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Additional details

Basic framework for scRNA-seq data
Assuming that the scRNA-seq data is divided into reference

data and target data, they can come from the same scRNA-

seq dataset or different scRNA-seq datasets. Reference data is

recorded as Dr = {(xr
i , y

r
i )

nr

i=1} and target data is recorded as

Dt = {(xt
i)

nt

i=1}. The label sets of reference and target data are

denoted as Cr and Ct, respectively. To begin, the preprocessed

data matrix is denoted as X, where xij (1 ≤ i ≤ nr + nt, 1 ≤
j ≤ m) represents the expression level of the i-th cell on the

j-th gene and m represents the number of genes.

First, considering the discrete, sparse, and large variance

characteristics of scRNA-seq data, we use the zero-inflated

negative binomial (ZINB) distribution to model this gene

expression pattern [1], that is:

pZINB(x
∗
ij |πij , µij , θij) = πijδx∗

ij
=0 + (1 − πij)× (1)

Γ(x∗
ij + θij)

Γ(x∗
ij + 1)Γ(θij)

× (
θij

θij + µij

)
θij × (

µij

θij + µij

)
x∗

ij .

Among them, x∗
ij represents the raw read counts of the

i-th cell on the j-th gene. πij , µij , θij represent the

zero-inflated parameters, mean parameters, and dispersion

parameters, respectively, and they constitute the parameters

to be estimated for the model.

Due to the complex interaction between genes, these three

sets of parameters are not independent of each other but fall

into a low-dimensional manifold. Therefore, we use the DCA

model to estimate the parameters, and at the same time, to

approximate the manifold, to effectively reduce the dimension

and denoise the scRNA-seq data [2]. Specifically, let fe(x) :

Rm → Rd be the encoder function that maps the cells into

the low-dimensional embedding space and gets the embedding

representation z = fe(x). Similarly, let fd(x) : Rd → Rm be

the decoder function and get the reconstructed variable xr =

fd(z). Then we use the reconstruct variable xr to estimate the

parameters:

π̂ = sigmoid(w
′
πxr); θ̂ = exp(w

′
θxr); µ̂ = exp(w

′
µxr) (2)

where wπ, wθ, wµ are the corresponding weights. Given the

parameters, we can assume that the conditional distribution

of the reconstructed data is independent, so we can use the

negative log-likelihood of ZINB distribution [3, 4] as the first

loss function:

Lzinb = −
nr+nt∑
i=1

m∑
j=1

p(x
∗
ij |π̂ij , µ̂ij , θ̂ij). (3)

Using data reconstruction as another kind of regularization can

help reveal the global probabilistic structure [5].

As shown in previous work (scNAME) [5], the ZINB-based

denoising network is less capable of capturing the correlations

across genes. Inspired by the recent progress in semi-supervised

learning, we use the same data augmentation strategy as

in scNAME to generate different gene expression matrices.

Specifically, we first construct two auxiliary matrices: a binary

mask matrix B that samples from the Bernoulli distribution

and a shuffled expression matrix X′ obtained by randomly

shuffling the original data within each feature column. Then

the augmented data matrix X̃ can be generated as:

X̃ = B ⊙ X
′
+ (1 − B) ⊙ X, (4)

where ⊙ represents element-wise multiplication. After X̃ passes

through the denoising autoencoder network, we can get the

estimation value B̂ of mask matrix B. To account for the

dependencies of genes, the binary cross-entropy loss is applied

to train the model, that is,

Lmask = −
nr+nt∑
i=1

m∑
j=1

(Bij log B̂ij + (1 − Bij) log(1 − B̂ij)).

(5)

To sum up, the overall loss of our basic framework is

Lden = Lzinb + Lmask (6)

Basic framework for spatial transcriptomics data
We start with the graph construction process. Assuming that

the spatial coordinates of cells are {sri }
nr

i=1 and {sti}
nt

i=1 for

reference and target data, respectively. We first calculate the

Euclidean distances dij for each pair of cells (si, sj) from the

same region, and the edge is generated if dij < κ, where κ

is a tunable threshold. We set κ = 50 by default. This graph

construction step is independent of the subsequent method and

can be changed as long as the constructed graph meaningfully

reflects spatial similarities between cells. In this way, we can

obtain the reference graph Gr and the target graph Gt for

reference and target data, respectively. The node features

correspond to gene expressions of cells.

