.95, which is consistent with conclusion (i) in Theorem 1.2. The
equal asymptotic SEs also indicate that θ̂BEE and θ̂IVW are equally efficient in this scenario. In addition,
IVW, MR-Median, and MR-Lasso suffer from the same degree of bias when there is no pleiotropy, while
MR-Median not only suffers from a large asymptotic SE but also is likely to overestimate it.
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Figure S12: Investigations of MR-BEE and IVW in terms of asymptotic bias and covariance matrix.
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2.7 Larger numbers of IVs
Here, we directly generate the GWAS summary data from the normal distribution using the following model:

β̂j ∼ N (0,Σββ + ΣWβWβ
), α̂j ∼ N (β⊤

j θ,θ⊤ΣWβWβ
θ + σwαwα + 2θ⊤σWβwα .)

This helps us to evaluate the performances of the existing methods in the cases of larger numbers of IVs.

For larger numbers of IVs, the degrees of the weak instruments are higher, MRBEE and MR.CUE are two
methods consistently performing well in the no pleiotropy cases. This confirms our conjecture that the key
to removing weak instrument bias is accounting for the covariance matrix of estimation errors—however,
MR.CUE suffers from bias in the presence of pleiotropy. We believe this is due to the fact that MR.CUE only
considers the UHP satisfying the InSide condition, which cannot address the unbalanced UHP. In addition,
the univariable version of MRCML is generalized bias because it does not require the user to provide the
correlation between exposure and outcome GWAS, which implies it does not account for the correlation
between exposure and outcome GWAS estimation errors. In contrast, the multivariable version of MRCML
requires us to provide it, and hence it is unbiased.
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2.8 Additional pleiotropy simulation
We performed a univariable MR simulation to compare the performance of horizontal pleiotropy identification
methods used by MRBEE and MRCML-BIC and their subsequent effects on their causal estimates. The
simulation models and R code used to generate the simulated data are presented in Figure 15. In these
simulations, we fixed the number of causal exposure SNPs at 100, the exposure heritability at 0.15, the true
causal effect at 0.2, and the exposure and outcome GWAS sample sizes at 30k and non-overlapping and
varied the mean of UHP from a value of 0 to a value of 0.1. For each UHP mean, we drew UHP effects
for each SNP from a normal distribution with variance that was one fourth of the variance of the true
SNP-outcome associations. We then estimated causal effects using MRBEE and MRCML-BIC. We then
recorded the number of horizontally pleiotropic IVs that were identified by each method and the corresponding
causal effect estimates after excluding them. These results indicate that the results of which isare presented
below, which suggestreveals that MRBEE correctlyonsistently unbiasedly estimateds the causal effects and
identified a stableconstant proportion of UHP IVs regardless of the UHP mean, whereas the BIC method of
MVMR-cML MRCML-BIC identifieds UHP IVs at different rates as the UHP mean changeds, thus affecting
the its subsequent causal effect estimate. In this simulation, the causal estimate was based on observed values
of β̂X and β̂Y , the observed SNP-exposure and SNP-outcome associations, respectively, and both methods
were adjusted for GWAS estimation error.

3 Real Data Analysis
3.1 Myopia data: heritability, genetic correlation matrix, and estimation error

correlation matrix
3.2 SCZ data: heritability, genetic correlation matrix, and estimation error

correlation matrix
3.3 CAD data: heritability, genetic correlation matrix, and estimation error

correlation matrix
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Figure S13: Investigation of UVMR approaches for UVMR model with sample sizes n0 = · · · = n6 = 20000 and number of IVs
m = 1000.
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Figure S14: Investigation of UVMR approaches for UVMR model with sample sizes n0 = · · · = n6 = 20000 and number of IVs
m = 2000.
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Figure S15: These are the results of simulations described above comparing the performance of MRBEE and MRCML-BIC in
identifying horizontal pleitropy and estimating the causal effect as the UHP mean changes.
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Figure S16: Myopia data. A. Heritability estimated by LDSC and the corresponding confidence intervals (radius is double SE).
B. Genetic correlation matrix estimated by LDSC. C. Correlation matrix of estimation error constructed using the intercept
from LDSC estimation. D. Correlation matrix of estimation error constructed using GWAS insignificant statistics.
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Figure S17: SCZ data. A. Heritability estimated by LDSC and the corresponding confidence intervals (radius is double SE). B.
Genetic correlation matrix estimated by LDSC. C. Correlation matrix of estimation error constructed using the intercept from
LDSC estimation. D. Correlation matrix of estimation error constructed using GWAS insignificant statistics.
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Figure S18: CAD data. A. Heritability estimated by LDSC and the corresponding confidence intervals (radius is double SE).
B. Genetic correlation matrix estimated by LDSC. C. Correlation matrix of estimation error constructed using the intercept
from LDSC estimation. D. Correlation matrix of estimation error constructed using GWAS insignificant statistics.
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1 Asymptotic Results

1.1 Regular conditions

we investigate the asymptotic behavior of the multivariable IVW estimate as the number of IVs m and the
minimum sample size nmin go to infinity. To facilitate the theoretical derivation, we specify three definitions
and four regularity conditions.

Definition 1.1 (Sub-Gaussian variable). A random variable x is sub-Gaussian distributed with sub-Gaussian
parameter τx > 0 if for all t > 0, Pr(|x− E(x)| ≥ t) ≤ 2e−t2/τ2

x .

Definition 1.2 (Well-conditioned covariance matrix). A covariance matrix Σ is well-conditioned if there is
a positive constant d0 such that 0 < d−1

0 ≤ λmin(Σ) ≤ λmax(Σ) ≤ d0 < ∞.

Definition 1.3 (Strongly asymptotically unbiased estimate). Let θ̂ be a consistent estimate of θ with an
asymptotic normal distribution

√
sn(θ̂−θ) D−→ N (µθ,Σθ), where µθ is a vector with a bounded ℓ2-norm, Σθ

is a well-conditioned covariance matrix, and sn is a sequence of n. Then θ̂ is called a strongly asymptotically
unbiased estimate of θ if µθ = 0.

Sub-Gaussianity and well-conditioned covariance matrix are two of the basic concepts in modern statistics
(Vershynin, 2018). In addition, we define the strongly asymptotic unbiasedness to distinguish the consistent
estimate whose squared bias vanishes with an equal and a smaller rate than its variance, respectively. If
an estimate is consistent but its squared bias and variance vanish at the same rate, the classic confidence
interval cannot cover the true parameter with a probability of 0.95, thus leading to invalid statistical inference
(Jankova, 2018).

Condition 1.1 (Regularity conditions for multivariable MR).
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(C1) For gi = (gi1, . . . , gim)⊤, each entry gij is a bounded sub-Gaussian with E(gij)=0, var(gij)=1, and
sub-Gaussian parameter τg ∈ (0,∞). For all (i, j) ̸= (t, s), gij is independent of gts.

