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Summary
Mendelian randomization (MR) is an instrumental variable approach used to infer causal relationships between exposures and out-

comes, which is becoming increasingly popular because of its ability to handle summary statistics from genome-wide association studies.

However, existing MR approaches often suffer the bias from weak instrumental variables, horizontal pleiotropy and sample overlap. We

introduce MRBEE (MR using bias-corrected estimating equation), a multivariable MRmethod capable of simultaneously removing weak

instrument and sample overlap bias and identifying horizontal pleiotropy. Our extensive simulations and real data analyses reveal that

MRBEE provides nearly unbiased estimates of causal effects, well-controlled type I error rates and higher power than comparably robust

methods and is computationally efficient. Our real data analyses result in consistent causal effect estimates and offer valuable guidance

for conducting multivariable MR studies, elucidating the roles of pleiotropy, and identifying total 42 horizontal pleiotropic loci missed

previously that are associated with myopia, schizophrenia, and coronary artery disease.
Introduction

Mendelian randomization (MR) is an instrumental variable

(IV) approach used to infer causal relationships between ex-

posures and outcomes and can apply to summary statistics

from genome-wide association studies (GWASs), providing

a cost-effective and generalizable alternative to randomized

controlled trials.1 Inverse-variance weighting (IVW)2 is the

fundamental approach to performMRwithGWAS summary

statistics, and the validity of which relies heavily on three so-

called valid IVassumptions: the genetic IVs are (IV1) strongly

associated with the exposures; (IV2) not directly associated

with the outcome conditional on the exposures; and (IV3)

not associated with any confounders of the exposure-

outcome relationships.Violationsof the (IV1)–(IV3) assump-

tions will introduce weak instrument,3 unbalanced uncorre-

latedhorizontalpleiotropy (UHP),4andcorrelatedhorizontal

pleiotropy (CHP)5 biases into the casual effect estimation,

respectively. As for balanced UHP, which aligns with the in-

strument strength independent of direct effect (InSIDE)

assumption,4 the causal effect estimation remains unbiased.

From a statistical perspective, both unbalanced UHP and

CHP in an MR model exhibit characteristics similar to out-

liers in traditional regression analyses. Therefore, these is-

sues can be addressed using robust statistical tools. In the

literature, MR-PRESSO6 and IMRP7 identify and remove

horizontal pleiotropic variants through hypothesis tests,

while the MR-Lasso8 and MRcML9 methods detect hori-

zontal pleiotropy through variable selection tools. On

the other hand, approaches like MR-Median10 and

MR-Robust11 employ robust loss functions to mitigate

the horizontally pleiotropic effects. Furthermore, Gaussian
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mixture models are implemented in methods such as

MRMix,12 MR-Conmix,13 CAUSE,5 MRAID,14 and MR-

CUE.15 These models offer an advantage over traditional

robust tools by utilizing fewer degrees of freedom to

describe unbalanced UHP and CHP, thereby increasing ef-

ficiency when the mixture models are correctly specified.

While univariable MR (UVMR) methods allow some IVs

to have horizontally pleiotropic effects, they generally as-

sume that most IVs influence the outcome solely through

the mediation of the exposure. However, this assumption

can be problematic when traits sharemore than 50% causal

variants. For instance, both systolic and diastolic blood

pressure (SBP and DBP)16 are revealed to share substantial

causal variants. When analyzing the causal effect of SBP

on cardiovascular disease, it is often challenging to remove

the effect throughDBP. Amore effective way to address this

issue is multivariable MR (MVMR), which accounts for the

majority of horizontally pleiotropic variants that are shared

bymultiple exposures.17 To date, themultivariable versions

of IVW,18 MR-Egger,19 MR-Median,10 and MRcML20 have

been developed. As demonstrated by Sanderson et al.,17

MVMR is reliable in estimating the direct causal effects of

one or more exposures.

The issue of weak instrument bias, stemming from the

violation of the (IV1) assumption, poses even more

challenging to resolve in MVMR than in UVMR. Specif-

ically, it is usually difficult to find a set of IVs that are

strongly associated with all exposures under consideration.

In contrast, IVs are generally selected if they are associated

with at least one exposure.21 With the growing identifica-

tion of causal variants for complex traits, the pool of IVs

used in MVMR can easily reach the thousands due to this
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IV selection procedure, therefore worsen weak instrument

bias. Traditional approaches to mitigate this bias involve

discarding weak IVs whose F-statistic or conditional

F-statistic is less than 10. This threshold is believed to

keep the relative bias in causal effect estimates below

10%.3,22 However, the exclusion of IVs can lead to reduced

statistical power and introduce a ‘‘winner’s curse,’’ thereby

compromising the validity of the causal inference.23

We propose to resolve the weak instrument bias by using

tools inmeasurement error analysis.24 Specifically, measure-

ment error bias occurs when explanatory variables are

measured with random error, leading to biased estimates of

model parameters. Since current MR approaches are per-

formed with GWAS summary statistics that always contain

estimationerrors, the causal effect estimates inevitably suffer

frommeasurement error bias.25,26 Therefore, we view aweak

instrument as a relatively large measurement error in effect

size estimate based on finite sample size and is the primary

reason for violating assumption (IV1) in IVW and other

MR approaches. Furthermore, unlike traditional measure-

ment error analyses that assume uncorrelated estimation er-

rors in exposures and outcomes, overlapping individuals in

exposure and outcome GWAS can result in correlated mea-

surement errors, leading the direction ofmeasurement error

bias either toward or away from zero. As we observed in

Figure 1, IVW estimates27 exhibit negative bias with small

numbers of overlapping samples and positive bias with large

numbers of overlapping samples, respectively.

We develop a computationally efficient MVMR method,

MR using bias-corrected estimating equations (MRBEE), to

eliminate weak instrument bias while simultaneously ac-

counting for horizontal pleiotropy in the presence of weak

IVs or sample overlap. In contrast, existing methods only

addressweak instrumentbias inspecific cases suchasnosam-

ple overlap (debiased IVW)26 or no horizontal pleiotropy

(MRlap).28 Although the multivariable MRcML methods20

generally provide unbiased causal estimates, they may be

vulnerable to horizontal pleiotropy and computationally

intensive. To underscore its practical significance, we apply

MRBEE to three datasets, each targeting a unique disease,

namely, myopia, schizophrenia (SCZ), and coronary artery

disease (CAD), with the aim to unravel the distinct causal ex-

posures associatedwith each. In addition,we extend theplei-

otropy test to a genome-wide pleiotropy test (GWPT) for de-

tecting novel loci. These empirical analyses offer valuable

guides for conducting MVMR studies, elucidating the roles

of pleiotropy and weak instrument bias, and illustrating

howtoidentifynovel loci throughpleiotropytests.The study

was approved by the institutional reviewboard (IRBnumber:

STUDY20180592) at Case Western Reserve University.
Results

Overview of method

The detailed MRBEE is described in the material and

methods section. Briefly, suppose that there are p expo-
2 Human Genetics and Genomics Advances 5, 100290, July 18, 2024
sures having causal effects on an outcome and m genetic

variants as IVs. Let a ¼ ða1;.;amÞT be a vector of length

m, representing the genetic effect sizes of IVs on the

outcome, B ¼ ðb1;.; bmÞu be an ðm3pÞ matrix with

bj ¼ ðbj1;.; bjpÞu representing the genetic effect sizes of

the j th IV on the p exposures, q ¼ ðq1;.; qpÞu be a vector

of length p representing the causal effects of the p expo-

sures on the outcome, and g ¼ ðg1;.;gmÞu be a vector

of length m representing horizontal pleiotropy. We model

the causal effects of the exposures on the outcome by

aj ¼ bu
j qþ gj:

The goal in MR analysis is to estimate the causal effects q

unbiasedly. In the above equation, the true genetic effect

sizes a and B are not observed but can be estimated

through the GWAS of exposures and outcome and the

pleiotropy effect g is simply unknown. Let baj and bbj be

the effect size estimates of the j th IV from the outcome

and exposure GWASs. We have

baj ¼ aj þ waj ;bbj ¼ bj þwbj ;

where waj
and wbj represent the measurement errors

because of finite sample sizes of the GWASs.

In general, an MVMR analysis is performed by the

following linear regression:

baj ¼ bbu
j qþ gj þ εj;

where εj represents the residual. When we standardize baj

and bbj by their corresponding standard errors obtained

from GWASs, the multivariable IVW (MV-IVW) estimates

q is

bqIVW ¼ argmin
q

�kba � bBqk22
� ¼ ðbBu bBÞ�1 bBuba;

which is equivalent to solve the score equation

SIVWðqÞ ¼ bBuðbBq � baÞ ¼ 0. However, the MV-IVW fails

to consider the weak IVs and the correlations among waj

and wbj induced by sample overlap and assumes pleiot-

ropy gj ¼ 0 for all IVs. Thus, theMV-IVW is biased. To solve

this problem, we propose MRBEE by solving the following

estimating equation,

SBEEðqÞ ¼ SIVWðqÞ � m
�
SWbWb

q � sWbwa

� ¼ 0;

where SWbWb
and sWbwa

represent the covariance matrix

among wbj and between wbj and waj
(material and

methods) in the set of the m IVs. The score function in

SBEEðqÞ adds a corrected term, which corrects the bias

because of weak IVs and sample overlap, meanwhile as-

sumes there are no pleiotropic IVs (gj ¼ 0Þ: The solution

of the equation SBEEðqÞ is

bqBEE ¼ � bBu bB � mSWbWb

��1� bBuba � msWbwa

�
:

With the presence of pleiotropic IVs, we apply an itera-

tive procedure7 with the pleiotropy test Spleio for multiple
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Figure 1. Principle of MRBEE
(A) Traditional MR methods are vulnerable to weak instrument bias arising from the estimation errors in GWAS associations for the ex-
posure(s) and outcome. The direction of the bias is influenced by the degree of sample overlap between the studies where the red and blue
points refer to two simulated data with 0% and 100% sample overlap. The shadow regions represent the 95% confidence interval regions.
(B) MRBEE corrects for weak instrument bias using bias-correction terms which are calculated from the matrix of correlations between
measurement errors for all exposures and the outcome. In this example with myopia and its four exposures, the numbers in the lower
triangle of the table are the correlations estimated using LD score regression and that in the upper triangle of the table are the correlations
estimated using non-significant SNPs.
(C) MRBEE uses an iterative estimation procedure, where horizontally pleiotropic IVs are removed at each iteration until convergence.
The y axis in panels (2) and (4) reflect the SNP association with the outcome not mediated by the exposures. The numbers under the red
vertical lines represent p values.
(D) After estimating causal effects, MRBEE performs genome-wide horizontal pleiotropy testing to find loci associated with the outcome
(e.g., myopia) that were not detected in the original GWAS.
exposures and an outcome, which uses the following sta-

tistic Spleio for the j th IV,

SpleiojðbqÞ ¼
�baj � bbu

j
bq�2

var
�baj � bbu

j
bq� :

Thus, MRBEE estimates the causal effect q, and identifies

pleiotropic IVs with the current estimated causal effect q

iteratively. The entire pipeline from inputting summary
Hu
statistics, estimating causal effects, and identifying pleio-

tropic IVs is illustrated in Figure 1. Note that after

estimating the causal effect q, we can further search pleio-

tropic variants across the entire genome.

Simulation

We compared MRBEE with the multivariable MR of

IVW, MR-Egger, MR-Median, MR-Lasso, MRcML-DP, and

MRcML-BIC. MRBEE is implemented with the R package
man Genetics and Genomics Advances 5, 100290, July 18, 2024 3



MRBEE and the other methods are implemented through

the R package MendelianRandomization.29 We call

IVW, MR-Egger, MR-Median, and MR-Lasso the traditional

MVMR methods, as they either do not account for estima-

tionerrorof effect size or the sampleoverlap.Our simulation

settingwas adapted from the ones considered by Lin et al.,20

but with specific adjustments to better reflect real-world sit-

uations. Specifically, we set the heritability of both expo-

sures and confounders at 0.1, introduced moderate genetic

correlations among the exposures, and added correlations

among random errors of exposure and outcome GWAS co-

horts. In our analysis, we consider three scenarios: nopleiot-

ropy, 30%unbalancedUHP, and30%CHP. All exposures are

assumed to come from the same GWAS sample, while the

outcome may overlap completely (100% sample overlap),

partially (50%and77%overlap), or be entirely independent

(0% sample overlap). In addition, the sample size was set at

50,000, the number of IVswas set at 50, 100, and 200, repre-

senting the increasing ofweak IVs, the number of exposures

was 4, and the causal effect was q ¼ ð0;0:2; � 0:2;0:4Þu,

which represents no causal effect, and positive, negative,

and large causal effects, respectively. Simulation settings

are fully presented in supplement 1 and the R code used to

generate simulated data is available at theGitHub repository

of this paper. The number of simulation replicates was 500,

and additional simulations can be found in supplement 1.

Bias of causal effect estimates

Figures 2A, 2D, 2G, and 2J demonstrate that the bias in

traditional MVMR methods (IVW, MR-Egger, MR-Median,

MR-Lasso) is proportional to the number of IVs used, espe-

cially in the absence of horizontal pleiotropy. The direc-

tion of this bias is influenced by sample overlap: no overlap

results in bias toward the null, while sample overlap leads

to bias away from the null. On the contrary, MRBEE,

MRcML-BIC, and MRcML-DP are unbiased under these

conditions. The unbiasedness for MRcMLmethods is likely

attributed to the fact that the objective function ofMRcML

methods20 accounts for the covariance of estimation er-

rors. Our results suggest that incorporating the estimation

error covariance matrix mitigates measurement error bias.

Figures 2B, 2E, 2H, and 2K demonstrate that when there

was 30% unbalanced UHP, IVW, and MR-Egger generally

incurred substantial bias. Moreover, there were inflated

standard errors in the causal estimates due to the horizon-

tal pleiotropy. MR-Median and MR-Lasso also incurred

substantial bias, but the standard errors of their causal esti-

mates were smaller than that from IVW and MR-Egger.

These methods apply robust tools to estimate the causal ef-

fects in the presence of horizontal pleiotropy but are not

able to remove the bias by weak instrument or sample

overlap. MRcML-BIC and MRcML-DP generally provided

unbiased causal estimates when there was no sample over-

lap. When the sample overlap percentage was 100%, both

MRcML-BIC and MRcML-DP incurred biases in different

directions. The magnitude of this bias was proportional

to the number of IVs used. For example, for exposure 1
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with true q1 ¼ 0, MRcML-BIC and MRcML-DP had bias

away from the null; for exposure 3 where q3 ¼ � 0:2,

the two methods had bias toward, and even past, the

null. In comparison, MRBEE was unbiased in all scenarios

except when there were 200 IVs and 100% overlap. In this

case, MRBEE still had a smaller upward bias for exposure 3

with q3 ¼ �0:2 than other methods.

Figures 2C, 2F, 2I, and 2L demonstrate that when there

was 30%CHP, IVW, andMR-Egger had larger bias and stan-

dard errors in their causal estimates than the rest of

methods. Both had bias away from the null for exposure

1, and the magnitude of which depended on the number

of IVs used. MR-Median and MR-Lasso generally were less

biased than IVWand MR-Egger, as they are more robust in

handling of CHP IVs. The weak instrument bias of MR-

Median and MR-Lasso followed the same bias patterns as

no pleiotropy. MRcML-BIC and MRcML-DP were both

biased when the sample overlapping percentage was

100% or 0%, potentially due to the instability of algorithm

when horizontal pleiotropy is present. MRBEE was unbi-

ased in all cases and generally had standard errors compara-

ble to othermethods excluding IVWandMR-Egger. Finally,

when the number of IVs increased from 50 to 200, repre-

senting the increasing of weak IVs, MRBEE was always per-

forming better than the comparing methods (Figure 2).

Type I error and power

Figures 3A–3C present the type I error rates for all the

methods when the true causal effect q1 ¼ 0, which corre-

sponds to the first exposure in our simulations. When

there was no sample overlap between exposures and the

outcome, the type I error was well controlled for MRBEE

in all three scenarios, i.e., no pleiotropy, 30% unbalanced

UHP, and 30% unbalanced CHP. In comparison, MRcML-

DP, MR-Median, MR-Egger, and IVW was generally conser-

vative, while MRcML-BIC and MR-LASSO usually had

inflated type I error rates. When 100% overlap between

exposures and the outcome, MRBEE still controlled type I

error rate well. The rest of the methods either had inflated

or extremely conservative type I error rate.

Figures 3D–3L present power for different causal effects

in the three scenarios. Overall, MRBEE has comparable

power with the best of the other methods but maintains

a type I error rate. We specifically compared MRBEE and

MRcML-DP, where the latter controlled type I error rate

well under all the simulation scenarios. We observed that

MRBEE either had similar or better power than MRcML-

DP. The power pattern across the seven methods does

not align well with the type I error pattern, that is, high

type I error rate corresponds to high power and vice visa.

We observed that the reason is the bias direction in causal

effect estimates as illuminated in Figure 2, i.e., the bias

direction could be in opposite to the true causal effect.

Again, when the number of IVs increased from 50 to

200, the performance of type I error and power of

MRBEE was either equal well or better than the comparing

methods. We further evaluated these approaches in terms



Figure 2. Comparison of the causal effect estimates by the 7 MVMR methods
(A–L) Boxplots display the causal effect estimates from seven methods in the MVMR simulation. The four rows represent the four causal
effects qj, j ¼ 1;2;3;4. Each column corresponds to one of the three pleiotropy scenarios for IVs (i.e., No pleiotropy; 30% unbalanced
UHP IVs; 30% CHP IVs). The x axis indicates the value of the causal effect estimate, while the y axis lists the seven methods. The true
values of causal effects are denoted by dashed lines. Plots in (A), (D), (G), and (J) when the sample overlap proportion is 0% can be used to
infer the magnitude of weak instrument bias since differences between MRBEE and IVW causal estimates in these scenarios are propor-
tional to the degree of weak IV bias. The left and right vertical edges of each box plot represent the 25th and 75th percentiles of causal
effect estimate, and the vertical middle line represent the 50th percentile.
of the root-mean-square error (RMSE), standard error (SE)

estimation, and coverage frequency of causal effects.

MRBEE was again the best among the methods evaluated

(Figures S1–S3, and Tables S1–S24 in supplement 1).

We have performed additional simulations in which the

overlapping proportion takes values 0, 0.5, 0.77, and 1. In

these scenarios MRBEE still performs well. The results are

presented in supplement 1.
Hu
Computational efficiency

Figure 4 illuminates the computation efficient across seven

methods. We observed that MRBEE is computationally as

efficient as MR-Median, MR-Lasso, MR-Egger, and MR-IVW.