Then we apply the encoder function to map cells from both

graphs into a joint embedding space that captures spatial and

molecular similarities between the cells. The cell embedding

encoder function fθ is parameterized by a learnable graph

convolutional neural network (GCN) [6]. The encoder function

fθ generates the low-dimensional cell embedding z. Specifically,

the encoder function contains one fully connected layer followed

by the nonlinear activation function,

h
(1)
i = ϕ(W

(0)
h
(0)
i + b

(0)
), (7)

where h
(k)
i is the hidden state of node si in k-th layer of the

neural network and k = 0, 1. W is a parameter matrix, b is bias

vector and ϕ denotes nonlinear activation function. The hidden

state h
(0)
i in layer 0 is set to the node feature xsi

, i.e., a gene

expression vector. The rectified linear unit (ReLU) is used as

the activation function ϕ : ReLU(·) = max(0, ·). Then we use

a graph convolutional layer to enable message passing among

nearby cells,

h
(2)
i = W

(1)
0 h

(1)
i +

∑
j∈N i

W
(1)
1 h

(1)
j , (8)

where N i denotes neighborhood on node si. The final

embedding of node si is zi = h
(2)
i . On top of the encoder

function, we add two parallel linear layers parameterized by

the reference and target prototypes to achieve cell annotation

and clustering. The implementation of this part is the same as

that of scRNA-seq data.

Implementation of baseline methods.
The details of the eight comparative baselines are summarized

in Table S1, including three clustering methods and five
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annotation methods. To ensure the fairness of the comparison,

we run the algorithm at their default settings to get the

results. When the scRNA-seq algorithms are applied to spatial

transcriptome data, we do not need to use the information of

the spatial coordinate set.

Real dataset information.
Biological and statistical information of the five scRNA-seq

datasets and one spatial transcriptomics dataset we used in

intra-data annotation experiments are shown in Table S2, and

the five groups of scRNA-seq datasets and one group of spatial

transcriptomics dataset we used in cross-data annotation

experiments are shown in Table S3. During the experiments,

unless otherwise noted, we split the whole dataset into common

cell types and private cell types according to Table S4.

Additional results

Specific values. In the text, we present the results on each

experimental dataset in the form of radar charts, and here we

also present the specific values of these results in Table S5,

Table S6, and Table S7 for the convenience of readers to consult

and compare. It can be seen that our approach is competitive

in all three kinds of accuracy for both the scRNA-seq dataset

and the spatial transcriptome dataset.

Statistical analysis. To prove the consistency and stability of

the results of our method, we report their standard deviation

values. Corresponding to Table S5, Table S6, and Table S7, the

standard deviations of three-run results are within the interval

(0.5, 2.5) for scBOL, which fluctuates relatively little. We also

conduct the significance test of the improvements in results.

Specifically, for scRNA-seq data, we choose the best clustering

baseline scCNC and the best annotation baseline MARS to

perform the one-sided pairwise t-test with scBOL on the overall

accuracy. Corresponding to Table S5 and Table S6, the p-

values are 2.4e-6 (scBOL vs scCNC) and 2.1e-08 (scBOL vs

MARS), demonstrating that the improvement is significant. For

spatial transcriptomics data, we also take a one-sided pairwise

t-test between STELLAR and scBOL on the overall accuracy.

Corresponding to Table S7, the p-value is 2.4e-3 (scBOL vs

STELLAR), which validates that our method is significantly

better than STELLAR.

Robustness analysis. For a better illustration, we provide

detailed tables of the results of robustness analysis on the

tested datasets. For scRNA-seq data, Table S8 shows the

results for the three kinds of accuracy, i.e., annotation accuracy,

clustering accuracy, and overall accuracy, with the varying

of novel cell type number |Cn|. From the table, we can see

that no matter which accuracy we used, the performance of

scBOL is always stable and excellent without being affected

by changes in |Cn|. In contrast, the three kinds of accuracy of

the other methods all show relatively large fluctuations, which

validates the robustness of scBOL to the novel cell type number.