(C2) For ui = (ui1, . . . , uip)⊤, each entry uij is a sub-Gaussian with E(uij) = 0, var(uis) ∈ (0,∞), and
sub-Gaussian parameter τu ∈ (0,∞); vi is a sub-Gaussian with E(vi) = 0, var(vi) ∈ (0,∞), and
sub-Gaussian parameter τv ∈ (0,∞). Besides, (u⊤

i , vi)⊤ is independent of (u⊤
t , vt)⊤ for all i ̸= t.

Furthermore, Σu×v is a well-conditioned covariance matrix of (u⊤
i , vi)⊤.

(C3) For βj = (βj1, . . . , βjp)⊤,
√
mβjs is sub-Gaussian with E(

√
mβjs) = 0, var(

√
mβjs) ∈ (0,∞), and sub-

Gaussian parameter τβ ∈ (0,∞). For all j ̸= t, βj is independent of βt and Ψββ is a well-conditioned
covariance matrix of

√
mβj.

(C4) The genetic variant gij, the genetic effect βj, the noise terms ui and vi, are three mutually independent
groups.

Conditions (C1)-(C4) restrict that all variables involved in this paper are sub-Gaussian distributed. In
practice, gij is standardized from a binomial variable with status 0, 1, and 2. Hence, it is supposedly a
bounded sub-Gaussian variable as long as its MAF is not rare. Besides, we assume

√
mβj to be sub-Gaussian

with a well-conditioned covariance matrix Ψββ , because the cumulative covariance explained by the m IVs
Ψββ should be fixed while the covariance explained by each IV Σββ → 0 as m → ∞. This is because we
adopt the infinitesimal random effect model in which cov(βj) = h2

m/m (Bulik-Sullivan et al., 2015; Fisher,
1919), where h2

m is the additive SNP heritability explained by the m IVs. In MR analysis, the number of
IVs can increase as the sample size increases because of increasing statistical power. Our theoretical work
assumes that the heritability of IVs always keeps a constant. This is a reasonable assumption because the
effect sizes because smaller and smaller under the infinitesimal model as the number of causal SNPs grows.
In additional, the sub-Gaussian distribution is more general than the normal distribution, allowing for the
possibility of partial elements in βj to be a product of a continuous variable and a binary variable. This
flexibility aligns with the scenario in multivariable MR analysis where the IVs from multiple exposures are
combined, inevitably leading to the inclusion of numerous weak or null IVs for some exposures.
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1.2 Asymptotic Results for Multivariable IVW

Theorem 1.1. Denote wαj = α̂j − αj and ωjs = β̂js − βjs, s = 1, . . . , p. If conditions (C1)-(C4) are
satisfied, then for all j,

√
n0wαj√
n1wβ1j

...√
npwβ1p

 D−→ N




0
0
...
0

 ,


σyy

n01√
(n0n1)σyx1 · · · n01√

(n0np)σyxp

n01√
(n0n1)σyx1 σx1x1 · · · n1p√

(n1np)σx1xp

...
...

. . .
...

n0p√
(n0np)σyxp

n1p√
(n1np)σx1xp

· · · σxpxp


 ,

if n0, . . . , np and m → ∞.

Theorem 1.1 demonstrates the asymptotic normal distribution of the estimation errors, from which we are
able to obtain

ΣWβWβ
= ∆xx ⊙ Σxx, σWβwα

= δxy ⊙ σxy, σwαwα
= σyy/n0, (1)

where the (j, s)th element of ∆xx is njs/(njns), the jth element of δxy is nj0/(n0nj), and the operator
⊙ is the Hadamard product of two matrices. Our work is the first to rigorously prove this theorem under
regularity conditions (C1)-(C4) and highlight the role of sample overlap.

Based on this theorem, the expectations of SIVW(θ) and HIVW are given by

E(SIVW(θ)) = (∆xx ⊙ Σxx)θ − δxy ⊙ σxy, E(HIVW) = Σββ + ∆xx ⊙ Σxx. (2)

By expressing σxy = Σxxθ + σuv, an alternative expectation of SIVW(θ)) is obtained:

E(SIVW(θ))︸ ︷︷ ︸
measurement error bias

= {(∆xx − δxy1⊤) ⊙ Σxx}θ︸ ︷︷ ︸
null bias

− δxy ⊙ σuv︸ ︷︷ ︸
confounder bias

. (3)

From this expectation, it is clear that there are two sources of measurement error bias: {(∆xx − δxy1⊤) ⊙
Σxx}θ comes from the measurement error, while {δxy ⊙ σuv} is caused by the confounder. Here, we call
{(∆xx −δxy1⊤)⊙Σxx}θ null bias because it always shrinks the coefficient estimate toward zero. In contrast,
we term {δxy ⊙ σuv} confounder bias because σuv ̸= 0 implies that there are underlying confounders
simultaneously affecting both xi and yi. Moreover, the overlapping fractions δxy linearly trade off these two
sources of biases. Generally, null bias is dominant when the elements of δxy are small, while confounder
bias dominates when the elements of δxy are large. And there may exist a special sample overlap such that
δxy ⊙σuv = {(∆xx −δxy1⊤) ⊙ Σxx}θ. In univariable MR, this special fraction is n01/n0 = σxxθ/σxy, which
guarantees that E(SIVW(θ)) = 0 and E(θ̂IVW) = θ. This theoretical result explains why in the empirical studies,
θ̂IVW has a negative bias when n01/n0 is small, has a positive bias when n01/n0 is large, and is unbiased at
this specific point.

Theorem 1.2. Suppose conditions (C1)-(C4) hold and m, nmin → ∞. Then

(i) if m/
√
nmin → 0,

√
nmin(θ̂IVW − θ) D−→ N (0, ψθΨ−1

ββ );

(ii) if m/
√
nmin → c0,

√
nmin(θ̂IVW − θ) D−→ N (−c0Ψ−1

ββ (ΨWβWβ
θ −ψWβwα

), ψθΨ−1
ββ );

(iii) if m/nmin → 0, ||θ̂IVW − θ||2 = OP (m/nmin);

(iv) if m/nmin → c0 ∈ (0,∞), θ̂IVW − θ P−→ −c0(Ψββ + c0ΨWβWβ
)−1(ΨWβWβ

θ −ψWβwα
);

(v) if m/nmin → ∞, θ̂IVW
P−→ Ψ+

WβWβ
ψWβwα

;
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where
ΨWβ×wα

=
(

ΨWβWβ
ψWβwα

ψ⊤
Wβwα

ψwαwα

)
= lim

nmin→∞

(
nminΣWβWβ

nminσWβwα

nminσ
⊤
Wβwα

nminσwαwα

)
,

and ψθ = ψwαwα + θ⊤ΨWβWβ
θ − 2θ⊤ψWβwα .