We attribute the computational requirements of MRcML to

two potential factors. First, MRcMLmethods utilize an algo-

rithm similar to the best subset selection to identify the

optimal subset of pleiotropic variants. This involves
man Genetics and Genomics Advances 5, 100290, July 18, 2024 5



Figure 3. Comparisons of type I error and power of the seven MVMR methods
(A–C) Type I error of the sevenmethods (MRBEE, MRcML-BIC, MRcML-DP, MR-LASSO,MR-Median, MR-Egger and IVW). (D–L) Power of
the seven methods. The three columns corespond to no pleiotropy, 30% unbalanced UHP IVs and 30% CHP IVs, respectively. In each
figure, the top and bottom panels represent 0% and 100% sample overlap between exposures and outcome, respectively. Each row rep-
resents different causal effects. Simulation settings are described in the simulation section in the main text, supplement 1, and at our
GitHub repository. Displayed are bar plots of rejection frequency estimations across 500 simulations for each scenario, which represents
the type I error or power depending on the true causal effect is zero or not. The two dotted vertical lines in (A)–(C) represent the 95%
confidence interval.
performing MVMR iteratively by considering numbers

of pleiotropic variants ranging from 1 to K (defaulting to

m=2), and determining the optimal number based on the

BIC criteria. In contrast, MRBEE automatically detects pleio-

tropic variants using a hypothesis test, andMR-Lasso utilizes

lasso for pleiotropic variant selection, both of which are

computationally efficient. Second,MRcML-DP relies on per-

mutations toderive theSE,which further increases computa-
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tional burden. Conversely, MRBEE uses the sandwich for-

mula to estimate its SE, which appears to be accurate in our

simulations (Equation 19 in material and methods).

Real data analysis

Data sources

Todemonstrate theMRBEEperformance inrealdata analysis,

we analyzed three outcomes, including myopia, SCZ, and



Figure 4. Comparison of computation
efficiency of the seven MVMR methods
This figure depicts the average computa-
tion time of the seven methods over 500
simulations.
CAD.Myopia is known tobe influenced by a combination of

genetic and environmental factors, including educational

attainment (EDU), near-work activity, and outdoor activ-

ities30 but their direct causality to myopia is not clear. In

thisMVMR analysis, we considered refractive error, themea-

sureofmyopiadegree,as theoutcome.Theexposures include

EDU, near-work activity measured by time spent watching

TV and playing on the computer (TV and Computer), and

outdoor activity measured by time spent driving (Driving).

Attention-deficit/hyperactivity disorder (ADHD), cannabis

use disorder (CAN), EDU, intelligence (INT), left-handedness

(LH), intelligence (INT), neuroticism (SESA), and sleep

duration (SLP) have been reported as risk factors for SCZ. Of

these risk factors, CAN arguably has the strongest evidence

of causality with respect to SCZ, with studies reporting

dose-response31 and strong temporal32 relationships for

at-risk individuals. The direct causality of the risk factors on

SCZ is also not clear.

Many studies have been published to understand the

causal effects of risk factors on CAD. However, the findings

in these studies have been inconsistent. For instance,

Holmes et al. and Lin et al.20,33 found that HDL-C is not

significant, while Zhu et al.,7 using the GWAS summary

data with a much larger sample size (1.3M vs. 90K), found

it to be significant. Besides, Wang et al.21 found that low-

density lipoprotein cholesterol (LDL-C) is not significant

in European populations, which seems unreasonable. In

this data analysis, we investigated the causal relationships

of these risk factors onCAD using the GWAS summary data

with the largest sample sizes to date. We focus on the same

eight factors studied in Lin et al.,20 i.e., body mass index

(BMI), DBP, fasting plasma glucose (FPG), height, HDL-C,

LDL-C, triglycerides (TG), and SBP.
Human Genetics and Geno
Data preprocessing

For UVMR, we applied the C þ T pro-

cedurewith the linkagedisequilibrium

(LD) parameter r2 < 0:01 in5500 Kb

window to SNPs with association p

value at least as small as 5E�5.We per-

formed this operation for each expo-

sure separately and used the 1000 Ge-

nomes project (phase 3) data as the

LD reference panel.34 For MVMR, we

initially considered the union set of

all exposure-specific IV sets from

UVMR, then restricted this set to only

include SNPs with a joint c2-test p

value reaching genome-wide signifi-

cance and again passing C þ T using

the same parameters as before. The
joint c2-test for the exposures is presented in Equation 22

in material and methods and is used to assess the null hy-

pothesis that an SNP is not associated with any exposure.

We additionally standardized the GWAS effect size esti-

mates so that their SEs were the inverse of the sample sizes.

This procedure leads to comparable causal effect estimates

across different exposures. We used false discovery rate

(FDR) correction in MRBEE to identify and remove SNPs

with evidence of horizontal pleiotropy (see Algorithm 1).

Table 1 summarizes the information of GWAS data in

this study. In Table 1, the last three columns present the

SNP heritability estimated by the LD score regression

(LDSC),35 the variances explained by the IVs in UVMR,

and the variances explained by the IVs in MVMR. It is

evident that for the trait with lower heritability and small

sample sizes, the UVMR IVs account for about 1% of its

SNP heritability, which may reduce power to detect causal

effects using UVMR. However, for most traits, IVs in

MVMR analyses explain a substantial portion of the vari-

ance, which will provide good power to detect causal

effects. This is because the standard error of causal esti-

mate(s) is inversely proportional to the variance(s) ex-

plained by the IVs. The last column of Table 1 shows the

reliability ratios, a measure of IV strength, for exposures

used in real data analysis. The estimation errors averagely

account for �20% variance of the GWAS effect estimates.

Myopia

All the MVMR methods consistently showed that EDU

(MRBEE p¼9.3E�21) andDriving (p¼3.8E�11) aredirectly

causal onmyopia, but not TV (p¼ 0.136) or Computer (p¼
0.972) (Figure 5A). The no direct causal effect of TVor Com-

puter on myopia risk although all exposures were observed

to have significant causal effects on myopia in the UVMR
mics Advances 5, 100290, July 18, 2024 7



Table 1. Summary of GWAS data used in real data analyses

Trait Source
Sample
size

Significant
IVs

LDSC
heritability

UVMR
variancea

MVMR
varianceb

Reliability
ratioc

Myopia Driving van De Vegte etal. 54 422K 4 0.0365 0.00034 0.00400 0.705

Playing computer Arns et al. 55 422K 46 0.0719 0.00408 0.01154 0.873

Watching TV Rustad et al. 56 422K 189 0.1321 0.01788 0.02775 0.943

EDU Okbay et al. 57 765K 656 0.1352 0.03954 0.03683 0.976

Joint 4 test 707

Refractive error Hysi et al. 58 246K 420 0.2702 0.11079 0.01433 0.838

Schizophrenia ADHD Demontis et al. 59 55K 12 0.0956 0.00279 0.01871 0.832

CAN Johnson et al. 60 384K 5 0.0174 0.00033 0.00272 0.552

EDU Okbay et al.57 765K 656 0.1222 0.03954 0.03728 0.973

Intelligence Neale’s Lab 430K 48 0.2326 0.01527 0.06023 0.900

Left handedness Cuellar-Partida
et al. 61

205K 4 0.0338 0.00086 0.00533 0.576

Neuroticism (SESA) Nagel et al. 62 450K 42 0.0800 0.00476 0.01056 0.825

Sleep duration Dashti et al. 63 493K 66 0.0649 0.00589 0.00998 0.850

Joint 7 test 1,227

SCZ Trubetskoy et al.64 320K 287 0.3380 0.06378 0.03570 0.855

Coronary
artery disease

BMI Loh et al. 65 458K 882 0.2076 0.09494 0.10612 0.918

DBP Evangelou
et al. 66þMVP

1.00M 942 0.1095 0.06022 0.04525 0.823

FPG Neale’s Lab 361K 115 0.0848 0.03729 0.05156 0.789

Height Loh et al. 65 458K 2,728 0.6023 0.48986 0.49156 0.981

HDL-C Graham et al. 67 1.32M 1,031 0.1779 0.09207 0.09745 0.965

LDL-C Graham et al. 67 1.32M 754 0.1293 0.08435 0.08713 0.961

TG Graham et al. 67 1.32M 900 0.1251 0.07298 0.08105 0.959

SBP Evangelou
et al. 66þMVP

1.00M 895 0.1152 0.05626 0.04550 0.829

Joint 8 test 4,336

CAD Aragam et al.68þMVP 1.45M 343 0.0500 0.01610 0.01712 0.850

aVariance explained by the IVs in UVMR analysis.
bVariance explained by the IVs in MVMR analysis.
cReliability ratios of exposures in MVMR analysis.
analysis (Figure 5B). The insignificance of both TV and

Computer in MVMR analysis suggests their correlations

with myopia could be attributed to the confounding with

EDU and Driving time. MRBEE provided larger protective

causal estimate of driving time than that by IVW (i.e.,

MRBEE odds ratio [OR] ¼ 0.71 vs. IVW OR ¼ 0.84), likely

due to a correction for weak instrument bias given that

the driving time variance explained by the IVs was less

than 1%. The causal effect of driving time estimated by

MRcML-BIC and MRcML-DP was 3–5 times larger in mag-

nitude than those from other methods. (MRcML-BIC

OR ¼ 0.38 and MRcML-DP OR ¼ 0.58, respectively). In the

iterative pleiotropy test, we detected 31 IVs demonstrating

pleiotropy of the exposures and myopia (Figure 5C). Figure

5D compares the computational efficiency of the MR
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methods.Weobserved that IVWwas the fastest (<0.1 s), fol-

lowed by MRBEE (0.1 s), MR-Lasso (0.9 s), MR-Median (1.4

s), MRcML-BIC (1 min), and MRcML-DP (107 min), which

were consistent with the simulations.

Schizophrenia

All MVMR methods consistently estimated that CAN

(MRBEE p ¼ 3.7E�8), EDU (p ¼ 3.6E�15), INT (p ¼
7.7E�12), andSESA (p¼1.8E�7)havedirect causal contribu-

tions on schizophrenia (Figure 6A). MRBEE, MR-Lasso, and

MR-Median suggested that SLP (p¼3.4E�4)has direct causal

contribution on schizophrenia but not MRcML-BIC or

MRcML-DP. It is not clear why both MRcML-DP and

MRcML-BIC failed to detect this causal contribution given

our simulations suggestMRcML-BICcouldbemorepowerful

although with inflated type I error. A potential reason could



Figure 5. Myopia data analysis
(A) Causal effect estimates by the six MVMR methods. The corresponding 95% confidence interval shown as vertical error bars.
(B) Corresponding causal effect estimates by UVMR approaches. The corresponding 95% confidence interval shown as vertical error bars.
The radius of the confidence interval equals

ffiffiffi
a

p
3 SE, where a ¼ F�1

c2 ð1 � 0:05 =4;1Þ, F�1
c2 ðx;dfÞ is the inverse cumulative distribution

function of a c2 distribution.
(C) Pleiotropy test where the x axis represents the linear predictor bBbqBEE and the y axis represents the corresponding standardized asso-
ciation with myopia from GWAS. The annotation of a pleiotropic variant is made if its pleiotropic test p value is < 5E�8. Only IVs are
present in the figure.
(D) Computation times of the six comparing methods. Columns 1–4 represent computation time for UVMR of four exposures and the
last column represents computation time for MVMR.
be the instability of MRcML, which may converge to local

maximum. However, this requires additional investigation.

MRBEE suggested no direct causal effect of ADHD (p ¼
0.510) or LH (p ¼ 0.096), possibly due to the relatively low

exposure variance explained by the IV set (i.e., 0.018 for

ADHD and 0.005 for LH). We observed relatively larger

odds ratios of EDU and CAN for MRBEE than MR-Median,

MR-Lasso, and IVW, but less than MRcML-DP and MRcML-

BIC. In comparison, UVMR analyses by all methods sug-

gested evidence of total causal effects of CAN (MRBEE p ¼
1.6E�4), INT (p ¼ 3.2E�7), SESA (p ¼ 2.0E�10), ADHD

(p ¼ 0.017), and SLP (p ¼ 1.4E�4), but not EDU (p ¼ 0.542)

or LH (p ¼ 0.716) (Figure 6B). We did not observe any

IVs with evidence of horizontal pleiotropy at the Bonfer-

roni-corrected p ¼ 0.05 level (Figure 6C), suggesting that

the genetic association of the IVs with SCZ are strictly medi-

ated by the five significant exposures. Again, we observed
Hu
similar computational efficient for these methods as before

(Figure 6D).

Coronary artery disease

Figure 7A presentsMVMR causal estimates for the effects of

BMI, DBP, SBP, FPG, height, HDL-C, LDL-C, TG, and SBP

on CAD. Using MRBEE, we identified the following signif-

icant direct causal effects on CAD, including BMI (MRBEE

p ¼ 3.8E�39), FPG (p ¼ 6.7E�10), HDL-C (p ¼ 8.4E�21),

LDL-C (p ¼ 1.5E�87), TG (p ¼ 1.9E�7), and SBP (p ¼
1.1E�25). We observed that MRBEE estimates were gener-

ally consistent with estimates from IVW, MR-Median, and

MR-Lasso. Conversely, MRcML-BIC and MRcML-DP esti-

mates diverged from all other methods for DBP and FPG.

For example, MRcML-DP/BIC were the only methods

that simultaneously produced significant causal effects

for SBP (p ¼ 1.6E�39) and DBP (p ¼ 1.8E�45) on CAD,

two traits that are highly genetically correlated. In
man Genetics and Genomics Advances 5, 100290, July 18, 2024 9



Figure 6. Data analysis of schizophrenia
(A) Causal effect estimates by the six MVMR methods. The corresponding 95% confidence interval shown as vertical error bars.
(B) Causal effect estimates by UVMR approaches. The corresponding 95% confidence interval shown as vertical error bars. The radius of
the confidence interval equals

ffiffiffi
a

p
3SE where a ¼ F�1

c2 ð1 � 0:05 =7;1Þ.
(C) Pleiotropy test where the x axis represents the linear predictor bBbqBEE and the y axis represents the standardized association of the IV
with SCZ from GWAS.
(D) Computation times of the comparingmethods. Columns 1–7 represent computation time for UVMR of seven exposures and the last
column represents computation time for MVMR.
comparison, UVMR analyses by all methods consistently

suggested that all the exposures have causal contributions

on CAD (Figure 7B). We also observed 173 IVs demon-

strating horizontal pleiotropy by the horizontal pleiotropy

test in MVMR (Figure 7C). Again, our proposed MRBEE is

computationally efficient (Figure 7D).

Pleiotropic variants detected by GWPT

GWPTuses the Spleio statistic (Equation 21 in materials and

methods) to test whether a genetic variant is associated

with the outcome phenotype strictly through the media-

tion of a select group of exposures. In our GWPT analyses,

these groups of exposures are those that were used in each

MVMR. This test can be used to find these outcome-associ-

ated loci16 that do not reach the level of genome-wide sig-

nificance in the original outcome phenotype GWAS but

are genome-wide significant in GWPT. In these regions, it

is possible that the local genetic correlations between the
10 Human Genetics and Genomics Advances 5, 100290, July 18, 202
exposures and outcome are of different sign or magnitude

than the genome-wide genetic correlations.36 To ensure

that the loci identified in GWPT were not primarily influ-

enced by other exposures, we excluded any loci that

showed even a marginal association with any of the expo-

sures at a genome-wide significance level (i.e., p < 5E�8).

We also compared GWPT with cross-phenotype associa-

tion analysis (CPASSOC),37 multi-trait analysis of GWAS

(MTAG),38 which are joint tests of association between

all exposures in the outcome.

Table 2 lists the variants detected by GWPT for myopia,

SCZ, and CAD but missed in the original GWAS. For com-

parison, we listed the p values for association from the orig-

inal outcome GWAS, cross-phenotype tests by CPASSOC

and MTAG, and by GWPT, respectively. The GWPT identi-

fied 18 genome-wide significant loci for myopia, four for

SCZ, and 20 for CAD, respectively. All these loci did not
4



Figure 7. Data analysis of coronary artery disease
(A) Causal effect estimates by the six MVMR methods. The corresponding 95% confidence interval shown as vertical error bars.
(B) Causal effect estimates by UVMR approaches. The corresponding 95% confidence interval shown as vertical error bars. The radius of
the confidence interval equals

ffiffiffi
a

p
3 SE where a ¼ F�1

c2 ð1 � 0:05 =8;1Þ.
(C) Pleiotropy test where the x axis represents the linear predictor bBbqBEE and the y axis represents the standardized association between
the IVandCAD fromGWAS. The annotation of this pleiotropic variant is made if it is associatedwith themost significant exposures with
p < 5E�8.
(D) Computation times of the comparing methods. Columns 1–8 represent computation time for UVMR of eight exposures and the last
column represents computation time for MVMR.
reach genome-wide significance level in the outcome

GWASs, suggesting GWPT captures pleiotropic evidence

and the standard GWAS does not. We also performed

expression quantitative trait loci (eQTL) mapping for the

identified loci using functional mapping of GWAS

(FUMA GWAS).39 Each SNP that tagged a locus had mar-

ginal evidence of association with the expression of a

gene in that locus in at least one tissue, where association

p values ranged from 3.3E�310 to 6.7E�5. This suggests

that these loci may have functionally relevant conse-

quences in their conferred risk for myopia, SCZ, or CAD.
Discussion

We proposed MRBEE to overcome the weak instrument,

pleiotropy and sample overlap bias in MVMR analysis.