Theorem 1.2 is one of two main theorems in this paper and points out five scenarios. First, if m goes to
infinity with a lower rate than

√
nmin, then θ̂IVW is strongly asymptotically unbiased. In other words, θ̂IVW

is able to reliably infer causality only when the sample size of GWAS data is quadratically larger than the
number of IVs. On the other hand, the asymptotic covariance matrix of θ̂IVW is the inverse of the cumulative
covariance matrix Ψββ =

∑m
j=1 cov(βj), therefore, it is optimal to include as many associated variants as

possible in order to have Ψββ large enough. In contrast, using a few top significant variants to perform MR
analysis is not recommended.

Second, if m tends to infinity with the same rate as
√
nmin,

√
nmin(θ̂IVW − θ) converges to an asymptotic

normal distribution with a non-zero asymptotic bias {c0Ψ−1
ββ (ψWβwα

− ΨWβWβ
θ)}. In this asymptotic bias,

{c0(ψWβwα
− ΨWβWβ

θ)} is caused by SIVW(θ) and Ψ−1
ββ is caused by H−1

IVW. Since the asymptotic bias and
asymptotic covariance matrix are of the same order in this scenario, the inference made is invalid although
the bias of θ̂IVW is infinitesimal. When m/nmin → 0, θ̂IVW still converges to θ with a rate O(m/nmin), but it
no longer has an asymptotic normal distribution. Scenario (iv) is more serious than (iii) because the bias
of θ̂IVW will not vanish even when

√
nmin goes to infinity. In the fifth scenario, θ̂IVW converges to a term

irrelevant to θ.
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1.3 Asymptotic Results for MRBEE

Theorem 1.3. Suppose conditions (C1)-(C4) hold and m, nmin → ∞. Then

(i) if m/nmin → 0,
√
nmin(θ̂BEE − θ) D−→ N (0, ψθΨ−1

ββ );

(ii) if m/nmin → c0 ∈ (0,∞),
√
nmin(θ̂BEE − θ) D−→ N (0, ψθΨ−1

ββ + c0Ψ−1
ββ ΨBCΨ−1

ββ );

(iii) if m/nmin → ∞ and m/n2
min → 0,

√
(n2

min/m)(θ̂BEE − θ) D−→ N (0,Ψ−1
ββ ΨBCΨ−1

ββ );

where ψθ is defined in Theorem 1.2 and ΨBC is a semi-positive symmetric matrix whose expression is shown
in equation (64) in supplementary materials.

Theorem 1.3 indicates three scenarios. First, if m/n → 0,
√
nmin(θ̂BEE −θ) converges to a normal distribution

with a zero mean and the covariance matrix being exactly the same as θ̂IVW. In other words, θ̂BEE is not only
strongly asymptotically unbiased but also loses no efficiency in comparison to θ̂IVW. Second, if m/nmin →
c0 ∈ (0,∞), there is an additional covariance matrix c0Ψ−1

ββ ΨBCΨ−1
ββ in the asymptotic normal distribution,

where ΨBC is introduced by the bias-correction terms:

ΨBC = lim
nmin→∞

var
[
nmin√
m

(
(W⊤

β Wβ −mΣWβWβ
)θ − (W⊤

βwα −mσWβwα
)
)]
. (4)

In this scenario, θ̂BEE is again strongly asymptotically unbiased with a convergence rate
√
nmin, while θ̂IVW

incurs a bias not vanishing asymptotically. In the third scenario, θ̂BEE is still strongly asymptotically unbiased
with a convergence rate

√
(n2

min/m), and the asymptotic distribution is dominated by the bias correction
terms. Note that θ̂IVW is not consistent unless m/nmin → 0 and the inference made by θ̂IVW is unreliable
unless m/

√
nmin → 0. In contrast, θ̂BEE is strongly asymptotically unbiased as long as m/n2

min → 0. Thus,
MRBEE is superior to multivariable IVW in terms of both unbiasedness and asymptotic validity in all
possible scenarios.

Theorem 1.4. Suppose conditions (C1)-(C4) hold. Let g{s}
ij satisfy the condition (C1), E(x[s]

i |g{s}
ij ) = 0 for

all 1 ≤ s ≤ p, and E(y[0]
i |g{0}

ij ) = 0. Then

∥Σ− 1
2

Wβ×wα
Σ̂Wβ×wα

Σ− 1
2

Wβ×wα
− Ip+1∥2 = OP

(
1√
M

)
,

if nmin and M → ∞.

Theorem 1.4 shows that Σ̂Wβ×wα
has a O(

√
M) convergence rate after adjusting the scale of ΣWβ×wα

.
As there may be more than 1 million independent variants in the whole genome, Σ̂Wβ×wα

has high preci-
sion. Besides, n0, n1, ..., np → ∞ are required such that

√
n0α̂

∗
j and

√
nsβ̂

∗
js are asymptotically normally

distributed.

Theorem 1.5. Under the conditions of Theorem 1.4,

||Σ− 1
2

BEE (θ)Σ̂BEE(θ̂BEE)Σ− 1
2

BEE (θ) − Ip||2 = OP

(
max

{
1√
nmin

,

√
m

nmin
,

√
logm
m

})
if nmin,m and M → ∞ and m/n2

min → 0.

Theorem 1.5 shows that Σ̂BEE(θ) has a min(
√
nmin,

√
(n2

min/m),
√

(m/ logm)) convergence rate when
m/n2

min → 0. The first two convergence rates are brought by ||F̂BEE − FBEE||2, while the third convergence
rate is yielded by ||V̂BEE(θ̂BEE) − VBEE(θ)||2. Note that the SE estimation should be of the same importance
as the causal effect estimation. Although the inference is made based on an unbiased estimate, it could
still be invalid if the SE estimate is not reliable. As the dependability of the sandwich formula has been
extensively investigated empirically, it is a reliable technique to obtain the SE estimate for MRBEE.
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Theorem 1.6. Assume that |O| is fixed and bounded and γ∗
1 , . . . , γ

∗
m are a series of non-random numbers.

Then under the conditions of Theorem 1.5, there exists a threshold κ = Fχ2
1
(C0 logm) such that Pr(O =

Ô) → 1, where Ô = {j : Fχ2
1
(tγj ) > κ} and C0 is a sufficiently large constant.

Theorem 1.6 indicates that there is a theoretical threshold κ = Fχ2
1
(C0 logm) to consistently identify all

horizontal pleiotropy. This threshold increases with a rate O(logm) to reduce the false discovery rate (FDR)
and its concrete value can be chosen by a FDR control method (Benjamini, 1995). In practice, MRBEE
iteratively applies the hypothesis test to remove the outliers and uses the remaining IVs to estimate θ. The
stable estimate is regarded as θ̂BEE.
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1.4 Preliminary lemmas

In this subsection, we specify some lemmas that can facilitate the proofs, most of which can be found in
the existing papers. We first discuss the equivalent characterizations of sub-Gaussian and sub-exponential
variables.

Lemma 1.1 (Equivalent characterizations of sub-Guassian variables). Given any random variable X, the
following properties are equivalent:

(I) there is a constant K1 ≥ 0 such that

Pr(|X| ≥ t) ≤ 2 exp(−t2/K2
1 ), for all t ≥ 0,

(II) the moments of X satisfy

||X||Lp
= (E(|X|p))

1
p ≤ K2

√
p, for all p ≥ 1,

(III) the moment generating function (MGF) of X2 satisfies:

E{exp(λ2X2)} ≤ exp(K2
3λ

2), for all λ staisfying |λ| ≤ K−1
3 ,

(IV) the MGF of X2 is bounded at some point, namely

E{exp(X2/K2
4 )} ≤ 2,

(V) if E(X) = 0, the MGF of X satisfies

E{exp(λX)} ≤ exp(K2
5λ

2), for all λ ∈ R,

where K1, . . . ,K5 are certain strictly positive constants.

This lemma summarizes some well-known properties of sub-Guassian and can be found in Vershynin (2018,
Proposition 2.5.2).

Lemma 1.2 (Equivalent characterizations of sub-exponential variables). Given any random variable X, the
following properties are equivalent:

(I) there is a constant K1 ≥ 0 such that

Pr(|X| ≥ t) ≤ 2 exp(−t/K1), for all t ≥ 0,

(II) the moments of X satisfy

||X||Lp
= (E(|X|p))

1
p ≤ K2p, for all p ≥ 1,

(III) the moment generating function (MGF) of |X| satisfies:

E{exp(λ|X|)} ≤ exp(K3λ), for all λ staisfying 0 ≤ λ ≤ K−1
3 ,

(IV) the MGF of |X| is bounded at some point, namely

E{exp(|X|/K4)} ≤ 2,

(V) if E(X) = 0, the MGF of X satisfies

E{exp(λX)} ≤ exp(K2
5λ

2), for all λ ≤ K−1
5 ,
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where K1, . . . ,K5 are certain strictly positive constants.

This lemma summarizes some well-known properties of sub-exponential and can be found in Vershynin (2018,
Proposition 2.7.1).

Lemma 1.3 (Product of sub-Gaussian variable is sub-exponential). Suppose that X,Z are two sub-Gaussian
variable, then Y = XZ is a sub-exponential variable. Besides, if X is a bounded sub-Gaussian variable, then
then Y = XZ is a sub-Gaussian variable.

The first claim of this lemma is provided by Vershynin (2018, Proposition 2.7.7). The second claim of this
lemma is a direct inference of Fan et al. (2011, Lemma A.2).

Lemma 1.4 (ℓ2-norm of matrices with sub-Gaussian entries). Let X1, . . . ,Xn be n (p × 1) independent
identically distributed random vector with entries xi1, . . . , xip are sub-Gaussian with zero-mean. Besides,
define the covariance matrix of Xi as

Σ = E(XiX
⊤
i )

and the related sample covariance matrix

Σ̂ = 1
n

n∑
i=1

XiX
⊤
i .

Then for every positive integer n,

E(||Σ̂ − Σ||2) ≤ C

(
p

n
+

√
p

n

)
||Σ||2,

where C is certain positive constant.

This lemma is provided by Vershynin (2018, Theorem 4.7.1). It shows the convergence rate of sample
covariance matrix is

√
(n/m).

Lemma 1.5 (ℓ2-norm of matrices with sub-exponential entries). Let X1, . . . ,Xn be n (p× 1) independent
identically distributed random vector with entries xi1, . . . , xip are sub-exponential with zero-mean. Besides,
define the covariance matrix of Xi as

Σ = E(XiX
⊤
i )

and the related sample covariance matrix

Σ̂ = 1
n

n∑
i=1

XiX
⊤
i .

Then for ever t ≥ 0, the following inequality holds with probability at least 1 − p exp(−ct2):

||Σ̂ − Σ||2 ≤ max(||Σ||2δ, δ2),

where c is certain positive constant and δ = t
√
p/n.

This lemma is the direct inference of Vershynin (2010, Theorem 5.44). Besides, by letting t =
√
p logn we

further obtain

E(∥∥Σ̂ − Σ∥∥_2) = O

(√
p logn
n

)
∥∥Σ∥∥_2,

if Σ̂ is the sample covariance matrix of sub-exponential vector. Note that in our method, the dimension p is
fixed and hence we cannot chose t =

√
p log p such that the estimation bound becomes

√
(p log p)/n||Σ||2.
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Lemma 1.6 (Asymptotic normal distribution of Wishart matrix). Suppose X1,X2, . . . ,Xn are n IID re-
laxation of the p-dimensional variable X ∼ N (0,Σ) with a well-conditioned covariance matrix Σ. Besides,
define the sample covariance matrix of Σ as

Σ̂ = 1
n

n∑
i=1

XiX
⊤
i .

If p is a fixed number, then as n → ∞,

√
n(vec(Σ̂) − vec(Σ)) D−→ N

(
0, (Ip2 + Kp2)(Σ ⊗ Σ)

)
,

where Kp2 is the so-called commutation matrix, which is able to ensure Kp2vec(A) = vec(A′) for all (p× p)
matrix.

This lemma can be found in Muirhead (2009, equation (5), p90).

9



1.5 Specific Lemmas

In this subsection, we specify the following lemmas that are made based on the preliminary lemmas.

Lemma 1.7 (Asymptotic normal distribution of sub-Gaussian and sub-exponential variables). Suppose
X1, . . . , Xn are n independent sub-Gaussian or sub-exponential variables with mean-zero and variance
σ2

1 , . . . , σ
2
n . Then

lim
n→∞

1√
n

n∑
i=1

Xi
D−→ N (0, σ2

x),

where

σ2
x = lim

n→∞

1
n

n∑
i=1

σ2
i .

Proof of Lemma 1.7. It is easy to verify the Lyapunov’s condition: for all fixed δ > 0,

lim
n→∞

1
n1+δ

n∑
i=1

E(|Xi|2+2δ) ≤
√

2K2 + 2K2δ
2+2δ

nδ
→ 0

by the (II) of Lemma 1.1, if X1, . . . , Xn are sub-Gaussian variables;

lim
n→∞

1
n1+δ

n∑
i=1

E(|Xi|2+2δ) ≤ (2K2 + 2K2δ)2+2δ

nδ
→ 0

by the (II) of Lemma 1.2, if X1, . . . , Xn are sub-exponential variables. And hence the asymptotic normal
distribution holds.

Lemma 1.8 (Asymptotic normal distribution of estimation error). Let

ξ
[s]
j = 1

√
ns

ns∑
i=1

g
[s]
ij x

[s]
i,−j ,

where
x

[s]
i,−j = x

[s]
i − βjsg

[s]
i,j ,

s = 0, 1, . . . , p, x[0]
i,−j represents y[0]

i,−j and βj0 represent αj. Then

ξ
[s]
j

D−→ N (0, σxsxs
− σβsβs

),

where σx0x0 represents σyy and σβ0β0 represents θ⊤Σββθ.