We pointed out that weak instrument bias is essentially
Hum
driven by measurement error of GWAS effect estimates,

whose scale and bias direction are influenced by the degree

of weakness of IVs and the GWAS sample overlap, respec-

tively. An IV is not considered weak when the estimation

error is negligible, which can be achieved with a suffi-

ciently large GWAS sample size, no matter how large or

small the effect size is. In genetics, Burgess et al.3 suggested

using the F-statistics to define the strength of an IV,

whereas we recommend the reliability ratio (material and

methods, Equation 11), a commonly used statistic in mea-

surement error analysis. Both metrics are equivalent and

will be influenced by the GWAS sample size and the num-

ber of IVs, highlighting that the definition of a weak instru-

ment is dynamic. MRBEE removes the measurement error

bias by using an unbiased estimating function. Although

this estimating function has a long history in the literature

of measurement error analysis,40 it has not been utilized to

modify the current MVMR approaches.
an Genetics and Genomics Advances 5, 100290, July 18, 2024 11



Table 2. Loci detection of GWPT and eQTL mapping of leading variant

SNP information Association test eQTL mapping

SNP CHR:BP GWAS MTAG CPASSOC GWPT Symbol Tissue Database p

Myopia rs55761633 1:20757820 9.9e�07 3.1e�05 5.6e�07 9.6e�09 CAMK2N1 Muscle Skeletal GTEx/v8 3.9e�06

rs2419964 2:124252256 1.3e�07 1.2e�05 2.6e�10 6.0e�10 NA NA NA NA

rs7602460 2:182261869 4.9e�07 9.2e�06 6.6e�07 3.2e�08 ITGA4 Blood eQTLgen 2.0e�19

rs61548163 2:184349492 9.2e�07 1.3e�05 3.3e�06 2.7e�08 NA NA NA NA

rs6764842 3:123106287 1.6e�06 NA 2.0e�07 3.1e�08 ADCY5 Artery Tibial GTEx/v8 3.0e�17

rs9761983 4:138482973 1.5e�07 NA 9.0e�06 4.4e�08 RP11-714L20.1 Cortex GTEx/v8 2.2e�06

rs2461726 6:166316838 5.1e�07 1.7e�05 1.2e�06 1.1e�08 SDIM1 Pituitary GTEx/v7 2.8e�07

rs12699288 7:11975557 3.8e�06 1.4e�04 3.4e�08 1.4e�08 THSD7A Nerve Tibial GTEx/v8 6.7e�05

rs2970498 7:30478056 1.1e�07 1.8e�06 7.0e�06 3.1e�08 NOD1 Blood eQTLgen 1.0e�07

rs1532278 8:27466315 3.4e�07 1.1e�05 9.6e�07 6.7e�09 CLU Eye EyeGEx 1.1e�26

rs7048915 9:4206388 1.0e�07 2.0e�06 6.2e�06 1.3e�08 NA NA NA NA

rs902997 10:105384262 1.9e�07 9.2e�07 1.2e�08 3.2e�09 USMG5 Blood eQTLgen 3.0e�37

rs17065719 13:44925021 4.3e�07 1.1e�05 2.6e�05 3.7e�08 SERP2 Blood eQTLgen 7.7e�48

rs1926715 13:111538590 8.6e�08 1.4e�05 2.4e�12 2.0e�09 ANKRD10 Eye EyeGEx 3.0e�48

rs7141076 14:67922172 9.2e�08 1.8e�05 5.7e�06 1.7e�08 TMEM229B Pituitary GTEx/v8 1.1e�08

rs12889206 14:68769182 8.8e�08 1.5e�06 1.2e�06 3.9e�08 NA NA NA NA

rs7198357 16:67884619 2.5e�07 4.2e�06 2.1e�09 4.3e�09 DUS2 Blood eQTLgen 3.3e�310

rs35594082 16:84796864 8.5e�07 1.8e�05 1.8e�06 3.1e�08 USP10 Eye EyeGEx 2.9e�09

Schizophrenia rs17672204 5:74946518 1.1e�06 8.2e�06 1.9e�06 2.4e�08 COL4A3BP Muscle Skeletal GTEx/v8 5.8e�15

rs79650876 3:187997616 1.7e�07 4.3e�08 4.5e�07 3.2e�08 AC022498.1 Blood eQTLGen 5.7e�06

rs2300921 3:185651001 8.0e�06 8.9e�06 4.9e�06 3.2e�08 TRA2B Breast GTEx/v8 1.8e�06

rs7225476 17:78561603 8.2e�07 2.1e�06 7.0e�05 3.3e�08 RPTOR Blood eQTLGen 4.0e�89

Coronary artery
disease

rs2045886 2:29010517 3.6e�07 4.6e�05 2.7e�21 7.7e�11 PPP1CB Blood eQTLGen 3.3e�310

rs6727524 2:238570309 8.9e�07 6.3e�05 4.4e�09 2.8e�08 LRRFIP1 Blood eQTLGen 3.4e�76

rs1868217 3:98445534 2.1e�05 4.5e�04 1.3e�10 3.6e�08 ST3GAL6 Blood eQTLGen 2.0e�30

rs73070809 3:186885760 1.1e�07 NA 3.7e�07 1.0e�08 RPL39L Adipose GTEx/v8 4.0e�05

rs12523133 5:86297919 8.5e�08 2.3e�05 3.2e�19 2.5e�10 RP11-72L22.1 Spinal Cord GTEx/v8 6.6e�08

rs6899197 5:111250597 8.8e�06 NA 1.2e�20 2.2e�09 EPB41L4A Esophagus GTEx/v8 5.0e�05

rs13202921 6:41687366 3.3e�07 2.9e�06 1.8e�08 3.8e�08 CCDC77 Artery Coronary GTEx/v7 4.9e�11

(Continued on next page)
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Our simulations suggested thatMRBEE in general leads to

equal or less bias of causal effect estimate than the

comparing methods when weak IVs, pleiotropy, and sam-

ple overlap are present (Figure 2). Similarly, MRBEE also

has equal or better type I error control and statistical power

than robust comparingmethods (Figure 3).MRcML-DP and

MRcML-BIC were robust to weak IVs and consistently yield

unbiased causal effect estimates under the ‘‘no pleiotropy’’

case. However, in the presence of horizontal pleiotropy,

our simulations suggested that MRcML methods may pro-

duce local minimizers in some specific scenarios in which

horizontal pleiotropy was not completely removed.

MRcMLemploys the best subset selection for detecting plei-

otropy and the algorithm’s stability and time consumption

could be a challenge,41 as we observed in our simulations.

MRBEE uses an iterative pleiotropy test, whose reliability

has been validated in MR-PRESSO and IMRP.

In the myopia analysis, our detected causal effects for

outdoor activities are consistent with the literature. For

example, spending more time outdoors reducing incident

myopia was confirmed by a randomized clinical trial.42

On the other hand, near-work activities such as time spent

watching TV or using the computer have not been found

to be associated with myopia risk.43 The potential biolog-

ical mechanism is that outdoor activities increase the

exposure time to natural light, which induces the release

of dopamine and thereby inhibits axial elongation, thus

suppressing the development of myopia.30 Moreover,

MRBEE yields a relatively large causal estimate for time

spent driving, likely correcting for weak instrument bias

given the small variation of driving time explained by

the IVs. Although MRcML-DP and MRcML-BIC can effec-

tively reduce weak instrument bias in simulations, their

estimates for the effects of driving time were 3–5 times

larger than those from other methods.

We observed that cannabis use disorder and education

have substantially larger causal effects on SCZ than other

exposures we examined. For LH, the current GWAS has

identified four genome-wide significant IVs together ex-

plaining its 0.086% variation. As a result, we did not

have sufficient power to confirm their causal effect due

to its relatively smaller variance of LH explained by IVs.

MRBEE did not identify pleiotropic variants in these

data, suggesting that our study may already include most

of the direct causal risk factors for SCZ.

Our MVMR analysis seems to suggest that HDL-C is

likely a protective factor against CAD but with a weaker ef-

fect size than that from UVMR analysis, aligning with

recent pharmaceutical trial outcomes.44 The previously

observed negative results20,33 are likely because they did

not utilize the lipid GWAS summary data with the largest

available sample sizes. When using the largest GWAS sum-

mary statistics of CAD as in this study, all methods

including IVW, MRcML-DP, and MRBEE resulted in signif-

icant protective causal effect of HDL-C on CAD (Figure 7A).

We noted that the estimated equal contributions of DBP

and SBP on CAD risk by MRcML-BIC and MRcML-DP,
an Genetics and Genomics Advances 5, 100290, July 18, 2024 13



which is in direct conflict with all other MR methods we

tested and the literature.45 In addition, MRBEE identified

173 pleiotropic IVs, one of which (rs10757278) is strongly

associated with CAD (p < 5E�300) but whose biological

mechanism warrants for further investigation.

We introduced the GWPTusing the statistic Spleio, which

can be applied in UVMR or MVMR to identify specific IVs

with evidence of horizontal pleiotropy. When Spleio was

applied to the whole genome, we identified genetic loci

associated with myopia, SCZ, and CAD that were missed

in their original GWAS. These loci also reflect their direct

association with the outcomes or through exposures not

included in this study. Genes in these loci had genome-

wide significant eQTLs across a range of tissues, suggesting

that these genes might be functionally relevant in modi-

fying disease risk. For example, we identified the RPTOR

gene for SCZ, which has previously been found to be asso-

ciated with BMI46 and blood pressure.47 This gene also has

significant eQTLs (smallest p¼ 4E�89) in blood tissue. This

and other examples highlight the potential utility of Spleio
in identifying trait-associated loci and functionally rele-

vant genes.

In our theoretical study (supplement 2), we consider the

effect size of IVs to follow a normal distribution, represent-

ing a genomic random effect model.48 We observed that

increasing the sample size of GWAS often yields more

novel loci, hence more IVs with non-zero effects can be

used in a corresponding MR analysis. Therefore, in our

theoretical investigation, we allow the number of IVs m

to increase with the sample size n and examine the out-

comes of MRBEE and MV-IVW under different rates of m

and n. Our conclusion can be summarized as follows: for

scenarios like those in our myopia and CAD data, where

GWAS sample sizes for exposures are approximately half

a million or more, MRBEE and MV-IVW are equally effi-

cient (supplement 2, Theorem 1.3 (i)). In this case,

MRBEE’s inference is asymptotically valid, whereas MV-

IVW may lead to incorrect inferences. For the SCZ data

involving CUD, with GWAS sample sizes in the tens of

thousands, MRBEE is less efficient than MV-IVW, but the

inference made by MRBEE remains valid (supplement 2,

Theorem 1.3 (ii)-(iii)). In these cases, the confidence inter-

vals of MRBEE will be wider than MV-IVW but ensure the

95% coverage frequency. AlthoughMRBEE can remove the

weak instrument bias in general, we still recommend

including the IVs with the association p values below a sig-

nificance threshold. The reason is that weak IVs still

require to be truly associated with an exposure although

their effect sizes can be extremely small. Variants with

the association p values above the threshold are likely to

be false positive and including false positive IVs will lead

to bias for MRBEE because of the violation of assumption

(IV1). The purpose of developing MRBEE is to enhance ex-

isting methods, making causal effect estimation and infer-

ence more robust to weak IVs.

The comparison betweenMRBEE andMRcML in terms of

statistical principle is as follows. MRBEE employs the unbi-
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ased estimating functionmethod which constructs its unbi-

ased score function from the score function of the MV-IVW

method. In contrast, the MRcML method is a conditional

score function method, characterized by first estimating

the sufficient statistic containing parameters to be estimated

and then estimating the parameter based on this sufficient

statistic through an iterative method.40 Although Stefanski

and Carroll24 demonstrated that the conditional score func-

tion possesses statistical efficiency, whether this conclusion

can be directly applied to the MRcML method requires

further investigation. In contrast, our investigation shows

thatMRBEE reaches statistical efficiency ifm=nmin/0where

nmin is theminimumGWAS sample size (supplement 2, The-

orem1.3 (i)). Furthermore, our simulations in SectionS1.3of

supplement 1 suggest thatMRcML-DP tends to overestimate

its SD (i.e., SE> SD), MRcML-BIC underestimates its SD (i.e.,

SE< SD), andMRBEE estimates its SDwell inmost cases, sug-

gesting MRBEE can achieve more efficiency than MRcML.

The exact reason that MRcML does not estimate SD well

warrants further investigation.

MRBEE also has some limitations. MRBEE is ineffective

in handling exposures associated with significantly weaker

IVs, such as CUD and LH in the SCZ data. This is also a

challenge inherited from the field of measurement error

analysis. In this case, MRBEE and analogous methods

such as MRcML tend to produce causal effect estimates

with relatively large SE. MRBEE is effective when the pro-

portion of pleiotropic variants is relatively low (e.g., below

30%). Incorporating a Gaussian mixture model with

MRBEE might improve the robustness for scenarios with

a high proportion of pleiotropic variants. Finally, MRBEE

is designed to handle a fixed number of exposures. Ex-

panding its capability to a high-dimensional MR model is

warranted in future research.49

Last, it is worth offering guidance on how to perform

MVMR analysis from our perspective. First, rather than se-

lecting the optimal number of IVs such that the F-statistics

and conditional F-statistics are larger than 10,3,22 we sug-

gest including all independent IVs that are genome-wide

significantly associated with at least one exposure. The

main purpose of doing this is to reduce the winner’s curse.

Our simulations found that all methods, including

MRBEE, were affected by the winner’s curse, and the

only way to alleviate the winner’s curse was to include as

many causal variants as possible (supplement 1, and

Figure S10). Besides, our theory (supplement 2, Theorem

1.2 and 1.3) illustrates that the asymptotic variance of a

causal effect estimate is related to the cumulative variance

explained by all specified IVs instead of the average vari-

ance explained by each IV. Hence, including more IVs in

the MRmodel can reduce the variance of the related causal

effect estimate. Second, when performing MVMR analysis,

it is not necessary to remove variants that are pleiotropic

between the exposures. The reason why Wang et al.21

found that LDL-C was not significant in European popula-

tions is likely caused by this procedure. In contrast, simul-

taneously including all the relevant exposures and their
4



IVs is recommended because the multivariable regression

can automatically account for the pleiotropic variants

shared by the specified exposures. Third, we suggest con-

ducting a GWPT after performing the MR analysis, which

represents an effective multi-trait approach for discovering

loci with pleiotropy effect, beyond current methods such

as CPASSOC and MTAG. In statistical principle, GWPT is

likely to identify new loci associated with the outcome if

the effect directions of pleiotropy and exposure mediation

are opposite in these genome regions.

During the revision of this manuscript, we noted that a

recent preprint53 claimed that MRBEE was biased with

extremely large SD and SE for some of simulation sce-

narios. We observed that the reason was that the authors

of the preprint did not perform the standardization for

the instrument effects of both exposures and outcome,

which was documented in in the MRBEE software. We pre-

sent the reproduction of Table 1 in the preprint before and

after the standardization in Table S25 in supplement 1. The

result indicates MRBEE has reasonable SD and SE. We have

updated MRBEE software on GitHub and it does not need

the standardization now.
Material and methods

MR model
We describe MRBEE with details here. As in the main text,

let gi ¼ ðgi1;.; gimÞu be a vector of m independent genetic var-

iants where each variant is standardized with mean zero and

variance one, xi ¼ ðxi1;.; xipÞu be a vector of p exposures,

and yi be an outcome. Consider the following linear structural

model:

xi ¼ Bugi þ ui; (Equation 1)

yi ¼ quxi þ gugi þ vi; (Equation 2)

where B ¼ ðb1;.;bmÞu is an ðm3pÞ matrix of genetic effects

on exposures with bj ¼ ðbj1;.;bjpÞu being a vector of length p,

q ¼ ðq1;.; qpÞu is a vector of length p representing the causal

effectsof thep exposuresontheoutcome,g ¼ ðg1;.;gmÞu is a vec-

tor of length m representing horizontal pleiotropy, which may

violate the (IV2) or (IV3) conditions, and ui and vi are noise terms.

Substituting for xi in (2), we obtain the reduced-formmodel:

yi ¼ gu
i aþ uu

i qþ vi; (Equation 3)

where

a ¼ Bqþ g: (Equation 4)

In practice,ui and vi are usually correlated, and hence traditional

linear regression between xi and yi cannot obtain a consistent es-

timate of q. In contrast, the genetic variant vector gi is assumed to

be independent of the noise terms ui and vi because the genotypes

of individuals are randomly inherited from their parents and do

not change during their lifetime.50 Hence, gi can be used as IVs

to remove the confounding effect of ui and vi.

We assume that the genetic effect bj (j ¼ 1;.;m) is a p-dimen-

sional random vector with zero-mean, covariance matrix Sbb, and

cumulative covariance matrix Jbb:
Hum
Sbb ¼ E
�
bjb

u
j

�
;Jbb ¼ mSbb:

The covariance matrix Sbb will vanish as m/N, but the cumu-

lative covariance matrix Jbb is still a constant matrix, represent-

ing the total genetic covariance contributed from the m IVs. The

genetic variant gij (i ¼ 1;.;n, j ¼ 1;.;m) is standardized so that

EðgijÞ ¼ 0 and varðgijÞ ¼ 1, and all IVs are assumed to be in link-

age equilibrium (LE), i.e., cov ðgij; gikÞ ¼ 0 for jsk. Next, the noise

terms ui and vj have zero-means and joint covariance matrix:

Su3 v ¼ cov
��
uu

i ; vj
�u� ¼

 
Suu suv

su
uv svv

!
:

Thus, the exposure xi and outcome yi have zero-means and joint

covariance matrix:

Sx3 y ¼ cov
��

xu
i ; yj

�u�
¼
0@Sxx sxy

su
xy syy

1A;

Sxx ¼ Jbb þ Suu, sxy ¼ Jbbqþ Suuqþ suv, and syy ¼
quJbbqþ quSuuqþ 2qusuv þ svv. Note that suvs0 means the

confounders affect both xi and yi.
Bias of multivariable IVW estimate
Since large individual-level data fromGWAS are less publicly avail-

able, most of the current MR analyses are performed with sum-

mary statistics of IVs through the following linear regression:

baj ¼ bbu
j qþ gj þ εj; (Equation 5)

where baj and bbj are respectively estimated from the outcome and

exposure GWASs, gj is the horizontal pleiotropy, εj represents the

residual of this regression model, and j ¼ 1;.;m referring to the

m IVs. MV-IVW, which is the foundation of most existing MR

methods, estimates q by

bqIVW ¼ argmin
q

�ðba � bBqÞuV�1ðba � bBqÞ�
¼ � bBuV�1 bB��1 bBuV�1ba ; (Equation 6)

where V is a diagonal matrix consisting of the variance of estima-

tion errors of ba. In practice, it is routine to standardize baj and bbjk

by baj=seðbajÞ and bbjs=seðbbjkÞ to remove the minor allele frequency

effect.16 With this standardization, the MV-IVW estimates q by

bqIVW ¼ argmin
q

�kba � bBqk22
� ¼ ðbBu bBÞ�1 bBuba: (Equation 7)

However, the MV-IVWestimate bqIVW is biased due to the estima-

tion errors of baj and bbj:

baj ¼ aj þwaj ; (Equation 8)

bb j ¼ bj þwbj : (Equation 9)

To see this, observe the estimating equation and Hessian matrix

of bqIVW:

SIVWðqÞ ¼ bBuðbBq � baÞ;HIVW ¼ bBu bB:

That is, SIVWðqÞ is the score function of Equation 7 and bqIVW is

estimated by solving SIVWðqIVWÞ ¼ 0, and HIVW is the 2nd deriv-

ative matrix of Equation 7. As shown in supplement 2, sincebqIVW � q ¼ �H�1
IVWSIVWðqÞ , the bias of bqIVW is approximately:
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EðbqIVW � qÞ z � EðHIVWÞ�1EðSIVWðqÞÞ
¼ ��Sbb þ SWbWb

��1�
SWbWb

q � sWbwa
þ sbg

�
;

(Equation 10)

where

cov
��

wu
bj
;waj

�u�
¼ SWb 3wa

¼
0@SWbWb

sWbwa

su
Wbwa

swawa

1A; cov
�
bj;gj

�
¼ sbg:

Interpretation of weak instrument bias
Here, Sbb can be regarded as the average information carried by

each IV, while SWbWb
can be regarded as the information carried

by each estimation error. If Sbb is not substantially larger than

SWbWb
, then the weak instrument will inflate the measurement er-

ror bias by the multiplier ðSbb þ SWbWb
Þ�1. This is the primary

reason why violating assumption (IV1) introduces bias into causal

effect estimates in IVW and other MR approaches.26

The covariance between the estimation errors of SNP-exposure

and SNP-outcome associations sWbwa
can be affected by the frac-

tion of overlapping samples of the exposures and outcome

GWAS. If the exposures and outcome GWAS are independent of

each other, then sWbwa
¼ 0 and hence the measurement error

bias always shrinks bqIVW toward the null. In contrast, if the expo-

sures GWAS and outcome GWAS are estimated from the same

cohorts, sWbwa
usually introduces bias toward the direction of

suv, reflecting the degree of sample overlap between exposures

and outcome. This is the reason why in some empirical

studies,23,27 IVW cannot completely remove the confounding

bias if the overlapping sample fraction is large.

If sbgs0, there is additional pleiotropy bias due to the horizon-

tal pleiotropy that violates the InSIDE assumption. In UVMR, it is

challenging to guarantee gj ¼ 0 or covðgj; bjÞ ¼ 0 for all 1% j%

m, resulting in a potentially biased IVW estimate. Traditional

solutions to horizontal pleiotropy bias require that only a small

proportion of IVs exhibit horizontally pleiotropic effects.5,7,12

However, for complex traits, it is plausible that a large portion of

IVs (even possibly> 50%) possess horizontally pleiotropic effects,

leading to the failure of UVMRmethods. MVMR can balance these

pleiotropic effects shared by multiple exposures, significantly

reducing the number of IVs with horizontal pleiotropy evidence

when conditioned on specified exposures. In other words, it is

more likely to guarantee that only few IVs violate the InSIDE

assumption sbg ¼ 0 after accounting for multiple exposures,

which can be then detected and removed using the robust tools

such as a pleiotropy hypothesis test.

Reliability ratio
In practice, we suggest using the reliability ratio40:

uk ¼
var
�
bjk

�
var
�bb jk

� (Equation 11)

to measure the degree of bias in bqk;IVW, which can be empirically

estimated by

buk ¼

Pm
j¼1

�bb2
jk � var

�
wbjk

��
Pm
j¼1

bb2
jk

: (Equation 12)
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buk reflects the proportion of variability in the estimated effects

attributable to the underlying true genetic effects. For example, a

reliability ratio of 0.6 indicates that 60% of the variance of the esti-

mated effects is attributable to the true effects and the rest is attrib-

utable to their estimation errors. From the perspective of measure-

ment error theory, the IVW estimate bqIVW converges to uq in a

univariable MR analysis when there is no sample overlap, where

u is equal to varðbjÞ=varðbbjÞ:40 Here u is less than 1 and is viewed

as a shrinkage coefficient for bqIVW relative to the true effect q.

We adopt this reliability ratio to much broader contexts, such as

multivariable MR and sample overlap. In our real data analysis,

we found this reliability ratio works reasonably well although

additional investigation is warranted. While the reliability ratio

and the F-statistics3 are similar, the former has a simpler calcula-

tion and can more clearly reflect the proportion of weak IV bias

than the latter.

MR using bias-corrected estimating equation
We propose MRBEE, which estimates causal effects by solving a

new unbiased estimating equation of causal effects. The unbiased

estimating equation of q is

SBEEðqÞ ¼ SIVWðqÞ � m
�
SWbWb

q � sWbwa

�
; (Equation 13)

where SIVWðqÞ ¼ � bBuðba � bBqÞ. Equation 13 states that the

MRBEE estimating function is equal to the IVW estimating equa-

tion minus its bias. Unbiasedness of the MRBEE estimating equa-

tion implies unbiasedness of the MRBEE estimator. The solutionbqBEE such that SBEEðbqBEEÞ ¼ 0 is

bqBEE ¼ � bBu bB � mSWbWb

��1� bBuba � msWbwa

�
: (Equation 14)

Note that unlike other optimizations such as generalized

linear model in measurement error,40 the Hessian matrix

HIVW ¼ bBu bB does not involve q and hence SBEEðqÞ can be directly

obtained from SIVWðqÞ without any iterative approximation.

Bias-correction terms estimation
We estimate the bias-correction terms SWbWb

and sWbwa
from the

insignificant and independent GWAS summary statistics.37 Letba�
j ;
bb�
j1;.; bb�

jp (j ¼ 1;.;M) be M insignificant GWAS effect size es-

timates of outcome and exposures, where the insignificance

means that the p value of the genetic variants are larger than

0.05 for all exposures and outcome, and the independence means

that they are not in LD. Because ba�
j and

bb�
jk follow the same distri-

butions of waj
and wbjk , SWb3wa

can be estimated by

bSWb 3wa
¼ 1

M

XM
j¼1

�bb�
j1;.; bb�

jp; ba�
j

�u�bb�
j1;.; bb�

jp; ba�
j

�
:

(Equation 15)

Here, bSWbWb
is the first ðp3pÞ sub-matrix of bSWb3wa

and bsWbwa

consists of the first p elements of the last column of bSWb3wa
. The

intercept provided by LDSC35 is also a consistent estimate of

covðwaj
; wbjk Þ. Each of these two estimators may be used by

MRBEE and experience with real data suggests that they generally

produce similar results. LDSC requires specification of an LD refer-

ence panel that is from an ancestrally similar population to that

under study in MR. Differences in genetic architecture between

the LD reference panel and the MR study population could intro-

duce bias. Use of Equation 15 does not require an LD reference

panel and so will not be biased for this reason. Additionally, use

of Equation 15 is computationally simpler.
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Algorithm 1. Pseudo-code of MRBEE þ pleiotropy test

1. Input: Initial estimates bqð0Þ, Bias-correction terms bSWbWb
and bsWbwa

, Spleio, FDR q-value threshold k, Tolerance e,

Full set of m� IVs
2. Output: Causal effect estimates bqBEE, Set of m non-UHP/CHP IVs FQ

3. Pseudo-code:

Initialize F
ð0Þ
Q ¼ fj : j ¼ 1; :::;m�g

While kbqðtþ1Þ � bqðtÞk2 > e

1. Calculate S
ðtÞ
pleioj

ðbqðtÞÞ for all j ¼ 1; :::;m�,
2. Update F

ðtþ1Þ
Q ¼ fj : SðtÞpleioj

ðbqðtÞÞ < F�1
c2
1

ð1 � kÞg,
3. Update bqðtþ1Þ using Equation 14 and IVs in F

ðtþ1Þ
Q

End While
SE estimation
The covariance matrix of bqBEE is yielded through the sandwich

formula:

covðbqBEEÞdSBEEðqÞ ¼ F�1
BEEVBEEðqÞF�1

BEE; (Equation 16)

where the outer matrix FBEE is the Fisher information matrix, i.e.,

the expectation of the Hessianmatrix of SBEEðqÞ, and the innerma-

trix VBEEðqÞ is the covariance matrix of SBEEðqÞ. A consistent esti-

mate of SBEEðqÞ is

bSBEEðqÞ ¼ bF�1
BEE
bVBEEðbqBEEÞbF�1

BEE; (Equation 17)

where bFBEE ¼ bBu bB � bSWbWb
; bVBEEðbqBEEÞ ¼ Pm

j¼1
bSjðbqBEEÞbSj

ðbqBEEÞu; and bSjðbqBEEÞ ¼ � ðbaj � bquBEEbbjÞbbj � bSWbWb
bqBEEþbsWbwa

:

When the number of IVs m is small, the standard sandwich for-

mula has been observed to underestimate the SE.51 We apply the

MD correction52 to solve this problem. Consider the so-called

hat matrix:

H ¼ bB� bBu bB � mbSWbWb

��1 bBu

and Hjj is its j th diagonal entries. The MD correction adjusts the

inner matrix as

bVMD
BEEðbqBEEÞ ¼ Xm

j¼1

�
1 � Hjj

��2bSjðbqBEEÞbSjðbqBEEÞu: (Equation 18)

Their theory shows that

E
�bSjðbqBEEÞbSjðbqBEEÞu

�
z
�
1 � Hjj

�2
VBEEðqÞ;

andhence it canobtainamore reliablecovariancematrixbyadjust-

ing ð1 � HjjÞ�2 when estimating VBEEðqÞwith themomentmethod.

When there is horizontal pleiotropy, we adjust Equation 18 as

bVMD
BEEðbqBEEÞ ¼ mþmpleiotropy

m

Xm
j¼1

�
1 � Hjj

��2bSjðbqBEEÞbSjðbqBEEÞu;

(Equation 19)

where m is number of valid IVs and mpleiotropy is the number of de-

tected pleiotropies. Section S1.3 of supplement 1 compares the

estimated and true standard errors of causal effect estimates for

MRBEE and other MVMR estimators. These results demonstrate

that the MD correction described above controls the Type I error

rate well. It is also worth noting that the standard errors of the

MRBEE causal estimates will generally become smaller as the de-

gree of weak instrument bias becomes smaller.
Hum
Horizontal pleiotropy detection
We illustrate how to remove specific IVs with evidence of UHP or

CHP effects with the pleiotropy test Spleio which tests the same null

hypothesis for each SNP as MR-PRESSO and IMRP. The null hy-

pothesis for the j th IV not having any horizontally pleiotropic ef-

fects on the outcome is

H0j : gj ¼ 0 v:s:H1j : gjs0: (Equation 20)

The statistic Spleio for the j th IV is defined as

Spleioj ðbqÞ ¼
�baj � bbu

j
bq�2

var
�baj � bbu

j
bq� ; (Equation 21)

which follows a c2
1 distribution underH0j. The only assumption

here is that baj � bbu
j
bq is asymptotically normal distributed. In fact,

this test examines whether the outcome effect can be explained by

the mediation effects through all exposures. In practice, we esti-

mate varðbaj � bbu
j
bqÞ using the delta method:

dvar�baj � bbu
j
bqÞ ¼ s2

wa
þ bqu bSWbWb

bq þ bbu
j
bSBEE

bbj � 2bqubsWbwa
:

Other methods such as empirical variance and robust variance

estimates of the residual can also be used here. We calculate

Spleio for all candidate IVs and remove IVs with large Spleio values

in an iterativemanner. Algorithm 1 uses an FDRQ-value threshold

to exclude IVs showing potential pleiotropy evidence. We suggest

a threshold Q-value <0.05 in general. Additional simulation re-

sults presented in Section S2.5 of supplement 1 show that FDR

correction generally performs well.
GWPT
Since Spleio tests a very general null hypothesis, we can also calcu-

late Spleio for all SNPs across the genome after obtaining the causal

effect estimates of p exposures on the outcome. Results from these

tests can be used to (1) find novel loci associated with the MR

outcome and (2) draw inferences about pathways of genetic asso-

ciation with the MR outcome. Specifically, when an SNP has a

negative effect on the exposure bj and a positive pleiotropic effect

on the outcome gj, and simultaneously the causal effect q is posi-

tive, then the total effect of this variant on the outcome aj is

canceled and hence cannot be detected in the outcome GWAS.

In contrast, the pleiotropy test directly tests the effect gj and there-

fore can detect novel loci. For example, Zhu et al.16 successfully de-

tected many blood pressure loci missed previously by using this
an Genetics and Genomics Advances 5, 100290, July 18, 2024 17



GWPT with IMRP as the estimator of the causal effect. The results

indicated that most detected pleiotropic variants influenced SBP

and DBP in opposite directions, providing support for the princi-

ple of the GWPT.

Joint c2-test for IVs selection

We applied the joint c2-test to select a set of IVs that are strongly

associated with multiple exposures. Let bj ¼ ðbj1;.;bjpÞu be the

p-length vector of standardized associations between the jth SNP

and the p exposures. We performed the following hypothesis test:

H0j : bj1 ¼ / ¼ bjp ¼ 0; v:s:H1j : bj1s0;or/or bjps0:

(Equation 22)

The test statistic is

tj ¼ bbu
j
bS�1

WbWb

bbj; (Equation 23)

which follows a c2
p distribution when the null hypothesis holds,

where bSWbWb
is the estimated matrix of covariances between esti-

mation errors. We only considered variants as IVs if they are

genome-wide significant in the joint c2-test.
Estimation of variance explained by instrument

variables
Assume that we intend to estimate the SNP heritability of a trait Y

using a set ofm IVs in them-length vector g ¼ ðG1;.;GmÞu with

corresponding associations with Y in the vector b ¼ ðb1;.; bmÞu.
If the variance of Y is 1 and EðGjÞ ¼ 0, we can estimate the vari-

ance in Y explained by the m IVs using the following equation:

R2 ¼
Xm
j¼1

2bb2
j pj
�
1 � pj

�
(Equation 24)

where pj is the minor allele frequency of Gj. We used Equation 24

to produce the heritability estimates in Table 1.
Asymptotic results
We assume that both total number of IVs m and the minimum

sample size among the exposure and outcome GWAS nmin can

approach infinity, while the number of exposures p and the

p-dimensional causal effect vector q are fixed and bounded. Our

goal is to identify the scenarios when MV-IVW outperforms

MRBEE, when they perform equally well, and when MRBEE out-

performs MV-IVW in terms of unbiased estimation of causal ef-

fects and the asymptotic validity of causal inference. We demon-

strate the related theorems and the related regularity conditions

and lemmas in supplement 2.
Data and code availability

The data referenced in this study can be accessed through

the GWAS Catalog (https://www.ebi.ac.uk/gwas/home),

with the corresponding GWAS summary data available

for download in the ‘‘data availability’’ section of the

respective papers. Some of the GWAS summary data are

exclusive of the Million Veteran Program (MVP) summary

results, which are available through dbGAP under the

accession number phs001672.v3.p1.

The MRBEE R package generated during this study is

available at https://github.com/noahlorinczcomi/MRBEE.
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Simulation codes generated during this study are available

at https://github.com/harryyiheyang/MRBEE.Simulation.
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Supplemental information can be found online at https://doi.org/
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H., Fauman, E.B., Würtz, P., and Pritchard, J.K. (2022). Inte-

grative Analysis of Metabolite GWAS Illuminates the Molecu-

lar Basis of Pleiotropy and Genetic Correlation. Elife 11,

e79348.

37. Zhu, X., Feng, T., Tayo, B.O., Liang, J., Young, J.H., France-

schini, N., Smith, J.A., Yanek, L.R., Sun, Y.V., Edwards, T.L.,

et al. (2015). Meta-Analysis of Correlated Traits via Summary

Statistics from GWASs with an Application in Hypertension.

Am. J. Hum. Genet. 96, 21–36.

38. Turley, P.,Walters, R.K., Maghzian, O., Okbay, A., Lee, J.J., Fon-

tana,M.A., Nguyen-Viet, T.A.,Wedow, R., Zacher, M., Furlotte,

N.A., et al. (2018). Multi-Trait Analysis of Genome-Wide Asso-

ciation Summary Statistics Using MTAG. Nat. Genet. 50,

229–237.

39. Watanabe, K., Taskesen, E., Van Bochoven, A., and Posthuma,

D. (2017). FunctionalMapping and Annotation of Genetic As-

sociations with FUMA. Nat. Commun. 8, 1826.

40. Yi, G.Y. (2017). Statistical Analysis with Measurement

Error or Misclassification: Strategy, Method and Application

(Springer).
an Genetics and Genomics Advances 5, 100290, July 18, 2024 19

http://refhub.elsevier.com/S2666-2477(24)00029-0/sref10
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref10
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref11
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref11
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref11
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref11
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref12
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref12
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref12
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref13
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref13
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref13
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref13
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref14
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref14
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref14
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref14
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref15
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref15
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref15
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref15
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref16
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref16
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref16
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref16
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref17
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref17
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref17
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref17
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref18
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref18
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref18
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref18
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref19
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref19
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref19
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref19
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref20
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref20
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref20
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref21
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref21
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref21
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref21
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref21
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref22
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref22
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref22
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref22
https://doi.org/10.1101/2021.06.28.21<?show [?tjl=20mm]&tjlpc;[?tjl]?>259622
https://doi.org/10.1101/2021.06.28.21<?show [?tjl=20mm]&tjlpc;[?tjl]?>259622
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref24
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref24
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref24
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref25
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref25
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref25
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref26
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref26
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref26
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref27
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref27
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref27
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref28
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref28
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref28
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref29
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref29
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref29
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref29
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref30
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref30
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref30
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref31
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref31
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref31
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref31
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref32
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref32
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref32
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref32
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref32
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref33
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref33
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref33
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref33
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref33
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref34
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref34
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref34
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref34
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref34
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref35
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref35
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref35
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref35
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref35
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref35
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref36
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref36
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref36
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref36
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref36
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref36
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref37
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref37
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref37
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref37
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref37
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref38
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref38
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref38
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref38
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref38
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref39
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref39
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref39
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref40
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref40
http://refhub.elsevier.com/S2666-2477(24)00029-0/sref40


41. Breiman, L. (1996). Heuristics of instability and stabilization

in model selection. Ann. Statist. 24, 2350–2383.

42. He, M., Xiang, F., Zeng, Y., Mai, J., Chen, Q., Zhang, J., Smith,

W., Rose, K., and Morgan, I.G. (2015). Effect of Time Spent

Outdoors at School on the Development of Myopia Among

Children in China: A Randomized Clinical Trial. JAMA 314,

1142–1148.

43. Lin, Z., Vasudevan, B., Jhanji, V., Mao, G.Y., Gao, T.Y., Wang,

F.H., Rong, S.S., Ciuffreda, K.J., and Liang, Y.B. (2014). Near

Work, Outdoor Activity, and Their Association with Refractive

Error. Optom. Vis. Sci. 91 (4), 376–382.

44. The HPS3/TIMI55–REVEAL Collaborative Group (2017). Ef-

fects of Anacetrapib in Patients with Atherosclerotic Vascular

Disease. N. Engl. J. Med. 377, 1217–1227.

45. Chobanian, A.V., Bakris, G.L., Black, H.R., Cushman, W.C.,

Green, L.A., Izzo, J.L., Jr, W Jones, D., Materson, B.J., Oparil,

S., Wright, J.T., Jr., et al. (2004). The seventh report of the

joint national committee on prevention, detection, evalua-

tion, and treatment of high blood pressure. Hypertension

42, 1206–1252.