Proof of Lemma 1.8. Note that both g[s]
ij and x[s]

i,−j are sub-Gaussian (x[s]
i,−j is the product of a sub-Gaussian

variable and a bounded sub-Gaussian variable), and it holds E(g[s]
ij x

[s]
i,−j) = 0 and

var(g[s]
ij x

[s]
i,−j) = var(g[s]

ij ) × var(x[s]
i,−j) = σxsxs

− σβsβs
. (5)

As a result,

ξ
[s]
j = 1

√
ns

ns∑
i=1

g
[s]
ij x

[s]
i,−j

D−→ N (0, σxsxs
− σβsβs

), (6)

according Lemma 1.7.
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Lemma 1.9 (Asymptotic normality of bias-correction terms). Let

ζj =
(
nmin

n1
ξ

[1]
j ,

nmin

n2
ξ

[2]
j , . . . ,

nmin

np
ξ

[p]
j ,

nmin

n0
ξ

[0]
j

)⊤

.

Under the conditions (C1)-(C4),

lim
m→∞

1√
m

m∑
j=1

(vec(ζjζ
⊤
j ) − vec(ΨWβ×wα

)) D−→ N
(

0, (I(p+1)2 + K(p+1)2)(ΨWβ×wα
⊗ ΨWβ×wα

)
)
.

as nmin,m → ∞.

Proof of Lemma 1.9. By using Lemma 1.7, ζj follows N (0,ΨWβ×wα
) as nmin → ∞. Then by using Lemma

1.6, this lemma holds.

Lemma 1.10 (Asymptotic normality of residual term). Under the conditions (C1)-(C4),

lim
m→∞

1√
m

m∑
j=1

√
mβjξ

[s]
j

D−→ N (0, σxsxs
Σββ),

and

lim
m→∞

1
m

m∑
j=1

√
mβj

√
mβ⊤

j ξ
[s]
j ξ

[k]
j

P−→ nsk√
nsnk

σxsxk
Σββ ,

for s = 0, . . . , p, where σx0xk
represents σyxk

=
∑p

l=1 θlσxlxk
.

Proof of Lemma 1.10. By condition (C4),
√
mβj is independent of ξ[s]

j . By Lemma 1.3,
√
mβjξ

[s]
j is sub-

exponential with mean 0 and covariance matrix

cov(
√
mβjξ

[s]
j ) = cov(

√
mβj) × var(ξ[s]

j )
= (σxsxs − σβsβs)Σββ . (7)

Hence, by Lemma 1.6,

lim
m→∞

1√
m

m∑
j=1

√
mβjξ

[s]
j

D−→ N (0, σxsxs
Σββ).

On the other hand, βjξ
[s]
j is sub-exponential variable according to Lemma 1.3, and

cov(
√
mβjξ

[s]
j ,

√
mβjξ

[k]
j ) = cov(ξ[s]

j , ξ
[k]
j ) × Σββ

= nsk√
nsnk

(σxsxk
− σβsβk

)Σββ . (8)

Hence, by using Lemma 1.5

lim
m→∞

1
m

m∑
j=1

√
mβj

√
mβ⊤

j ξ
[s]
j ξ

[k]
j

P−→ nsk√
nsnk

σxsxk
Σββ .
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1.6 Proofs of Theorems for IVW

Proof of Theorem 1.1. As for the estimation error ωα, we have

wαj
=
g

[0]⊤
j y[0]

n0
− αj =

g
[0]⊤
j y

[0]
−j

n0
, (9)

where

y
[0]
−j = y[0] − αjg

[0]
j =

m∑
s̸=j

αtg
[0]
t + U[0]θ + v[0], (10)

and U[0] and v[0] are the corresponding noise terms in the outcome GWAS cohort. According to Lemma 1.8,

ξ
[0]
j = 1

√
n0

n0∑
i=1

g
[0]
ij y

[0]
i,−j

D−→ N (0, σyy − θ⊤Σββθ). (11)

As for the estimation error wβjs
, we have

wβjs
=
g

[s]⊤
j x[s]

ns
− βjs =

g
[s]⊤
j x

[s]
−j

ns
, (12)

where

x
[s]
−j = x[s] − g[s]

j βjs =
∑
t̸=j

βtsg
[s]
t + u[s]. (13)

Let

ξ
[s]
j =

g
[s]⊤
j x

[s]
−j√

ns
= 1√

ns

ns∑
i=1

g
[s]
ij x

[s]
i,−j , (14)

where x[s]
i,−j is the ith element in vector x[s]

−j . According to Lemma 1.8,

ξ
[s]
j = 1√

ns

ns∑
i=1

g
[s]
ij x

[s]
i,−j

D−→ N (0, σxsxs
− σβsβs

). (15)

Now we show the covariance between ξ
[s]
j and ξ

[k]
j :

cov(ξ[s]
j , ξ

[k]
j ) = E

(
x

[s]⊤
−j g

[s]
j g

[k]⊤
j x

[k]
−j√

nsnk

)
, (16)

where x[0]
−j represents y[0]

−j for simplicity. Denote Q[sk] = (Q[sk]
it ) being a (ns × nk) matrix whose (i, t)th

element is

Q
[sk]
it = E(g[s]

ij g
[k]
tj ) =

{
1, (i, t) ∈ Q[sk],

0, (i, t) /∈ Q[sk],
(17)

where

Q[sk] = {(i, t) : g
[s]
ij and g

[k]
tj come from the same individual}. (18)
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As a result,

cov(ξ[s]
j , ξ

[k]
j ) = E

(
x

[s]⊤
−j Q[sk]x

[k]
−j√

nsnk

)
= 1

√
nsnk

∑
(i,t)∈Q[sk]

E(x[s]
i,−jx

[k]
t,−j)

= nsk√
nsnk

(
σxsxk

− σβsβk

)
, (19)

where σx0xk
represents σyxk

for simplicity, and σβ0βk
represents

σβ0βk
= cov(

√
mβ⊤

j θ,
√
mβjk) =

p∑
l=1

θlσβlβk
. (20)

Finally, we show ξ
[s]
j is uncorrelated with ξ

[s]
t for all t ̸= j and s = 0, . . . , p. Specifically,

cov(ξ[s]
j , ξ

[s]
t ) = E

(
x

[s]⊤
−j g

[s]
j g

[s]⊤
t x

[s]
−j

ns

)
. (21)

According the model setting, g[s]
j is independent of g[s]

t for all t ̸= s. Therefore, cov(ξ[s]
j , ξ

[s]
t ) = 0.

Note that if m → ∞, Σββ = 1
m Ψββ vanishes. And so Theorem 1.1 is proved.
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Proof of Theorem 1.2. Before showing the proof, we first recall the following definitions: m is the number
of IVs, nmin is the minimum sample size,

Σββ = lim
m→∞

1
m

m∑
j=1

βjβ
⊤
j , Ψββ = mΣββ ,

ΣWβWβ
= lim

m→∞

1
m

m∑
j=1

wβj
w⊤

βj
, ΨWβWβ

= nminΣWβWβ
,

σWβwα
= lim

m→∞

1
m

m∑
j=1

wαj
wβj

, ψWβwα
= nminσWβwα

,

σwαwα
= lim

m→∞

1
m

m∑
j=1

w2
αj
, ψwαwα

= nminσwαwα
.

The score function of IVW is

− 1
m

B̂⊤(â− B̂θ̂IVW) = − 1
m

B̂⊤(â− B̂θ) + 1
m

B̂⊤B̂(θ̂IVW − θ) (22)

which leads to

HIVW(θ̂IVW − θ) = −SIVW(θ), (23)

where

HIVW = 1
m

B̂⊤B̂, SIVW(θ) = − 1
m

B̂⊤(â− B̂θ). (24)

We first work with the Hessian matrix HIVW:

mHIVW = B̂⊤B̂ = B⊤B + B⊤Wβ + W⊤
β B + W⊤

β Wβ

= J1 + J2 + J3 + J4. (25)

As for J1,

J1 =
m∑

j=1
βjβ

⊤
j

P−→ Ψββ . (26)

As for J2,

∥
√
nminJ2∥2 =

∥∥∥∥ 1√
m

m∑
j=1

(
√
nminwβj

)(
√
mβj)⊤

∥∥∥∥
2

≤

√√√√∥∥∥∥ 1
m

m∑
j=1

(
√
nminwβj

)(
√
nminwβj

)⊤
∥∥∥∥

2
×

√√√√∥∥∥∥ 1
m

m∑
j=1

(
√
mβj)(

√
mβj)⊤

∥∥∥∥
2

≤ λ
1
2max(ΨWβWβ

) × λ
1
2max(Ψββ), (27)

which means

∥J2∥2 = OP (1/
√
nmin). (28)

As for J3, it has the same order as J2. As for J4,

nmin

m
J4 = 1

m

m∑
j=1

(
√
nminwβj )(

√
nminwβj )⊤ P−→ ΨWβWβ

(29)

Hence:
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(1) If m/nmin → 0,

∥J4∥2 ≤ λmax(ΨWβWβ
) × m

nmin
→ 0. (30)

Therefore,

mHIVW
P−→ Ψββ . (31)

(2) If m/nmin → c0 ∈ (0,∞), then

J4 = m

nmin
× 1
m

m∑
j=1

(
√
nminwβj )(

√
nminwβj )⊤ P−→ c0ΨWβWβ

. (32)

Therefore,

mHIVW
P−→ Ψββ + c0ΨWβWβ

. (33)

(3) If m/nmin → ∞ and m/n1+τ
min → c0 ∈ (0,+∞) with certain constant τ > 0, then

1
nτ

min
J4 = m

n1+τ
min

× 1
m

m∑
j=1

(
√
nminwβj )(

√
nminwβj )⊤ P−→ c0ΨWβWβ

. (34)

Therefore,

m

nτ
min

HIVW = c0nminHIVW
P−→ c0ΨWβWβ

. (35)

We then work with SIVW(θ):

mSIVW(θ) = −B⊤wα − W⊤
βwα + B⊤Wβθ + W⊤

β Wβθ

= K1 +K2 +K3 +K4. (36)

As for K1 +K3,

√
nmin(K1 +K3) = 1√

m

m∑
j=1

(−
√
nminwαj +

√
nminw

⊤
βj
θ)(

√
mβj) D−→ N (0, ψθΨββ), (37)

where

ψθ = ψwαwα
+ θ⊤ΨWβWβ

θ − 2θ⊤ψWβwα
. (38)

As for K2,

nmin

m
K2 = − 1

m

m∑
j=1

(
√
nminwαj

)(
√
nminwβj

) P−→ −ψWβwα
. (39)

As for K4,

nmin

m
K4 =

(
1
m

m∑
j=1

(
√
nminwβj

√
nminwβj

)
θ

P−→ ΨWβWβ
θ, (40)

Jointing these results, we summary the asymptotic behavior of θ̂IVW:
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(1) If m/
√
nmin → 0, then

√
nmin||K2 +K4|| = OP

(
m√
nmin

)
= oP (1). (41)

Therefore,
√
nmin ×mSIVW(θ) =

√
nmin(K1 +K3) + oP (1) D−→ N (0, ψθΨββ). (42)

Note that when m/nmin → 0, mHIVW
P−→ Ψββ . Therefore,

√
nmin(θ̂IVW − θ) = −

√
nmin(mHIVW)−1(mSIVW(θ)) D−→ N (0, ψθΨ−1

ββ ), (43)

(2) If m/
√
nmin → c0, then

√
nmin(K2 +K4) → −c0ψWβwα + c0ΨWβWβ

θ, (44)

and hence
√
nmin ×mSIVW(θ) D−→ N (−c0(ψWβwα

+ ΨWβWβ
θ), ψθΨββ). (45)

Note that when m/nmin → 0, mHIVW
P−→ Ψββ . Therefore,

√
nmin(θ̂IVW − θ) = −

√
nmin(mHIVW)−1(mSIVW(θ))

D−→ N (c0Ψ−1
ββ (ψWβwα − ΨWβWβ

θ), ψθΨ−1
ββ ). (46)

(3) If m/
√
nmin → ∞ and m/nmin → c0, then ||K1 +K3||2 = OP (1/

√
nmin),

K2 +K4
P−→ −c0ψWβwα

+ c0ΨWβWβ
θ, (47)

and

mHIVW
P−→ Ψββ + c0ΨWβWβ

. (48)

Hence,

θ̂IVW − θ P−→ c0(Ψββ + c0ΨWβWβ
)−1(ψWβwα

− ΨWβWβ
θ). (49)

Note that if c0 = 0, then (iii) in Theorem 1.2 holds.

(4) If m/nmin → ∞ and m/n1+τ
min → c0, then

1
nτ

min
(K2 +K4) P−→ −c0ψWβwα + c0ΨWβWβ

θ (50)

and
m

nτ
min

HIVW
P−→ c0ΨWβWβ

. (51)

Therefore,

θ̂IVW
P−→ Ψ−1

WβWβ
ψWβwα . (52)

Now Theorem 1.2 is proved.
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1.7 Proofs of Theorems for MRBEE

Proofs of Theorem 1.3. Note that

0 = SBEE(θ̂BEE) = SBEE(θ) + HBEE(θ̂BEE − θ), (53)

where

SBEE(θ) = − 1
m

B̂⊤(α̂− B̂θ) − ΣWβWβ
θ + σWβwα , (54)

and

HBEE = 1
m

B̂⊤B̂ − ΣWβWβ
. (55)

As for SBEE(θ),

mSBEE(θ) = −(B + Wβ)⊤(α+wα − Bθ − Wβθ) −mΣWβWβ
+mσWβwα

= −
{

B⊤(wα − Wβθ)
}

+
{(

W⊤
β Wβ −mΣWβWβ

)
θ

}
−

{
W⊤

βwα −mσWβwα

}
= K1 +K2 +K3. (56)