46. Locke, A.E., Kahali, B., Berndt, S.I., Justice, A.E., Pers, T.H.,

Day, F.R., Powell, C., Vedantam, S., Buchkovich, M.L., Yang,

J., et al. (2015). Genetic studies of body mass index yield

new insights for obesity biology. Nature 518, 197–206.

47. Takeuchi, F., Akiyama, M., Matoba, N., Katsuya, T., Nakatochi,

M., Tabara, Y., Narita, A., Saw, W.Y., Moon, S., Spracklen, C.N.,

et al. (2018). Interethnic analyses of blood pressure loci in

populations of East Asian and European descent. Nat. Com-

mun. 9, 5052.

48. Yang, J., Benyamin, B., McEvoy, B.P., Gordon, S., Henders,

A.K., Nyholt, D.R., Madden, P.A., Heath, A.C., Martin, N.G.,

Montgomery, G.W., et al. (2010). Common SNPs Explain a

Large Proportion of the Heritability for Human Height. Nat.

Genet. 42, 565–569.

49. Zuber, V., Colijn, J.M., Klaver, C., and Burgess, S. (2020). Se-

lecting likely causal risk factors from high-throughput experi-

ments using multivariable Mendelian randomization. Nat.

Commun. 11, 29.

50. Lawlor, D.A., Harbord, R.M., Sterne, J.A.C., Timpson, N., and

Davey Smith, G. (2008). Mendelian Randomization: Using

Genes as Instruments for Making Causal Inferences in Epide-

miology. Stat. Med. 27, 1133–1163.

51. Wang, M., Kong, L., Li, Z., and Zhang, L. (2016). Covariance

Estimators for Generalized Estimating Equations (GEE) in

Longitudinal Analysis with Small Samples. Stat. Med. 35,

5318–5319.

52. Mancl, L.A., and DeRouen, T.A. (2001). A Covariance Esti-

mator for GEE with Improved Small-Sample Properties. Bio-

metrics 57, 126–134.

53. Wu, Y., Kang, H., and Ye, T. (2024). Debiased Multivariable

Mendelian Randomization. Preprint at arXiv. https://doi.

org/10.48550/arXiv.2402.00307.

54. van De Vegte, Y.J., Said, M.A., Rienstra, M., van Der Harst, P.,

and Verweij, N. (2020). Genome-wide association studies

and Mendelian randomization analyses for leisure sedentary

behaviours. Nature Commun. 11, 1770. https://doi.org/10.

1038/s41467-020-15553-w.

55. Arns, A., Wahl, T., Wolff, C., Vafeidis, A.T., Haigh, I.D., Wood-
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1 Supplemental Multivariable Simulations
1.1 Simulation settings for MVMR analysis in the main body
We consider the following statistical model which has the same representation as Lin (2023):

U = GγU + eU , (1)
Xk = GγXk

+ 0.25U + eXj
, j = 1, ..., 4 (2)

Y =
4∑

k=1
θjXk + Gα + U + eY . (3)

To make γX1 , ..., γX4 to have correlation, we generate it from the Gaussian-Uniform copula model:
zj1
zj2
zj3
zj4

 ∼ N




0
0
0
0

 ,


1 0.5 −0.5 0.5

0.5 1 −0.5 0.5
−0.5 −0.5 1 −0.5
0.5 0.5 −0.5 1


 , (4)

γXk,j = Φ(zjk) × 0.22, (5)

where Φ(·) is the CDF of standard normal distribution. In this simulation, we consider the compound
symmetric structure with a correlation cor(zjk, zjs) = 0.5 for all k ≠ s. As for γu, each element γuj are
independently generated from

γ∗
uj ∼ 0.3Unif(0, 0.1) + 0.7δ (6)

where δ is a point mass at zero. As for α, each element αj are independently generated from

αj ∼ 0.3N (0.1, 0.22) + 0.7δ (7)

where δ is a point mass at zero. The next part is fixing the heritability, which is achieved by

σ2
e = var(GγXk

)
h2 − 1, (8)

where h2 = 0.1 in this simulation. Finally, the random error is generated from
eU

eX1

eX2

eX3

eX4

eY

 ∼ N




0
0
0
0
0
0

 , σ2
e


1 0.5 0.5 −0.5 0.5 0.5

0.5 1 0.5 −0.5 0.5 0.5
0.5 0.5 1 −0.5 0.5 0.5

−0.5 −0.5 −0.5 1 −0.5 −0.5
0.5 0.5 0.5 −0.5 1 0.6
0.5 0.5 0.5 −0.5 0.5 1



 (9)

In Lin (2023), they did not consider the correlations among {γXk
} and the error terms, and did not fix the

heritability. These are two major adjustments me made.
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1.2 Root Mean Square Error

Figure S1: Barplot of the square-root of mean square error (RMSE). Panel A - L displays the barplots of the values of RMSE
from seven methods in the MVMR simulation. The four rows represent the four causal effects θj , j = 1, 2, 3, 4. Each column
corresponds to one of the three scenarios. The x-axis indicates the value of RMSE, while the y-axis lists the seven methods.
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1.3 Standard Error Evaluation

Figure S2: Boxplot of SE minus SD. Panel A - L displays the boxplots of the values of SE minus SD from seven methods in
the MVMR simulation. The four rows represent the four causal effects θj , j = 1, 2, 3, 4. Each column corresponds to one of the
three scenarios. The x-axis indicates the value of SE minus SD, while the y-axis lists the seven methods. If SE is correctly
estimated, the mean of SE minus SD should be close to zero, which is indicated by a dashed line.
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1.4 Coverage Frequency

Figure S3: Boxplot of the coverage frequency. Panel A - L displays the boxplots of the values of coverage frequency from seven
methods in the MVMR simulation. The four rows represent the four causal effects θj , j = 1, 2, 3, 4. Each column corresponds
to one of the three scenarios. The x-axis indicates the coverage frequency, while the y-axis lists the seven methods. If SE is
correctly estimated, the mean of coverage frequency should be around 95
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1.5 Summary Table
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1.6 Replication of Lin et al

Figure S4: Estimation results of Lin et al. Panel A - L displays the boxplots of causal effect estimates from seven methods in
the MVMR simulation. The four rows represent the four causal effects θj , j = 1, 2, 3, 4. Each column corresponds to one of the
three scenarios. The x-axis indicates the value of the causal effect estimate, while the y-axis lists the seven methods. The true
values of causal effects are denoted by dashed lines.
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1.7 Replication of Wu et al
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1.8 Bias-correction terms: Correlation matrix estimation from insignificant
GWAS statistics

We investigate the estimation error of R̂Wβ×wα , i.e., the correlation version of covariance matrix Σ̂Wβ×wα .
We first examine if increasing M results in a decreasing estimation error. Besides, we consider studying the
Frobenius norm rather than the ℓ2 norm, as ||A||2 ≤ ||A||F and the calculation of the Frobenius norm is much
less costly than the ℓ2 norm. In comparison, we also consider the correlation matrix estimate directly yielded
by the individual data, whose convergence rate is roughly O(min(

√
n1,

√
n0)). The number of replications is

1000.

For this purpose, we set M = 250, 500, . . . , 2000, n1 = n0 = 2000, 20000, and no/n0 = 0.5. Figure S5 shows
the investigation, from which we witness: (1), as M increases, the Frobenius norm of R̂Wβ×wα

is reduced; (2)
directly estimating R̂Wβ×wα

from the individual data is always more precise than indirectly estimating it
from insignificant GWAS statistics. In addition, although the estimation error of R̂Wβ×wα only depends on
M , low sample sizes will introduce finite-sample bias into the estimation.

We then study if increasing n1 and n0 will influence the estimation error of R̂Wβ×wα
. For this purpose,

we set M = 250, 500, 1000 and let n1 and n0 increase from 5000 to 40000 with a lag 5000. The number of
replications is 1000. Figure S6 exhibits the results, from which we observe: increasing n1 and n0 cannot
reduce estimation error of R̂Wβ×wα

. These results confirm our theory: the estimation error of R̂Wβ×wα
only

depends on M .
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Figure S6: The Frobenius norms of correlation matrix estimates when n0 and n1 increase.
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2 Supplemental Univariable Simulations
2.1 Overlapping Fraction
We briefly introduce the simulation settings for UVMR. First, we generate a binomial variable from Binom(2, bj)
where bj ∼ Unif(0.05, 0.5) and standardize it as gij , the direct effect βj from N (0, 1/m), and ui, vi from a
normal distribution with correlation coefficient 0.5. The variances of ui and vi are chosen such that the
IV-heritabilities are σββ/σxx = 0.3 and θ2 × (σββ/σyy) = 0.15, respectively. We specify the causal effect
θ = 0.3/

√
2. We compare MRBEE with IVW, DIVW, MR-RAPS, MR-Egger, MR-Lasso, MR-Median, IMRP,

MR-Conmix, and MR-MiX, where most are implemented by using the R package MendelianRandomization.
We fix n0 = n1 = 20000, specify n01 according to the overlapping fraction, and assume no UHP or CHP. The
so-called overlapping fraction is n01/n0, where the special fraction such that E(SIVW(θ)) = 0 is n01/n0 ≈ 0.77.
The number of independent replications is 1000.

First, we study the influences of overlapping fraction n01/n0 and the number of IVs m, with the results
displayed in Fig.S7. It is easy to see that only MRBEE is able to yield an unbiased estimate of θ in all cases.
For a special overlapping fraction n01/n0 ≈ 0.77, all approaches become unbiased except MR-RAPS and
DIVW. These two methods perform badly because are based on no sample overlap assumption, which in
turn add extra biases to the estimates as long as sample overlap exists. The SEs of causal effect estimates
for all methods increases as the overlapping fraction decreases but remains unchanged by the increase of m,
confirming that the convergence rates of causal estimates are mainly determined by nmin.

As for the SE estimation, we display the boxplot of ŝe(θ̂) − se(θ̂) where se(θ̂) is approximated by the empirical
SE calculated from the independent replications. It is evident that the SE estimates produced by all
approaches have reduced variances as m grows. However, only MRBEE and DIVW can provide consistent
SE estimates, confirming the accuracy of their SE formulas. MR-ConMix is extremely likely to underestimate
the standard error, while MR-Egger, MR-Lasso, MR-Median, and MR-Mix constantly overestimate it. IVW
underestimates the SE when the fraction is large and overestimates it when the fraction is small. In contrast,
MR-RAPS seems to overestimate the SE unless the overlapping fraction is 0%.

The coverage frequency refers to the frequency that the confidence interval covers the true causal effect
among simulations. Here, this confidence interval is constructed by doubling ŝe(θ̂), meaning that the coverage
frequency corresponding to neither an inflated type-I error nor an inflated type-II error should be 0.95. We
observed that only MRBEE enjoys a coverage frequency around 0.95. When m = 250, MR-Egger, MR-Lasso,
and MR-Median suffer from inflated type-II errors, likely because these methods cannot estimate the SE
properly. These approaches also result in inflated type-I errors caused by weak instrument bias as m increases.
Additionally, because MR-Mix overestimates the SE, it consistently exhibits a substantially inflated type-II
error. Furthermore, IMRP and MR-ConMix consistently have inflated type I errors because they frequently
underestimate the SE.
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Figure S7: Investigation of UVMR approaches for univariable MR with sample sizes n0 = n1 = 20000, in terms of overlapping
fraction and number of instrumental variants.
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2.2 Sample size
In this section, we examine the influence of sample sizes. Here, we fix the number of variants m = 500 and
consider n0 = n1 = 20K; n0 = 40K,n1 = 20K; n0 = 20K,n1 = 40K; and n0 = n1 = 40K four cases. Recall
that the overlapping fraction is defined as n01/n0, and 100%, 77%,50%, and 0% four cases will be studied.
Other setting remains the same as the one shown in section 4.1 in the main paper.

Figure S8 displays the results of this examination. Preliminary, it illustrates neither increasing n0 nor
increasing n1 along is able to make the causal effect estimate more accuracy. Besides, increasing the sample
sizes of the exposure GWAS and the outcome GWAS has different impacts: the former decreases the
measurement error bias, while the latter reduces the variance of all causal effect estimates. The reason is
that the estimation error of α̂j will not cause estimation bias, in contrast, it is indeed the random error term
of the multivariate MR model. Furthermore, only the MR-BEE is able to produce unbiased causal effect
estimate and reliable SE estimate in all cases.
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Figure S8: The investigation of univariate MR in terms of sample sizes.
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Figure S9: The investigation of univariate MR in terms of type-I error.

2.3 Type-I error
Now we turn to examine whether MRBEE and existing approaches produce inflated type-I error rates when
UHP is present. Note that the UHP γuj must exist otherwise the IV-heritability of outcome will be zero
when θ = 0. We independently generate γuj from the same distribution as βj . The simulation settings
are: IV-heritability of exposure = 0.3, IV-heritability of outcome = 0.15, n01/n0 = 0.5, and the number of
replications is 1000.

Figure S9 exhibits the results, from which some phenomena are consistently observed; e.g., increasing n1 and
n0 simultaneously reduces the variances of all causal estimates, while increasing m increases weak instrument
bias. Since θ = 0 implies that only the confounder bias (n01/n0σuv) exists, all the weak instrument biases
are upward. (The correlation coefficient between ui and vi is 0.5.) In addition, all the existing approaches
incur inflated type-I errors as m rises. The result suggests that the weak instrument bias is likely to explain
some significant causal relationships observed in the literature. However, using MRBEE can produce reliable
causal inferences..
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2.4 Winner’s curse
In this section, we examine the impact winner’s curse. We use the exactly same setting as the one in section
4.1. To simulate the winner’s curse, we only use the variants with absolute t-statistics (i.e., |β̂/se(β̂)|) larger
than 1 or 2.

Figure S10 displays the results of this examination. It shows the winner’s curse will not introduce a significant
bias into MR-BEE as long as the overlapping fraction is not zero. As for other MR approaches that suffer
from biases, we observed that the winner’s curse will indeed slightly reduce the biases but inflate the variances.
We believe that only selecting the significant variants will reduce the weak instrument bias somehow, because
the weak instrument bias is determined by the ratio of signal-by-noise, i.e.,

ψββ

m
v.s. σWβWβ

, (10)

where ψββ =
∑m

j=1 var(βj). If ψββ/m is significantly larger than σWβWβ
, the bias of the IVW estimate should

disappear due to the structure of “weak instrument bias x estimation error bias”.

In addition, as the overlapping fraction decreases, the MR-BEE also encounters small bias especially when
this fraction is zero. The reason for this problem is

1
m

m∑
j=1

βjωβj
→ 0, 1

|W|
∑
j∈W

βjωβj
̸→ 0, (11)

where W is the set of all “winners”. In this case, extra selection bias arises but MR-BEE fails to account for
it. Fortunately, such a bias is usually modest and it seems only existing when the overlapping fraction is 0.
Increasing the sample size to identify more causal variants is one of the practical ways to resolve the winner’s
curse in this case.
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Figure S10: The investigation of univariate MR in terms of winner’s curse.
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2.5 Outlier test
In this section, we investigate if the MR-BEE with the IMRP pleiotropy test is able to remove the pleiotropy
as resembling the outlier detection. The methods for comparsion include IMRP, MR-Lasso and MR-ConMix.
Detailed setting of outliers can be found in the subsection of outlier detection setting. Here, we consider three
criteria: estimation error of causal effect, true negative (TN) and true positive (TP). Here, the TN refers to
the proportion of removing all outliers, while the TP refers to the proportion of not removing any valid IV.
For IMRP and MR-BEE, we need to specify the threshold κ. For IMRP, we consider two thresholds: κ = 0.05
and κ = 0.05/s where s is the number of real outliers. Regarding MR-BEE with IMRP, we not only consider
this two thresholds but also consider two FDR control methods “BH” and “Sidak”, where the thresholds in
these two methods are 0.05. Details of the FDR control methods can be found in R package FDRestimation.

Figure S11 displays the results of outlier detection. As for estimation error, MR-BEE with threshold κ = 0.05
suffers from a small selection bias, because this estimator is supposed to remove many valid IVs because of
false discovery. As for MR-BEE with other thresholds, they do not suffer from bias. As for other methods,
they incur large bias introduced by the weak instrument bias and estimation error bias.

As for TN, the results show all methods are able to remove the true outliers. As for TP, however, only the
MR-Lasso is able to keep all valid IVs. MR-BEE and IMRP with the oracle threshold (i.e., κ = 0.05/s) have
large probabilities to keep every valid IV with the increasing of outlier fractions, but this probability is not 1.
Other methods cannot keep valid IVs at all, although the causal effect estimates may not have biases. These
results show that there exists a theoretical threshold κ ≍ Fχ2(logm) to distinguish the outliers and the valid
IVs, but this threshold may be difficult to specify in practice. In contrast, the MR-Lasso seems to enjoy the
oracle property thanks to the consistency of lasso-type regularizer (Fan, 2001).
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Figure S11: The investigation of univariate MR in terms of outlier detection.
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2.6 Verification of Asymptotic Theroy
We next verify if the asymptotic normal distributions in Theorem 1.2 and Theorem 1.2 are correct. For a
general estimate θ̂, the asymptotic bias and SE are

√
sn(θ̂ − θ) and

√
snse(θ̂), respectively, where

√
sn is the

convergence rate of θ̂. If this estimate is strongly asymptotically unbiased, the asymptotic bias sn(θ̂ − θ)
should also be 0. Besides, if two estimates have equal asymptotic SEs, they are equally powerful in terms of
statistical efficiency. We select MR-BEE, IVW, MR-Median, and MR-Lasso to compare, only consider two
overlapping fractions: 100% and 0%, set n0 = n1 = nmin, and fix the causal effect θ = 0.5. As for m and
nmin, we focus on the following four cases:

(1) m = 2500, 5000, . . . , 50000 and m0.9/n = c0 = 0.1 and 0.2; we examine the direct bias: θ̂−θ, asymptotic
SE:

√
n2

min/m se(θ̂), and coverage frequency;

(2) m = 250, 500, . . . , 5000 and m/n = c0 = 0.1 and 0.2; we examine the direct bias: θ̂ − θ, asymptotic SE:√
nmin se(θ̂), and coverage frequency;

(3) m = 250, 500, . . . , 5000 and m2/n = c0 = 5 and 10; we examine the asymptotic bias:
√
nmin(θ̂ − θ),

asymptotic SE:
√
nmin se(θ̂), and coverage frequency;

(4) m = 250, 500, . . . , 5000 and m3/n = c0 = 5 and 10; we examine the asymptotic bias:
√
nmin(θ̂ − θ),

asymptotic SE:
√
nmin se(θ̂), and coverage frequency.

Note that we directly generate the estimation errors Wβ and wα according to Theorem 1 because nmin in
cases (3) and (4) can be larger than one million. %The calculations involving individual-data are extremely
time-consuming in these cases.

Fig. S12 demonstrates the simulation results. In case (1), θ̂BEE is unbiased while the other three estimates
suffer from non-removable biases. For the asymptotic SE,

√
n2

min/m se(θ̂BEE) remains unchanged when nmin
and m are sufficiently large (e.g., the bars colored in blue), verifying conclusion (iii) in Theorem 1.3. However,
the coverage frequency of MR-BEE is a little larger than 0.95, meaning that the SE of θ̂BEE is overestimated
in this extreme case. This phenomenon is reasonable because Theorem 1.4 points out that the convergence
rate of the sandwich formula is min(

√
nmin, nmin/

√
m,

√
m/ logm), which slows down as m increases. In case

(2), the direct bias of θ̂IVW is unchanged as nmin tends to infinity, confirming conclusion (iii) in Theorem 1.2.
As for θ̂BEE, its asymptotic SE is a little larger than θ̂IVW, verifying item (ii) in Theorem 1.3.

In case (3), the asymptotic bias of θ̂IVW is constant as nmin goes to infinity, illustrating that θ̂IVW is not
strongly asymptotically unbiased. As a result, the coverage frequencies of θ̂IVW are significantly smaller than
0.95, confirming our claim that any inference made based on θ̂IVW is invalid. Besides, the asymptotic SEs
of θ̂BEE and θ̂IVW are essentially the same, indicating that θ̂BEE and θ̂IVW are equally efficient as long as
m/nmin → 0. In case (4), the asymptotic bias of IVW, MR-Median, and MR-Lasso vanish as nmin increases
and their coverage frequencies are around 0.95, which is consistent with conclusion (i) in Theorem 1.2. The
equal asymptotic SEs also indicate that θ̂BEE and θ̂IVW are equally efficient in this scenario. In addition,
IVW, MR-Median, and MR-Lasso suffer from the same degree of bias when there is no pleiotropy, while
MR-Median not only suffers from a large asymptotic SE but also is likely to overestimate it.
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Figure S12: Investigations of MR-BEE and IVW in terms of asymptotic bias and covariance matrix.
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2.7 Larger numbers of IVs
Here, we directly generate the GWAS summary data from the normal distribution using the following model:

β̂j ∼ N (0,Σββ + ΣWβWβ
), α̂j ∼ N (β⊤

j θ,θ⊤ΣWβWβ
θ + σwαwα + 2θ⊤σWβwα .)

This helps us to evaluate the performances of the existing methods in the cases of larger numbers of IVs.

For larger numbers of IVs, the degrees of the weak instruments are higher, MRBEE and MR.CUE are two
methods consistently performing well in the no pleiotropy cases. This confirms our conjecture that the key
to removing weak instrument bias is accounting for the covariance matrix of estimation errors—however,
MR.CUE suffers from bias in the presence of pleiotropy. We believe this is due to the fact that MR.CUE only
considers the UHP satisfying the InSide condition, which cannot address the unbalanced UHP. In addition,
the univariable version of MRCML is generalized bias because it does not require the user to provide the
correlation between exposure and outcome GWAS, which implies it does not account for the correlation
between exposure and outcome GWAS estimation errors. In contrast, the multivariable version of MRCML
requires us to provide it, and hence it is unbiased.
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2.8 Additional pleiotropy simulation
We performed a univariable MR simulation to compare the performance of horizontal pleiotropy identification
methods used by MRBEE and MRCML-BIC and their subsequent effects on their causal estimates. The
simulation models and R code used to generate the simulated data are presented in Figure 15. In these
simulations, we fixed the number of causal exposure SNPs at 100, the exposure heritability at 0.15, the true
causal effect at 0.2, and the exposure and outcome GWAS sample sizes at 30k and non-overlapping and
varied the mean of UHP from a value of 0 to a value of 0.1. For each UHP mean, we drew UHP effects
for each SNP from a normal distribution with variance that was one fourth of the variance of the true
SNP-outcome associations. We then estimated causal effects using MRBEE and MRCML-BIC. We then
recorded the number of horizontally pleiotropic IVs that were identified by each method and the corresponding
causal effect estimates after excluding them. These results indicate that the results of which isare presented
below, which suggestreveals that MRBEE correctlyonsistently unbiasedly estimateds the causal effects and
identified a stableconstant proportion of UHP IVs regardless of the UHP mean, whereas the BIC method of
MVMR-cML MRCML-BIC identifieds UHP IVs at different rates as the UHP mean changeds, thus affecting
the its subsequent causal effect estimate. In this simulation, the causal estimate was based on observed values
of β̂X and β̂Y , the observed SNP-exposure and SNP-outcome associations, respectively, and both methods
were adjusted for GWAS estimation error.

3 Real Data Analysis
3.1 Myopia data: heritability, genetic correlation matrix, and estimation error

correlation matrix
3.2 SCZ data: heritability, genetic correlation matrix, and estimation error

correlation matrix
3.3 CAD data: heritability, genetic correlation matrix, and estimation error

correlation matrix
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Figure S13: Investigation of UVMR approaches for UVMR model with sample sizes n0 = · · · = n6 = 20000 and number of IVs
m = 1000.
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Figure S14: Investigation of UVMR approaches for UVMR model with sample sizes n0 = · · · = n6 = 20000 and number of IVs
m = 2000.
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Figure S15: These are the results of simulations described above comparing the performance of MRBEE and MRCML-BIC in
identifying horizontal pleitropy and estimating the causal effect as the UHP mean changes.
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Figure S16: Myopia data. A. Heritability estimated by LDSC and the corresponding confidence intervals (radius is double SE).
B. Genetic correlation matrix estimated by LDSC. C. Correlation matrix of estimation error constructed using the intercept
from LDSC estimation. D. Correlation matrix of estimation error constructed using GWAS insignificant statistics.
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Figure S17: SCZ data. A. Heritability estimated by LDSC and the corresponding confidence intervals (radius is double SE). B.
Genetic correlation matrix estimated by LDSC. C. Correlation matrix of estimation error constructed using the intercept from
LDSC estimation. D. Correlation matrix of estimation error constructed using GWAS insignificant statistics.
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Figure S18: CAD data. A. Heritability estimated by LDSC and the corresponding confidence intervals (radius is double SE).
B. Genetic correlation matrix estimated by LDSC. C. Correlation matrix of estimation error constructed using the intercept
from LDSC estimation. D. Correlation matrix of estimation error constructed using GWAS insignificant statistics.
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1 Asymptotic Results

1.1 Regular conditions

we investigate the asymptotic behavior of the multivariable IVW estimate as the number of IVs m and the
minimum sample size nmin go to infinity. To facilitate the theoretical derivation, we specify three definitions
and four regularity conditions.

Definition 1.1 (Sub-Gaussian variable). A random variable x is sub-Gaussian distributed with sub-Gaussian
parameter τx > 0 if for all t > 0, Pr(|x− E(x)| ≥ t) ≤ 2e−t2/τ2

x .

Definition 1.2 (Well-conditioned covariance matrix). A covariance matrix Σ is well-conditioned if there is
a positive constant d0 such that 0 < d−1

0 ≤ λmin(Σ) ≤ λmax(Σ) ≤ d0 < ∞.

Definition 1.3 (Strongly asymptotically unbiased estimate). Let θ̂ be a consistent estimate of θ with an
asymptotic normal distribution

√
sn(θ̂−θ) D−→ N (µθ,Σθ), where µθ is a vector with a bounded ℓ2-norm, Σθ

is a well-conditioned covariance matrix, and sn is a sequence of n. Then θ̂ is called a strongly asymptotically
unbiased estimate of θ if µθ = 0.

Sub-Gaussianity and well-conditioned covariance matrix are two of the basic concepts in modern statistics
(Vershynin, 2018). In addition, we define the strongly asymptotic unbiasedness to distinguish the consistent
estimate whose squared bias vanishes with an equal and a smaller rate than its variance, respectively. If
an estimate is consistent but its squared bias and variance vanish at the same rate, the classic confidence
interval cannot cover the true parameter with a probability of 0.95, thus leading to invalid statistical inference
(Jankova, 2018).

Condition 1.1 (Regularity conditions for multivariable MR).
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(C1) For gi = (gi1, . . . , gim)⊤, each entry gij is a bounded sub-Gaussian with E(gij)=0, var(gij)=1, and
sub-Gaussian parameter τg ∈ (0,∞). For all (i, j) ̸= (t, s), gij is independent of gts.

(C2) For ui = (ui1, . . . , uip)⊤, each entry uij is a sub-Gaussian with E(uij) = 0, var(uis) ∈ (0,∞), and
sub-Gaussian parameter τu ∈ (0,∞); vi is a sub-Gaussian with E(vi) = 0, var(vi) ∈ (0,∞), and
sub-Gaussian parameter τv ∈ (0,∞). Besides, (u⊤

i , vi)⊤ is independent of (u⊤
t , vt)⊤ for all i ̸= t.

Furthermore, Σu×v is a well-conditioned covariance matrix of (u⊤
i , vi)⊤.

(C3) For βj = (βj1, . . . , βjp)⊤,
√
mβjs is sub-Gaussian with E(

√
mβjs) = 0, var(

√
mβjs) ∈ (0,∞), and sub-

Gaussian parameter τβ ∈ (0,∞). For all j ̸= t, βj is independent of βt and Ψββ is a well-conditioned
covariance matrix of

√
mβj.

(C4) The genetic variant gij, the genetic effect βj, the noise terms ui and vi, are three mutually independent
groups.

Conditions (C1)-(C4) restrict that all variables involved in this paper are sub-Gaussian distributed. In
practice, gij is standardized from a binomial variable with status 0, 1, and 2. Hence, it is supposedly a
bounded sub-Gaussian variable as long as its MAF is not rare. Besides, we assume

√
mβj to be sub-Gaussian

with a well-conditioned covariance matrix Ψββ , because the cumulative covariance explained by the m IVs
Ψββ should be fixed while the covariance explained by each IV Σββ → 0 as m → ∞. This is because we
adopt the infinitesimal random effect model in which cov(βj) = h2

m/m (Bulik-Sullivan et al., 2015; Fisher,
1919), where h2

m is the additive SNP heritability explained by the m IVs. In MR analysis, the number of
IVs can increase as the sample size increases because of increasing statistical power. Our theoretical work
assumes that the heritability of IVs always keeps a constant. This is a reasonable assumption because the
effect sizes because smaller and smaller under the infinitesimal model as the number of causal SNPs grows.
In additional, the sub-Gaussian distribution is more general than the normal distribution, allowing for the
possibility of partial elements in βj to be a product of a continuous variable and a binary variable. This
flexibility aligns with the scenario in multivariable MR analysis where the IVs from multiple exposures are
combined, inevitably leading to the inclusion of numerous weak or null IVs for some exposures.
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1.2 Asymptotic Results for Multivariable IVW

Theorem 1.1. Denote wαj = α̂j − αj and ωjs = β̂js − βjs, s = 1, . . . , p. If conditions (C1)-(C4) are
satisfied, then for all j,

√
n0wαj√
n1wβ1j

...√
npwβ1p

 D−→ N




0
0
...
0

 ,


σyy

n01√
(n0n1)σyx1 · · · n01√

(n0np)σyxp

n01√
(n0n1)σyx1 σx1x1 · · · n1p√

(n1np)σx1xp

...
...

. . .
...

n0p√
(n0np)σyxp

n1p√
(n1np)σx1xp

· · · σxpxp


 ,

if n0, . . . , np and m → ∞.

Theorem 1.1 demonstrates the asymptotic normal distribution of the estimation errors, from which we are
able to obtain

ΣWβWβ
= ∆xx ⊙ Σxx, σWβwα

= δxy ⊙ σxy, σwαwα
= σyy/n0, (1)

where the (j, s)th element of ∆xx is njs/(njns), the jth element of δxy is nj0/(n0nj), and the operator
⊙ is the Hadamard product of two matrices. Our work is the first to rigorously prove this theorem under
regularity conditions (C1)-(C4) and highlight the role of sample overlap.

Based on this theorem, the expectations of SIVW(θ) and HIVW are given by

E(SIVW(θ)) = (∆xx ⊙ Σxx)θ − δxy ⊙ σxy, E(HIVW) = Σββ + ∆xx ⊙ Σxx. (2)

By expressing σxy = Σxxθ + σuv, an alternative expectation of SIVW(θ)) is obtained:

E(SIVW(θ))︸ ︷︷ ︸
measurement error bias

= {(∆xx − δxy1⊤) ⊙ Σxx}θ︸ ︷︷ ︸
null bias

− δxy ⊙ σuv︸ ︷︷ ︸
confounder bias

. (3)

From this expectation, it is clear that there are two sources of measurement error bias: {(∆xx − δxy1⊤) ⊙
Σxx}θ comes from the measurement error, while {δxy ⊙ σuv} is caused by the confounder. Here, we call
{(∆xx −δxy1⊤)⊙Σxx}θ null bias because it always shrinks the coefficient estimate toward zero. In contrast,
we term {δxy ⊙ σuv} confounder bias because σuv ̸= 0 implies that there are underlying confounders
simultaneously affecting both xi and yi. Moreover, the overlapping fractions δxy linearly trade off these two
sources of biases. Generally, null bias is dominant when the elements of δxy are small, while confounder
bias dominates when the elements of δxy are large. And there may exist a special sample overlap such that
δxy ⊙σuv = {(∆xx −δxy1⊤) ⊙ Σxx}θ. In univariable MR, this special fraction is n01/n0 = σxxθ/σxy, which
guarantees that E(SIVW(θ)) = 0 and E(θ̂IVW) = θ. This theoretical result explains why in the empirical studies,
θ̂IVW has a negative bias when n01/n0 is small, has a positive bias when n01/n0 is large, and is unbiased at
this specific point.

Theorem 1.2. Suppose conditions (C1)-(C4) hold and m, nmin → ∞. Then

(i) if m/
√
nmin → 0,

√
nmin(θ̂IVW − θ) D−→ N (0, ψθΨ−1

ββ );

(ii) if m/
√
nmin → c0,

√
nmin(θ̂IVW − θ) D−→ N (−c0Ψ−1

ββ (ΨWβWβ
θ −ψWβwα

), ψθΨ−1
ββ );

(iii) if m/nmin → 0, ||θ̂IVW − θ||2 = OP (m/nmin);

(iv) if m/nmin → c0 ∈ (0,∞), θ̂IVW − θ P−→ −c0(Ψββ + c0ΨWβWβ
)−1(ΨWβWβ

θ −ψWβwα
);

(v) if m/nmin → ∞, θ̂IVW
P−→ Ψ+

WβWβ
ψWβwα

;
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where
ΨWβ×wα

=
(

ΨWβWβ
ψWβwα

ψ⊤
Wβwα

ψwαwα

)
= lim

nmin→∞

(
nminΣWβWβ

nminσWβwα

nminσ
⊤
Wβwα

nminσwαwα

)
,

and ψθ = ψwαwα + θ⊤ΨWβWβ
θ − 2θ⊤ψWβwα .

Theorem 1.2 is one of two main theorems in this paper and points out five scenarios. First, if m goes to
infinity with a lower rate than

√
nmin, then θ̂IVW is strongly asymptotically unbiased. In other words, θ̂IVW

is able to reliably infer causality only when the sample size of GWAS data is quadratically larger than the
number of IVs. On the other hand, the asymptotic covariance matrix of θ̂IVW is the inverse of the cumulative
covariance matrix Ψββ =

∑m
j=1 cov(βj), therefore, it is optimal to include as many associated variants as

possible in order to have Ψββ large enough. In contrast, using a few top significant variants to perform MR
analysis is not recommended.

Second, if m tends to infinity with the same rate as
√
nmin,

√
nmin(θ̂IVW − θ) converges to an asymptotic

normal distribution with a non-zero asymptotic bias {c0Ψ−1
ββ (ψWβwα

− ΨWβWβ
θ)}. In this asymptotic bias,

{c0(ψWβwα
− ΨWβWβ

θ)} is caused by SIVW(θ) and Ψ−1
ββ is caused by H−1

IVW. Since the asymptotic bias and
asymptotic covariance matrix are of the same order in this scenario, the inference made is invalid although
the bias of θ̂IVW is infinitesimal. When m/nmin → 0, θ̂IVW still converges to θ with a rate O(m/nmin), but it
no longer has an asymptotic normal distribution. Scenario (iv) is more serious than (iii) because the bias
of θ̂IVW will not vanish even when

√
nmin goes to infinity. In the fifth scenario, θ̂IVW converges to a term

irrelevant to θ.
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1.3 Asymptotic Results for MRBEE

Theorem 1.3. Suppose conditions (C1)-(C4) hold and m, nmin → ∞. Then

(i) if m/nmin → 0,
√
nmin(θ̂BEE − θ) D−→ N (0, ψθΨ−1

ββ );

(ii) if m/nmin → c0 ∈ (0,∞),
√
nmin(θ̂BEE − θ) D−→ N (0, ψθΨ−1

ββ + c0Ψ−1
ββ ΨBCΨ−1

ββ );

(iii) if m/nmin → ∞ and m/n2
min → 0,

√
(n2

min/m)(θ̂BEE − θ) D−→ N (0,Ψ−1
ββ ΨBCΨ−1

ββ );

where ψθ is defined in Theorem 1.2 and ΨBC is a semi-positive symmetric matrix whose expression is shown
in equation (64) in supplementary materials.

Theorem 1.3 indicates three scenarios. First, if m/n → 0,
√
nmin(θ̂BEE −θ) converges to a normal distribution

with a zero mean and the covariance matrix being exactly the same as θ̂IVW. In other words, θ̂BEE is not only
strongly asymptotically unbiased but also loses no efficiency in comparison to θ̂IVW. Second, if m/nmin →
c0 ∈ (0,∞), there is an additional covariance matrix c0Ψ−1

ββ ΨBCΨ−1
ββ in the asymptotic normal distribution,

where ΨBC is introduced by the bias-correction terms:

ΨBC = lim
nmin→∞

var
[
nmin√
m

(
(W⊤

β Wβ −mΣWβWβ
)θ − (W⊤

βwα −mσWβwα
)
)]
. (4)

In this scenario, θ̂BEE is again strongly asymptotically unbiased with a convergence rate
√
nmin, while θ̂IVW

incurs a bias not vanishing asymptotically. In the third scenario, θ̂BEE is still strongly asymptotically unbiased
with a convergence rate

√
(n2

min/m), and the asymptotic distribution is dominated by the bias correction
terms. Note that θ̂IVW is not consistent unless m/nmin → 0 and the inference made by θ̂IVW is unreliable
unless m/

√
nmin → 0. In contrast, θ̂BEE is strongly asymptotically unbiased as long as m/n2

min → 0. Thus,
MRBEE is superior to multivariable IVW in terms of both unbiasedness and asymptotic validity in all
possible scenarios.