Here, we define a new vector ϑ = (θ⊤, 1)⊤, an alternative vector

ζj =
(
nmin

n1
ξ

[1]
j ,

nmin

n2
ξ

[2]
j , . . . ,

nmin

np
ξ

[p]
j ,

nmin

n0
ξ

[0]
j

)⊤

,

where

ξ
[s]
j = 1√

ns

ns∑
i=1

g
[s]
ij x

[s]
is , s = 0, 1, . . . , p,

and a new covariance matrix

cov(ζj) = ΨWβ×wα =
(

ΨWβWβ
ψWβwα

ψ⊤
Wβwα

ψwαwα

)
. (57)

As for K1, it can be rewritten as

√
nminK1 = −

m∑
j=1

√
nmin(wαj

−w⊤
βj
θ)βj = 1√

m

m∑
j=1

(
√
nminζ

⊤
j ϑ)(

√
mβj)

D−→ N (0, ψθΨββ), (58)

where ψθ defined in (38) can be rewritten as

ψθ = ϑ⊤ΨWβ×wαϑ. (59)

As for K2 +K3, it can be rewritten as

K2 +K3 = I1:p
p+1

(
W⊤

β Wβ −mΣWβWβ
W⊤

βwα −mσWβwα

w⊤
α Wβ −mσ⊤

Wβwα
w⊤

αwα −mσwαwα

) (
θ

−1

)
=

√
m

nmin
I1:p

p+1

(
1√
m

m∑
j=1

ζjζ
⊤
j − ΨWβ×wα

)
ϑ

=
√
m

nmin
I1:p

p+1K4ϑ, (60)
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where I1:p
p+1 is a (p× (p+ 1)) matrix consisting of the first p row of Ip+1 and

K4 = 1√
m

m∑
j=1

ζjζ
⊤
j − ΨWβ×wα

. (61)

According to Lemma 1.6,

vec(K4) D−→ N
(

0, (I(p+1)2 + K(p+1)2)(ΨWβ×wα
⊗ ΨWβ×wα

)
)
. (62)

As a result,

nmin√
m

(K2 +K3) D−→ N (0,ΣBC) (63)

where

ΣBC =
[
ϑ⊤ ⊗ I1:p

p+1

]
︸ ︷︷ ︸

p×(p+1)2

[
(I(p+1)2 + K(p+1)2)(ΨWβ×wα

⊗ ΨWβ×wα
)
]

︸ ︷︷ ︸
(p+1)2×(p+1)2

[
ϑ⊤ ⊗ I1:p

p+1

]⊤

︸ ︷︷ ︸
(p+1)2×p

. (64)

Now we show K1 and K2 +K3 are uncorrelated. Note that βj is independent of wβj and wαj , and hence
K1 and K2 +K3 are uncorrelated. So far, we can obtain:

(1) If m/nmin → 0,

√
nmin ×mSBEE(θ) =

√
nminK1 + oP (1) D−→ N (0, ψθΨββ). (65)

(2) If m/nmin → c0,

√
nmin ×mSBEE(θ) =

√
nminK1 +

√
nmin(K2 +K3) D−→ N (0, ψθΨββ + c0ΣBC). (66)

(3) If m/nmin → ∞ and
√
m/nmin → 0,

nmin√
m

×mSBEE(θ) = nmin√
m

(K2 +K3) + nmin√
m
K1

D−→ N (0,ΣBC), (67)

where

nmin√
m
K1 =

√
nmin

m
×

√
nminK1 = OP

(√
nmin

m

)
= oP (1). (68)

Now we move to HBEE:

mHBEE = B⊤B +
(

W⊤
β Wβ −mΣWβWβ

)
+ B⊤Wβ + W⊤

β B

= J1 + J2 + J3 + J4. (69)

As for J1 = B⊤B, we have

||J1 − Ψββ ||2 =
∥∥∥∥ 1
m

m∑
j=1

√
mβj

√
mβ⊤

j − Ψββ

∥∥∥∥
2

= OP

(
1√
m

)
. (70)
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As for J2 = W⊤
β Wβ −mΣWβWβ

, we have

J2 =
m∑

j=1

(
wβj

w⊤
βj

− ΣWβWβ

)
=

√
m

nmin

1√
m

m∑
j=1

(
ξjξ

⊤
j − ΨWβWβ

)
. (71)

As a result,

nmin√
m

vec(J2) D−→ N (0, (Ip2 + Kp2)(ΨWβWβ
⊗ ΨWβWβ

)), (72)

which means ||J2|| = OP (
√
m/nmin). As for J3 = B⊤Wβ ,

√
nmin||J3||2 =

∥∥∥∥ 1√
m

m∑
j=1

√
mβj

√
nminω

⊤
βj

∥∥∥∥
2

≤

√√√√∥∥∥∥ 1
m

m∑
j=1

√
mβj

√
mβ⊤

j

∥∥∥∥
2

√√√√∥∥∥∥ 1
m

m∑
j=1

√
nminωβj

√
nminω

⊤
βj

∥∥∥∥
2

≤ λ
1
2max(Ψββ) × λ

1
2max(ΨWβWβ

), (73)

which means

||J3||2 = OP

(
1√
nmin

)
(74)

As for J4, it is easy to see ||J4||22 = ||J3||22. Hence, for all three scenarios in Theorem 1.3,

||mHBEE − Ψββ ||2 = OP

{
max

(
1√
m
,

1√
nmin

,

√
m

nmin

)}
. (75)

And hence, according to the Slutsky’s theorem,

(1) If m/nmin → 0,

√
nmin(θ̂BEE − θ) = −

√
nminΨ−1

ββK1
D−→ N (0, ψθΨ−1

ββ ). (76)

(2) If m/nmin → c0,

√
nmin(θ̂BEE − θ) = −

√
nminΨ−1

ββ (K1 +K2 +K3) D−→ N (0, ψθΨ−1
ββ + c0Ψ−1

ββ ΨBCΨ−1
ββ ). (77)

(2) If m/nmin → ∞ and m/n2
min → 0,√

n2
min/m(θ̂BEE − θ) = −nmin√

m
Ψ−1

ββ (K2 +K3) D−→ N (0,Ψ−1
ββ ΨBCΨ−1

ββ ). (78)

Thus, Theorem 1.3 is proved.
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Proof of Theorem 1.4. Similar to ξ[s]
j , we define η{s}

j as

η
{s}
j =

g
{s}⊤
j x[s]

√
ns

= 1
√
ns

ns∑
i=1

g
{s}
ij x

[s]
i . (79)

By using similar deduction as which in the proof of Theorem 1,

η
{s}
j

D−→ N (0, σxsxs
) (80)

and

cov(η{s}
j , η

{k}
j ) = nsk√

nsnk
σxsxk

. (81)

Denote ηj = (η{1}
j , . . . , η

{p}
j , η

{0}
j ) where η{0}

j represents 1√
n0
g

{s}⊤
j y[0]. Then we have

cov(ηj) = D−1
η ΣWβ×wαD−1

η , (82)

where

Dη = diag
(

1
√
n1
, . . . ,

1
√
np
,

1
√
n0

)
. (83)