Theorem 1.4. Suppose conditions (C1)-(C4) hold. Let g{s}
ij satisfy the condition (C1), E(x[s]

i |g{s}
ij ) = 0 for

all 1 ≤ s ≤ p, and E(y[0]
i |g{0}

ij ) = 0. Then

∥Σ− 1
2

Wβ×wα
Σ̂Wβ×wα

Σ− 1
2

Wβ×wα
− Ip+1∥2 = OP

(
1√
M

)
,

if nmin and M → ∞.

Theorem 1.4 shows that Σ̂Wβ×wα
has a O(

√
M) convergence rate after adjusting the scale of ΣWβ×wα

.
As there may be more than 1 million independent variants in the whole genome, Σ̂Wβ×wα

has high preci-
sion. Besides, n0, n1, ..., np → ∞ are required such that

√
n0α̂

∗
j and

√
nsβ̂

∗
js are asymptotically normally

distributed.

Theorem 1.5. Under the conditions of Theorem 1.4,

||Σ− 1
2

BEE (θ)Σ̂BEE(θ̂BEE)Σ− 1
2

BEE (θ) − Ip||2 = OP

(
max

{
1√
nmin

,

√
m

nmin
,

√
logm
m

})
if nmin,m and M → ∞ and m/n2

min → 0.

Theorem 1.5 shows that Σ̂BEE(θ) has a min(
√
nmin,

√
(n2

min/m),
√

(m/ logm)) convergence rate when
m/n2

min → 0. The first two convergence rates are brought by ||F̂BEE − FBEE||2, while the third convergence
rate is yielded by ||V̂BEE(θ̂BEE) − VBEE(θ)||2. Note that the SE estimation should be of the same importance
as the causal effect estimation. Although the inference is made based on an unbiased estimate, it could
still be invalid if the SE estimate is not reliable. As the dependability of the sandwich formula has been
extensively investigated empirically, it is a reliable technique to obtain the SE estimate for MRBEE.
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Theorem 1.6. Assume that |O| is fixed and bounded and γ∗
1 , . . . , γ

∗
m are a series of non-random numbers.

Then under the conditions of Theorem 1.5, there exists a threshold κ = Fχ2
1
(C0 logm) such that Pr(O =

Ô) → 1, where Ô = {j : Fχ2
1
(tγj ) > κ} and C0 is a sufficiently large constant.

Theorem 1.6 indicates that there is a theoretical threshold κ = Fχ2
1
(C0 logm) to consistently identify all

horizontal pleiotropy. This threshold increases with a rate O(logm) to reduce the false discovery rate (FDR)
and its concrete value can be chosen by a FDR control method (Benjamini, 1995). In practice, MRBEE
iteratively applies the hypothesis test to remove the outliers and uses the remaining IVs to estimate θ. The
stable estimate is regarded as θ̂BEE.
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1.4 Preliminary lemmas

In this subsection, we specify some lemmas that can facilitate the proofs, most of which can be found in
the existing papers. We first discuss the equivalent characterizations of sub-Gaussian and sub-exponential
variables.

Lemma 1.1 (Equivalent characterizations of sub-Guassian variables). Given any random variable X, the
following properties are equivalent:

(I) there is a constant K1 ≥ 0 such that

Pr(|X| ≥ t) ≤ 2 exp(−t2/K2
1 ), for all t ≥ 0,

(II) the moments of X satisfy

||X||Lp
= (E(|X|p))

1
p ≤ K2

√
p, for all p ≥ 1,

(III) the moment generating function (MGF) of X2 satisfies:

E{exp(λ2X2)} ≤ exp(K2
3λ

2), for all λ staisfying |λ| ≤ K−1
3 ,

(IV) the MGF of X2 is bounded at some point, namely

E{exp(X2/K2
4 )} ≤ 2,

(V) if E(X) = 0, the MGF of X satisfies

E{exp(λX)} ≤ exp(K2
5λ

2), for all λ ∈ R,

where K1, . . . ,K5 are certain strictly positive constants.

This lemma summarizes some well-known properties of sub-Guassian and can be found in Vershynin (2018,
Proposition 2.5.2).

Lemma 1.2 (Equivalent characterizations of sub-exponential variables). Given any random variable X, the
following properties are equivalent:

(I) there is a constant K1 ≥ 0 such that

Pr(|X| ≥ t) ≤ 2 exp(−t/K1), for all t ≥ 0,

(II) the moments of X satisfy

||X||Lp
= (E(|X|p))

1
p ≤ K2p, for all p ≥ 1,

(III) the moment generating function (MGF) of |X| satisfies:

E{exp(λ|X|)} ≤ exp(K3λ), for all λ staisfying 0 ≤ λ ≤ K−1
3 ,

(IV) the MGF of |X| is bounded at some point, namely

E{exp(|X|/K4)} ≤ 2,

(V) if E(X) = 0, the MGF of X satisfies

E{exp(λX)} ≤ exp(K2
5λ

2), for all λ ≤ K−1
5 ,
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where K1, . . . ,K5 are certain strictly positive constants.

This lemma summarizes some well-known properties of sub-exponential and can be found in Vershynin (2018,
Proposition 2.7.1).

Lemma 1.3 (Product of sub-Gaussian variable is sub-exponential). Suppose that X,Z are two sub-Gaussian
variable, then Y = XZ is a sub-exponential variable. Besides, if X is a bounded sub-Gaussian variable, then
then Y = XZ is a sub-Gaussian variable.

The first claim of this lemma is provided by Vershynin (2018, Proposition 2.7.7). The second claim of this
lemma is a direct inference of Fan et al. (2011, Lemma A.2).

Lemma 1.4 (ℓ2-norm of matrices with sub-Gaussian entries). Let X1, . . . ,Xn be n (p × 1) independent
identically distributed random vector with entries xi1, . . . , xip are sub-Gaussian with zero-mean. Besides,
define the covariance matrix of Xi as

Σ = E(XiX
⊤
i )

and the related sample covariance matrix

Σ̂ = 1
n

n∑
i=1

XiX
⊤
i .

Then for every positive integer n,

E(||Σ̂ − Σ||2) ≤ C

(
p

n
+

√
p

n

)
||Σ||2,

where C is certain positive constant.

This lemma is provided by Vershynin (2018, Theorem 4.7.1). It shows the convergence rate of sample
covariance matrix is

√
(n/m).

Lemma 1.5 (ℓ2-norm of matrices with sub-exponential entries). Let X1, . . . ,Xn be n (p× 1) independent
identically distributed random vector with entries xi1, . . . , xip are sub-exponential with zero-mean. Besides,
define the covariance matrix of Xi as

Σ = E(XiX
⊤
i )

and the related sample covariance matrix

Σ̂ = 1
n

n∑
i=1

XiX
⊤
i .

Then for ever t ≥ 0, the following inequality holds with probability at least 1 − p exp(−ct2):

||Σ̂ − Σ||2 ≤ max(||Σ||2δ, δ2),

where c is certain positive constant and δ = t
√
p/n.

This lemma is the direct inference of Vershynin (2010, Theorem 5.44). Besides, by letting t =
√
p logn we

further obtain

E(∥∥Σ̂ − Σ∥∥_2) = O

(√
p logn
n

)
∥∥Σ∥∥_2,

if Σ̂ is the sample covariance matrix of sub-exponential vector. Note that in our method, the dimension p is
fixed and hence we cannot chose t =

√
p log p such that the estimation bound becomes

√
(p log p)/n||Σ||2.

8



Lemma 1.6 (Asymptotic normal distribution of Wishart matrix). Suppose X1,X2, . . . ,Xn are n IID re-
laxation of the p-dimensional variable X ∼ N (0,Σ) with a well-conditioned covariance matrix Σ. Besides,
define the sample covariance matrix of Σ as

Σ̂ = 1
n

n∑
i=1

XiX
⊤
i .

If p is a fixed number, then as n → ∞,

√
n(vec(Σ̂) − vec(Σ)) D−→ N

(
0, (Ip2 + Kp2)(Σ ⊗ Σ)

)
,

where Kp2 is the so-called commutation matrix, which is able to ensure Kp2vec(A) = vec(A′) for all (p× p)
matrix.

This lemma can be found in Muirhead (2009, equation (5), p90).
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1.5 Specific Lemmas

In this subsection, we specify the following lemmas that are made based on the preliminary lemmas.

Lemma 1.7 (Asymptotic normal distribution of sub-Gaussian and sub-exponential variables). Suppose
X1, . . . , Xn are n independent sub-Gaussian or sub-exponential variables with mean-zero and variance
σ2

1 , . . . , σ
2
n . Then

lim
n→∞

1√
n

n∑
i=1

Xi
D−→ N (0, σ2

x),

where

σ2
x = lim

n→∞

1
n

n∑
i=1

σ2
i .

Proof of Lemma 1.7. It is easy to verify the Lyapunov’s condition: for all fixed δ > 0,

lim
n→∞

1
n1+δ

n∑
i=1

E(|Xi|2+2δ) ≤
√

2K2 + 2K2δ
2+2δ

nδ
→ 0

by the (II) of Lemma 1.1, if X1, . . . , Xn are sub-Gaussian variables;

lim
n→∞

1
n1+δ

n∑
i=1

E(|Xi|2+2δ) ≤ (2K2 + 2K2δ)2+2δ

nδ
→ 0

by the (II) of Lemma 1.2, if X1, . . . , Xn are sub-exponential variables. And hence the asymptotic normal
distribution holds.

Lemma 1.8 (Asymptotic normal distribution of estimation error). Let

ξ
[s]
j = 1

√
ns

ns∑
i=1

g
[s]
ij x

[s]
i,−j ,

where
x

[s]
i,−j = x

[s]
i − βjsg

[s]
i,j ,

s = 0, 1, . . . , p, x[0]
i,−j represents y[0]

i,−j and βj0 represent αj. Then

ξ
[s]
j

D−→ N (0, σxsxs
− σβsβs

),

where σx0x0 represents σyy and σβ0β0 represents θ⊤Σββθ.

Proof of Lemma 1.8. Note that both g[s]
ij and x[s]

i,−j are sub-Gaussian (x[s]
i,−j is the product of a sub-Gaussian

variable and a bounded sub-Gaussian variable), and it holds E(g[s]
ij x

[s]
i,−j) = 0 and

var(g[s]
ij x

[s]
i,−j) = var(g[s]

ij ) × var(x[s]
i,−j) = σxsxs

− σβsβs
. (5)

As a result,

ξ
[s]
j = 1

√
ns

ns∑
i=1

g
[s]
ij x

[s]
i,−j

D−→ N (0, σxsxs
− σβsβs

), (6)

according Lemma 1.7.
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Lemma 1.9 (Asymptotic normality of bias-correction terms). Let

ζj =
(
nmin

n1
ξ

[1]
j ,

nmin

n2
ξ

[2]
j , . . . ,

nmin

np
ξ

[p]
j ,

nmin

n0
ξ

[0]
j

)⊤

.

Under the conditions (C1)-(C4),

lim
m→∞

1√
m

m∑
j=1

(vec(ζjζ
⊤
j ) − vec(ΨWβ×wα

)) D−→ N
(

0, (I(p+1)2 + K(p+1)2)(ΨWβ×wα
⊗ ΨWβ×wα

)
)
.

as nmin,m → ∞.

Proof of Lemma 1.9. By using Lemma 1.7, ζj follows N (0,ΨWβ×wα
) as nmin → ∞. Then by using Lemma

1.6, this lemma holds.

Lemma 1.10 (Asymptotic normality of residual term). Under the conditions (C1)-(C4),

lim
m→∞

1√
m

m∑
j=1

√
mβjξ

[s]
j

D−→ N (0, σxsxs
Σββ),

and

lim
m→∞

1
m

m∑
j=1

√
mβj

√
mβ⊤

j ξ
[s]
j ξ

[k]
j

P−→ nsk√
nsnk

σxsxk
Σββ ,

for s = 0, . . . , p, where σx0xk
represents σyxk

=
∑p

l=1 θlσxlxk
.

Proof of Lemma 1.10. By condition (C4),
√
mβj is independent of ξ[s]

j . By Lemma 1.3,
√
mβjξ

[s]
j is sub-

exponential with mean 0 and covariance matrix

cov(
√
mβjξ

[s]
j ) = cov(

√
mβj) × var(ξ[s]

j )
= (σxsxs − σβsβs)Σββ . (7)

Hence, by Lemma 1.6,

lim
m→∞

1√
m

m∑
j=1

√
mβjξ

[s]
j

D−→ N (0, σxsxs
Σββ).

On the other hand, βjξ
[s]
j is sub-exponential variable according to Lemma 1.3, and

cov(
√
mβjξ

[s]
j ,

√
mβjξ

[k]
j ) = cov(ξ[s]

j , ξ
[k]
j ) × Σββ

= nsk√
nsnk

(σxsxk
− σβsβk

)Σββ . (8)

Hence, by using Lemma 1.5

lim
m→∞

1
m

m∑
j=1

√
mβj

√
mβ⊤

j ξ
[s]
j ξ

[k]
j

P−→ nsk√
nsnk

σxsxk
Σββ .

11



1.6 Proofs of Theorems for IVW

Proof of Theorem 1.1. As for the estimation error ωα, we have

wαj
=
g

[0]⊤
j y[0]

n0
− αj =

g
[0]⊤
j y

[0]
−j

n0
, (9)

where

y
[0]
−j = y[0] − αjg

[0]
j =

m∑
s̸=j

αtg
[0]
t + U[0]θ + v[0], (10)

and U[0] and v[0] are the corresponding noise terms in the outcome GWAS cohort. According to Lemma 1.8,

ξ
[0]
j = 1

√
n0

n0∑
i=1

g
[0]
ij y

[0]
i,−j

D−→ N (0, σyy − θ⊤Σββθ). (11)

As for the estimation error wβjs
, we have

wβjs
=
g

[s]⊤
j x[s]

ns
− βjs =

g
[s]⊤
j x

[s]
−j

ns
, (12)

where

x
[s]
−j = x[s] − g[s]

j βjs =
∑
t̸=j

βtsg
[s]
t + u[s]. (13)

Let

ξ
[s]
j =

g
[s]⊤
j x

[s]
−j√

ns
= 1√

ns

ns∑
i=1

g
[s]
ij x

[s]
i,−j , (14)

where x[s]
i,−j is the ith element in vector x[s]

−j . According to Lemma 1.8,

ξ
[s]
j = 1√

ns

ns∑
i=1

g
[s]
ij x

[s]
i,−j

D−→ N (0, σxsxs
− σβsβs

). (15)

Now we show the covariance between ξ
[s]
j and ξ

[k]
j :

cov(ξ[s]
j , ξ

[k]
j ) = E

(
x

[s]⊤
−j g

[s]
j g

[k]⊤
j x

[k]
−j√

nsnk

)
, (16)

where x[0]
−j represents y[0]

−j for simplicity. Denote Q[sk] = (Q[sk]
it ) being a (ns × nk) matrix whose (i, t)th

element is

Q
[sk]
it = E(g[s]

ij g
[k]
tj ) =

{
1, (i, t) ∈ Q[sk],

0, (i, t) /∈ Q[sk],
(17)

where

Q[sk] = {(i, t) : g
[s]
ij and g

[k]
tj come from the same individual}. (18)

12



As a result,

cov(ξ[s]
j , ξ

[k]
j ) = E

(
x

[s]⊤
−j Q[sk]x

[k]
−j√

nsnk

)
= 1

√
nsnk

∑
(i,t)∈Q[sk]

E(x[s]
i,−jx

[k]
t,−j)

= nsk√
nsnk

(
σxsxk

− σβsβk

)
, (19)

where σx0xk
represents σyxk

for simplicity, and σβ0βk
represents

σβ0βk
= cov(

√
mβ⊤

j θ,
√
mβjk) =

p∑
l=1

θlσβlβk
. (20)

Finally, we show ξ
[s]
j is uncorrelated with ξ

[s]
t for all t ̸= j and s = 0, . . . , p. Specifically,

cov(ξ[s]
j , ξ

[s]
t ) = E

(
x

[s]⊤
−j g

[s]
j g

[s]⊤
t x

[s]
−j

ns

)
. (21)

According the model setting, g[s]
j is independent of g[s]

t for all t ̸= s. Therefore, cov(ξ[s]
j , ξ

[s]
t ) = 0.

Note that if m → ∞, Σββ = 1
m Ψββ vanishes. And so Theorem 1.1 is proved.
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Proof of Theorem 1.2. Before showing the proof, we first recall the following definitions: m is the number
of IVs, nmin is the minimum sample size,

Σββ = lim
m→∞

1
m

m∑
j=1

βjβ
⊤
j , Ψββ = mΣββ ,

ΣWβWβ
= lim

m→∞

1
m

m∑
j=1

wβj
w⊤

βj
, ΨWβWβ

= nminΣWβWβ
,

σWβwα
= lim

m→∞

1
m

m∑
j=1

wαj
wβj

, ψWβwα
= nminσWβwα

,

σwαwα
= lim

m→∞

1
m

m∑
j=1

w2
αj
, ψwαwα

= nminσwαwα
.

The score function of IVW is

− 1
m

B̂⊤(â− B̂θ̂IVW) = − 1
m

B̂⊤(â− B̂θ) + 1
m

B̂⊤B̂(θ̂IVW − θ) (22)

which leads to

HIVW(θ̂IVW − θ) = −SIVW(θ), (23)

where

HIVW = 1
m

B̂⊤B̂, SIVW(θ) = − 1
m

B̂⊤(â− B̂θ). (24)

We first work with the Hessian matrix HIVW:

mHIVW = B̂⊤B̂ = B⊤B + B⊤Wβ + W⊤
β B + W⊤

β Wβ

= J1 + J2 + J3 + J4. (25)

As for J1,

J1 =
m∑

j=1
βjβ

⊤
j

P−→ Ψββ . (26)

As for J2,

∥
√
nminJ2∥2 =

∥∥∥∥ 1√
m

m∑
j=1

(
√
nminwβj

)(
√
mβj)⊤

∥∥∥∥
2

≤

√√√√∥∥∥∥ 1
m

m∑
j=1

(
√
nminwβj

)(
√
nminwβj

)⊤
∥∥∥∥

2
×

√√√√∥∥∥∥ 1
m

m∑
j=1

(
√
mβj)(

√
mβj)⊤

∥∥∥∥
2

≤ λ
1
2max(ΨWβWβ

) × λ
1
2max(Ψββ), (27)

which means

∥J2∥2 = OP (1/
√
nmin). (28)

As for J3, it has the same order as J2. As for J4,

nmin

m
J4 = 1

m

m∑
j=1

(
√
nminwβj )(

√
nminwβj )⊤ P−→ ΨWβWβ

(29)

Hence:
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(1) If m/nmin → 0,

∥J4∥2 ≤ λmax(ΨWβWβ
) × m

nmin
→ 0. (30)

Therefore,

mHIVW
P−→ Ψββ . (31)

(2) If m/nmin → c0 ∈ (0,∞), then

J4 = m

nmin
× 1
m

m∑
j=1

(
√
nminwβj )(

√
nminwβj )⊤ P−→ c0ΨWβWβ

. (32)

Therefore,

mHIVW
P−→ Ψββ + c0ΨWβWβ

. (33)

(3) If m/nmin → ∞ and m/n1+τ
min → c0 ∈ (0,+∞) with certain constant τ > 0, then

1
nτ

min
J4 = m

n1+τ
min

× 1
m

m∑
j=1

(
√
nminwβj )(

√
nminwβj )⊤ P−→ c0ΨWβWβ

. (34)

Therefore,

m

nτ
min

HIVW = c0nminHIVW
P−→ c0ΨWβWβ

. (35)

We then work with SIVW(θ):

mSIVW(θ) = −B⊤wα − W⊤
βwα + B⊤Wβθ + W⊤

β Wβθ

= K1 +K2 +K3 +K4. (36)

As for K1 +K3,

√
nmin(K1 +K3) = 1√

m

m∑
j=1

(−
√
nminwαj +

√
nminw

⊤
βj
θ)(

√
mβj) D−→ N (0, ψθΨββ), (37)

where

ψθ = ψwαwα
+ θ⊤ΨWβWβ

θ − 2θ⊤ψWβwα
. (38)

As for K2,

nmin

m
K2 = − 1

m

m∑
j=1

(
√
nminwαj

)(
√
nminwβj

) P−→ −ψWβwα
. (39)

As for K4,

nmin

m
K4 =

(
1
m

m∑
j=1

(
√
nminwβj

√
nminwβj

)
θ

P−→ ΨWβWβ
θ, (40)

Jointing these results, we summary the asymptotic behavior of θ̂IVW:
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(1) If m/
√
nmin → 0, then

√
nmin||K2 +K4|| = OP

(
m√
nmin

)
= oP (1). (41)

Therefore,
√
nmin ×mSIVW(θ) =

√
nmin(K1 +K3) + oP (1) D−→ N (0, ψθΨββ). (42)

Note that when m/nmin → 0, mHIVW
P−→ Ψββ . Therefore,

√
nmin(θ̂IVW − θ) = −

√
nmin(mHIVW)−1(mSIVW(θ)) D−→ N (0, ψθΨ−1

ββ ), (43)

(2) If m/
√
nmin → c0, then

√
nmin(K2 +K4) → −c0ψWβwα + c0ΨWβWβ

θ, (44)

and hence
√
nmin ×mSIVW(θ) D−→ N (−c0(ψWβwα

+ ΨWβWβ
θ), ψθΨββ). (45)

Note that when m/nmin → 0, mHIVW
P−→ Ψββ . Therefore,

√
nmin(θ̂IVW − θ) = −

√
nmin(mHIVW)−1(mSIVW(θ))

D−→ N (c0Ψ−1
ββ (ψWβwα − ΨWβWβ

θ), ψθΨ−1
ββ ). (46)

(3) If m/
√
nmin → ∞ and m/nmin → c0, then ||K1 +K3||2 = OP (1/

√
nmin),

K2 +K4
P−→ −c0ψWβwα

+ c0ΨWβWβ
θ, (47)

and

mHIVW
P−→ Ψββ + c0ΨWβWβ

. (48)

Hence,

θ̂IVW − θ P−→ c0(Ψββ + c0ΨWβWβ
)−1(ψWβwα

− ΨWβWβ
θ). (49)

Note that if c0 = 0, then (iii) in Theorem 1.2 holds.

(4) If m/nmin → ∞ and m/n1+τ
min → c0, then

1
nτ

min
(K2 +K4) P−→ −c0ψWβwα + c0ΨWβWβ

θ (50)

and
m

nτ
min

HIVW
P−→ c0ΨWβWβ

. (51)

Therefore,

θ̂IVW
P−→ Ψ−1

WβWβ
ψWβwα . (52)

Now Theorem 1.2 is proved.
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1.7 Proofs of Theorems for MRBEE

Proofs of Theorem 1.3. Note that

0 = SBEE(θ̂BEE) = SBEE(θ) + HBEE(θ̂BEE − θ), (53)

where

SBEE(θ) = − 1
m

B̂⊤(α̂− B̂θ) − ΣWβWβ
θ + σWβwα , (54)

and

HBEE = 1
m

B̂⊤B̂ − ΣWβWβ
. (55)

As for SBEE(θ),

mSBEE(θ) = −(B + Wβ)⊤(α+wα − Bθ − Wβθ) −mΣWβWβ
+mσWβwα

= −
{

B⊤(wα − Wβθ)
}

+
{(

W⊤
β Wβ −mΣWβWβ

)
θ

}
−

{
W⊤

βwα −mσWβwα

}
= K1 +K2 +K3. (56)

Here, we define a new vector ϑ = (θ⊤, 1)⊤, an alternative vector

ζj =
(
nmin

n1
ξ

[1]
j ,

nmin

n2
ξ

[2]
j , . . . ,

nmin

np
ξ

[p]
j ,

nmin

n0
ξ

[0]
j

)⊤

,

where

ξ
[s]
j = 1√

ns

ns∑
i=1

g
[s]
ij x

[s]
is , s = 0, 1, . . . , p,

and a new covariance matrix

cov(ζj) = ΨWβ×wα =
(

ΨWβWβ
ψWβwα

ψ⊤
Wβwα

ψwαwα

)
. (57)

As for K1, it can be rewritten as

√
nminK1 = −

m∑
j=1

√
nmin(wαj

−w⊤
βj
θ)βj = 1√

m

m∑
j=1

(
√
nminζ

⊤
j ϑ)(

√
mβj)

D−→ N (0, ψθΨββ), (58)

where ψθ defined in (38) can be rewritten as

ψθ = ϑ⊤ΨWβ×wαϑ. (59)

As for K2 +K3, it can be rewritten as

K2 +K3 = I1:p
p+1

(
W⊤

β Wβ −mΣWβWβ
W⊤

βwα −mσWβwα

w⊤
α Wβ −mσ⊤

Wβwα
w⊤

αwα −mσwαwα

) (
θ

−1

)
=

√
m

nmin
I1:p

p+1

(
1√
m

m∑
j=1

ζjζ
⊤
j − ΨWβ×wα

)
ϑ

=
√
m

nmin
I1:p

p+1K4ϑ, (60)
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where I1:p
p+1 is a (p× (p+ 1)) matrix consisting of the first p row of Ip+1 and

K4 = 1√
m

m∑
j=1

ζjζ
⊤
j − ΨWβ×wα

. (61)

According to Lemma 1.6,

vec(K4) D−→ N
(

0, (I(p+1)2 + K(p+1)2)(ΨWβ×wα
⊗ ΨWβ×wα

)
)
. (62)

As a result,

nmin√
m

(K2 +K3) D−→ N (0,ΣBC) (63)

where

ΣBC =
[
ϑ⊤ ⊗ I1:p

p+1

]
︸ ︷︷ ︸

p×(p+1)2

[
(I(p+1)2 + K(p+1)2)(ΨWβ×wα

⊗ ΨWβ×wα
)
]

︸ ︷︷ ︸
(p+1)2×(p+1)2

[
ϑ⊤ ⊗ I1:p

p+1

]⊤

︸ ︷︷ ︸
(p+1)2×p

. (64)

Now we show K1 and K2 +K3 are uncorrelated. Note that βj is independent of wβj and wαj , and hence
K1 and K2 +K3 are uncorrelated. So far, we can obtain:

(1) If m/nmin → 0,

√
nmin ×mSBEE(θ) =

√
nminK1 + oP (1) D−→ N (0, ψθΨββ). (65)

(2) If m/nmin → c0,

√
nmin ×mSBEE(θ) =

√
nminK1 +

√
nmin(K2 +K3) D−→ N (0, ψθΨββ + c0ΣBC). (66)

(3) If m/nmin → ∞ and
√
m/nmin → 0,

nmin√
m

×mSBEE(θ) = nmin√
m

(K2 +K3) + nmin√
m
K1

D−→ N (0,ΣBC), (67)

where

nmin√
m
K1 =

√
nmin

m
×

√
nminK1 = OP

(√
nmin

m

)
= oP (1). (68)

Now we move to HBEE:

mHBEE = B⊤B +
(

W⊤
β Wβ −mΣWβWβ

)
+ B⊤Wβ + W⊤

β B

= J1 + J2 + J3 + J4. (69)

As for J1 = B⊤B, we have

||J1 − Ψββ ||2 =
∥∥∥∥ 1
m

m∑
j=1

√
mβj

√
mβ⊤

j − Ψββ

∥∥∥∥
2

= OP

(
1√
m

)
. (70)
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As for J2 = W⊤
β Wβ −mΣWβWβ

, we have

J2 =
m∑

j=1

(
wβj

w⊤
βj

− ΣWβWβ

)
=

√
m

nmin

1√
m

m∑
j=1

(
ξjξ

⊤
j − ΨWβWβ

)
. (71)

As a result,

nmin√
m

vec(J2) D−→ N (0, (Ip2 + Kp2)(ΨWβWβ
⊗ ΨWβWβ

)), (72)

which means ||J2|| = OP (
√
m/nmin). As for J3 = B⊤Wβ ,

√
nmin||J3||2 =

∥∥∥∥ 1√
m

m∑
j=1

√
mβj

√
nminω

⊤
βj

∥∥∥∥
2

≤

√√√√∥∥∥∥ 1
m

m∑
j=1

√
mβj

√
mβ⊤

j

∥∥∥∥
2

√√√√∥∥∥∥ 1
m

m∑
j=1

√
nminωβj

√
nminω

⊤
βj

∥∥∥∥
2

≤ λ
1
2max(Ψββ) × λ

1
2max(ΨWβWβ

), (73)

which means

||J3||2 = OP

(
1√
nmin

)
(74)

As for J4, it is easy to see ||J4||22 = ||J3||22. Hence, for all three scenarios in Theorem 1.3,

||mHBEE − Ψββ ||2 = OP

{
max

(
1√
m
,

1√
nmin

,

√
m

nmin

)}
. (75)

And hence, according to the Slutsky’s theorem,

(1) If m/nmin → 0,

√
nmin(θ̂BEE − θ) = −

√
nminΨ−1

ββK1
D−→ N (0, ψθΨ−1

ββ ). (76)

(2) If m/nmin → c0,

√
nmin(θ̂BEE − θ) = −

√
nminΨ−1

ββ (K1 +K2 +K3) D−→ N (0, ψθΨ−1
ββ + c0Ψ−1

ββ ΨBCΨ−1
ββ ). (77)

(2) If m/nmin → ∞ and m/n2
min → 0,√

n2
min/m(θ̂BEE − θ) = −nmin√

m
Ψ−1

ββ (K2 +K3) D−→ N (0,Ψ−1
ββ ΨBCΨ−1

ββ ). (78)

Thus, Theorem 1.3 is proved.
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Proof of Theorem 1.4. Similar to ξ[s]
j , we define η{s}

j as

η
{s}
j =

g
{s}⊤
j x[s]

√
ns

= 1
√
ns

ns∑
i=1

g
{s}
ij x

[s]
i . (79)

By using similar deduction as which in the proof of Theorem 1,

η
{s}
j

D−→ N (0, σxsxs
) (80)

and

cov(η{s}
j , η

{k}
j ) = nsk√

nsnk
σxsxk

. (81)

Denote ηj = (η{1}
j , . . . , η

{p}
j , η

{0}
j ) where η{0}

j represents 1√
n0
g

{s}⊤
j y[0]. Then we have

cov(ηj) = D−1
η ΣWβ×wαD−1

η , (82)

where

Dη = diag
(

1
√
n1
, . . . ,

1
√
np
,

1
√
n0

)
. (83)

By using Lemma 1.4, ∥∥∥∥ 1
M

M∑
j=1

ηjη
⊤
j − cov(ηj)

∥∥∥∥
2

= OP

(
1√
M

)
, (84)

and hence

∥Σ− 1
2

Wβ×wα
Σ̂Wβ×wαΣ

1
2
Wβ×wα

− Ip+1∥2 ≤ λ−1
min(cov(ηj))

∥∥∥∥ 1
M

M∑
j=1

ηjη
⊤
j − cov(ηj)

∥∥∥∥
2

= OP

(
1√
M

)
. (85)

Thus, Theorem 1.4 is proved.

20



Proof of Theorem 1.5. Note that

Sj(θ) = −(α̂j − θ⊤β̂j)β̂j − ΣWβWβ
θ + σWβwα

= (wαj
− θ⊤wβj

)βj +
{

(wαj
− θ⊤wβj

)wβj
− ΣWβWβ

θ + σWβwα

}
= J1j + J2j . (86)

Note that both J1j and J2j are sub-exponential variables with zero mean and covariance matrix

cov(J1j) = 1
mnmin

ψθΨββ , cov(J2j) = 1
n2

min
ΣBC. (87)

Therefore, we obtain

cov(Sj(θ)) = ΣS =


1

mnmin
ψθΨββ , if m/nmin → 0,

1
mnmin

ψθΨββ + c0
mnmin

ΣBC, if m/nmin → c0,
1

n2
min

ΣBC, , if m/nmin → ∞ and
√
m/nmin → 0.

(88)

Then by using Lemma 1.5,∥∥∥∥ 1
m

m∑
j=1

Sj(θ)Sj(θ)⊤ − ΣS

∥∥∥∥
2

= OP

(√
logm
m

)
||ΣS ||2. (89)

By using the Slutsky’s theorem,∥∥∥∥ 1
m

m∑
j=1

Ŝj(θ̂BEE)Ŝj(θ̂BEE)⊤ − ΣS

∥∥∥∥
2

= OP

(√
logm
m

)
||ΣS ||2. (90)

where

Ŝj(θ̂BEE) = −(θ̂⊤
BEEβ̂j − α̂j)β̂j + Σ̂WβWβ

θ̂BEE − σ̂Wβwα
(91)

On the other hand, according to the proof of Theorem 1.3,

∥mF̂BEE − Ψββ ||2 = OP

{
max

(
1√
m
,

1√
nmin

,

√
m

nmin

)}
. (92)

Note that Bickel and Levina (2008, A22(p223)) illustrates

∥A1A2A3 − B1B2B3∥2 = OP

{
max

(
||A1 − B1||2, ||A2 − B2||2, ||A3 − B3||2

)}
, (93)

where A1,A2,A3,B1,B2,B3 are six matrices with non-diverging maximum singular values. Hence,

||Σ̂BEE(θ̂BEE) − ΣBEE(θ)||2 =
∥∥∥∥(mF̂BEE)−1

( m∑
j=1

Ŝj(θ̂BEE)Ŝj(θ̂BEE)⊤
)

(mF̂BEE)−1 −mΨ−1
ββ ΣSΨ−1

ββ

∥∥∥∥
2

= OP

{
max

(√
logm
m

,
1√
nmin

,

√
m

nmin

)}
||mΣS ||2, (94)

and consequently

||Σ− 1
2

BEE(θ)Σ̂BEE(θ)Σ− 1
2

BEE(θ) − Ip||2 = OP

{
max

(√
logm
m

,
1√
nmin

,

√
m

nmin

)}
. (95)

Thus, Theorem 1.5 is proved.

21



Proof of Theorem 1.6. Note that ||θ̂BEE − θ||2 = OP (n− 1
2

min) and hence α̂j − β̂⊤
j θ̂BEE and α̂j − β̂⊤

j θ have
the same distribution. For j ∈ Oc,

γ̂j = εj = α̂j − β̂⊤
j θ̂BEE = wαj

−w⊤
βj
θ +w⊤

βj
(θ̂BEE − θ)

∼ N (0, σεε), (96)

where

σεε = θ⊤ΣWβwα
θ + σωγ ωγ

− 2θ⊤σWβwα
. (97)

As a result,

γ̂2
j

σεε
∼ χ2

1. (98)

Denote κ∗ = F−1
χ2

1
(κ). Then by using Lemma A.1 of Huang et al. (2012),

Pr
(

max
j∈Oc

γ̂2
j

σεε
≤ κ∗

)
= 1 − Pr

(
max
j∈Oc

γ̂2
j

σεε
> κ∗

)
≥ 1 − (m− |O|) Pr

(
γ̂2

j

σεε
> κ∗

)
≥ 1 −mPr

(
γ̂2

j

σεε
> κ∗

)
≥ 1 −m exp

(
− (

√
2κ∗ − 1 − 1)2

4

)
. (99)

By letting κ∗ = C0 logm with C0 being a sufficiently large constant,

Pr
(

max
j∈Oc

γ̂2
j

σεε
≤ κ∗

)
≥ 1 − exp

(
logm− 2C0 logm− 2

√
C0 logm− 1

4

)
≥ 1 − exp

(
− (2C0 − 4) logm− 2

√
C0 logm− 1

4

)
→ 1, (100)

if m → ∞.

On the other hand, for j ∈ O,

γ̂j = γj + εj , (101)

and hence

γ̂2
j

σεε
∼ χ2

1

(
γ2

j

σεε

)
, (102)

where χ2
1(λ) refers to the noncentral chi-squared distribution with degree of freedom 1 and noncentrality

parameter λ. Let Fχ2
1(λ)(·) be the CDF of this noncentral chi-squared distribution, which is indeed equal to

Fχ2
1(λ)(x) = 1 −

(
Q(

√
x−

√
λ) +Q(

√
x+

√
λ)

)
, (103)

where Fχ2
1(λ)(·) be the CDF of χ2

1(λ) and Q(x) is the Gaussian Q-function, i.e., Q(x) = 1 − Φ(x) and Φ(x)
is the CDF of standard normal distribution.

Note that there should exist a constant D0 such that

γ2
j

σεε
≥ D0nmin (104)

22



where D0 is a sufficient large constant. And

Pr
(

min
j∈O

γ̂2
j

σεε
≥ κ∗

)
= 1 − Pr

(
min
j∈Oc

γ̂2
j

σεε
< κ∗

)
≥ 1 − Pr

(
γ̂2

j

σεε
< κ∗

)
, j is arbitrary element in O. (105)

Hence,

Pr
(

min
j∈O

γ̂2
j

σεε
≥ κ∗

)
≥ Q(

√
κ∗ −

√
D0nmin) +Q(

√
κ∗ +

√
D0nmin)

≥ Q(
√
C0 logm−

√
D0nmin) +Q(

√
C0 logm+

√
D0nmin) → 1 (106)

if m,nmin → ∞. Thus, Theorem 1.6 is proved.
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