By using Lemma 1.4, ∥∥∥∥ 1
M

M∑
j=1

ηjη
⊤
j − cov(ηj)

∥∥∥∥
2

= OP

(
1√
M

)
, (84)

and hence

∥Σ− 1
2

Wβ×wα
Σ̂Wβ×wαΣ

1
2
Wβ×wα

− Ip+1∥2 ≤ λ−1
min(cov(ηj))

∥∥∥∥ 1
M

M∑
j=1

ηjη
⊤
j − cov(ηj)

∥∥∥∥
2

= OP

(
1√
M

)
. (85)

Thus, Theorem 1.4 is proved.
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Proof of Theorem 1.5. Note that

Sj(θ) = −(α̂j − θ⊤β̂j)β̂j − ΣWβWβ
θ + σWβwα

= (wαj
− θ⊤wβj

)βj +
{

(wαj
− θ⊤wβj

)wβj
− ΣWβWβ

θ + σWβwα

}
= J1j + J2j . (86)

Note that both J1j and J2j are sub-exponential variables with zero mean and covariance matrix

cov(J1j) = 1
mnmin

ψθΨββ , cov(J2j) = 1
n2

min
ΣBC. (87)

Therefore, we obtain

cov(Sj(θ)) = ΣS =


1

mnmin
ψθΨββ , if m/nmin → 0,

1
mnmin

ψθΨββ + c0
mnmin

ΣBC, if m/nmin → c0,
1

n2
min

ΣBC, , if m/nmin → ∞ and
√
m/nmin → 0.

(88)

Then by using Lemma 1.5,∥∥∥∥ 1
m

m∑
j=1

Sj(θ)Sj(θ)⊤ − ΣS

∥∥∥∥
2

= OP

(√
logm
m

)
||ΣS ||2. (89)

By using the Slutsky’s theorem,∥∥∥∥ 1
m

m∑
j=1

Ŝj(θ̂BEE)Ŝj(θ̂BEE)⊤ − ΣS

∥∥∥∥
2

= OP

(√
logm
m

)
||ΣS ||2. (90)

where

Ŝj(θ̂BEE) = −(θ̂⊤
BEEβ̂j − α̂j)β̂j + Σ̂WβWβ

θ̂BEE − σ̂Wβwα
(91)

On the other hand, according to the proof of Theorem 1.3,

∥mF̂BEE − Ψββ ||2 = OP

{
max

(
1√
m
,

1√
nmin

,

√
m

nmin

)}
. (92)

Note that Bickel and Levina (2008, A22(p223)) illustrates

∥A1A2A3 − B1B2B3∥2 = OP

{
max

(
||A1 − B1||2, ||A2 − B2||2, ||A3 − B3||2

)}
, (93)

where A1,A2,A3,B1,B2,B3 are six matrices with non-diverging maximum singular values. Hence,

||Σ̂BEE(θ̂BEE) − ΣBEE(θ)||2 =
∥∥∥∥(mF̂BEE)−1

( m∑
j=1

Ŝj(θ̂BEE)Ŝj(θ̂BEE)⊤
)

(mF̂BEE)−1 −mΨ−1
ββ ΣSΨ−1

ββ

∥∥∥∥
2

= OP

{
max

(√
logm
m

,
1√
nmin

,

√
m

nmin

)}
||mΣS ||2, (94)

and consequently

||Σ− 1
2

BEE(θ)Σ̂BEE(θ)Σ− 1
2

BEE(θ) − Ip||2 = OP

{
max

(√
logm
m

,
1√
nmin

,

√
m

nmin

)}
. (95)

Thus, Theorem 1.5 is proved.
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Proof of Theorem 1.6. Note that ||θ̂BEE − θ||2 = OP (n− 1
2

min) and hence α̂j − β̂⊤
j θ̂BEE and α̂j − β̂⊤

j θ have
the same distribution. For j ∈ Oc,

γ̂j = εj = α̂j − β̂⊤
j θ̂BEE = wαj

−w⊤
βj
θ +w⊤

βj
(θ̂BEE − θ)

∼ N (0, σεε), (96)

where

σεε = θ⊤ΣWβwα
θ + σωγ ωγ

− 2θ⊤σWβwα
. (97)

As a result,

γ̂2
j

σεε
∼ χ2

1. (98)

Denote κ∗ = F−1
χ2

1
(κ). Then by using Lemma A.1 of Huang et al. (2012),

Pr
(

max
j∈Oc

γ̂2
j

σεε
≤ κ∗

)
= 1 − Pr

(
max
j∈Oc

γ̂2
j

σεε
> κ∗

)
≥ 1 − (m− |O|) Pr

(
γ̂2

j

σεε
> κ∗

)
≥ 1 −mPr

(
γ̂2

j

σεε
> κ∗

)
≥ 1 −m exp

(
− (

√
2κ∗ − 1 − 1)2

4

)
. (99)

By letting κ∗ = C0 logm with C0 being a sufficiently large constant,

Pr
(

max
j∈Oc

γ̂2
j

σεε
≤ κ∗

)
≥ 1 − exp

(
logm− 2C0 logm− 2

√
C0 logm− 1

4

)
≥ 1 − exp

(
− (2C0 − 4) logm− 2

√
C0 logm− 1

4

)
→ 1, (100)

if m → ∞.

On the other hand, for j ∈ O,

γ̂j = γj + εj , (101)

and hence

γ̂2
j

σεε
∼ χ2

1

(
γ2

j

σεε

)
, (102)

where χ2
1(λ) refers to the noncentral chi-squared distribution with degree of freedom 1 and noncentrality

parameter λ. Let Fχ2
1(λ)(·) be the CDF of this noncentral chi-squared distribution, which is indeed equal to

Fχ2
1(λ)(x) = 1 −

(
Q(

√
x−

√
λ) +Q(

√
x+

√
λ)

)
, (103)

where Fχ2
1(λ)(·) be the CDF of χ2

1(λ) and Q(x) is the Gaussian Q-function, i.e., Q(x) = 1 − Φ(x) and Φ(x)
is the CDF of standard normal distribution.

Note that there should exist a constant D0 such that

γ2
j

σεε
≥ D0nmin (104)
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where D0 is a sufficient large constant. And

Pr
(

min
j∈O

γ̂2
j

σεε
≥ κ∗

)
= 1 − Pr

(
min
j∈Oc

γ̂2
j

σεε
< κ∗

)
≥ 1 − Pr

(
γ̂2

j

σεε
< κ∗

)
, j is arbitrary element in O. (105)

Hence,

Pr
(

min
j∈O

γ̂2
j

σεε
≥ κ∗

)
≥ Q(

√
κ∗ −

√
D0nmin) +Q(

√
κ∗ +

√
D0nmin)

≥ Q(
√
C0 logm−

√
D0nmin) +Q(

√
C0 logm+

√
D0nmin) → 1 (106)

if m,nmin → ∞. Thus, Theorem 1.6 is proved.
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