Table S9 shows the results for the three kinds of accuracy with

the varying ratios of labeled data. we can conclude that the

performance of scBOL is satisfactory and stable even when

encountering dramatic changes in the ratio of labeled data.

However, there is a certain degree of oscillation with all other

competitive methods. Besides, our method is the best performer

among all methods, validating its effectiveness and practicality.

For spatial transcriptomics data, we give the results of the three

kinds of accuracy with the different labeled ratios in Table S10.

It can be seen that scBOL is consistently better than the other

baselines regardless of the labeled ratios.

In alignment with the concept of the labeled ratio, we

introduce a “novel ratio”, defined as the fraction of sampled

target private cells arising from previously unidentified cell

types. This metric indirectly reflects the challenge associated

with uncovering new cell types. By default, the novel ratio

is established at 1.0 in the primary text. To examine the

robustness of varied methods in response to alterations in the

novel ratio, controlled experiments were executed utilizing the

Quake 10x and Quake Smart-seq2 datasets. The novel ratio

was varied incrementally, adopting values of 0.2, 0.4, 0.6, 0.8,

and 1.0 during experimentation. Data presented in Figure S1

indicate that as the novel ratio increases—corresponding to

a higher proportion of target private cells—the precision of

scBOL in classifying novel cell types displays a marginal ascent,

while its accuracy for all cell types experiences a minimal

decline. This suggests that an augmentation in the quantity

of novel cells may exert a subtle deleterious effect on the

capability to identify established cell types. In comparison,

other methodologies exhibit more pronounced fluctuations

in accuracy pertaining to both known and novel cell types

upon varying the novel ratio. ItClust, notably, demonstrates

this sensitivity, which serves to accentuate scBOL’s relative

stability. Despite scDECL’s consistent performance across

known and novel accuracy, it fails to capitalize on the

informative potential of reference data, resulting in accuracy

levels that lag significantly behind alternative approaches.

Furthermore, scBOL maintains superior overall accuracy

irrespective of the novel ratio fluctuations, affirming the

method’s dominance and resilience when confronted with an

increasing presence of target private cells. For enhanced clarity,

an exhaustive tabulation of the results has been provided. The

conclusions drawn from the tabular data in Table S11 align with

those observed in the corresponding line graph, reinforcing the

findings.

Low abundance experiment. Given that cell types of

newfound interest typically present in low abundance under

real-world conditions, we opted for the Quake 10x Limb

Muscle and Quake 10x Mammary Gland as our reference and

target datasets, respectively, for the current investigation.

Within these datasets, prevalent cell populations such as T

cells, B cells, and macrophages were designated as common

cell types, while rarer populations including stromal cells,

luminal epithelial cells, endothelial cells, and basal cells were

categorized as novel cell types due to their smaller sample sizes.

To evaluate the efficacy of our algorithm, scBOL, we conducted

a comparative analysis with three alternative algorithms. The

performance metrics for these algorithms were as follows:

ItClust achieved 89.6 accuracy on known cell types, 45.9 on

novel cell types, and an overall accuracy of 75.4; scNym

scored 98.9 on known types, 38.1 on novel types, and 55.4

overall; and scArches attained 88.4, 55.1, and 75.0 across the

respective categories. In contrast, scBOL outperformed these

algorithms with impressive scores of 99.1 on known cell types,

93.3 on novel cell types, and an overall accuracy of 96.8.

This denotes a significant advantage of scBOL in accurately

identifying both common and novel cell types, despite the

latter’s reduced prevalence, underscoring its applicability in a

variety of practical contexts. Additionally, we incorporated a

Sankey diagram to provide a more visually intuitive comparison

of scBOL’s predictive proficiency relative to that of the other

algorithms. As exemplified in Figure S2, we can deduce that

scBOL not only precisely identifies cells belonging to infrequent



3

novel classes but also aligns a vast array of common cell types

with corresponding cells in the reference dataset. In contrast,

competing methods failed to match this performance. For

instance, ItClust pooled most novel cell types into a single

cluster. Meanwhile, scNym predominantly misclassified novel

cells as known macrophages while incorrectly segregating some

T cells into an additional novel group. Furthermore, scArches

wrongly grouped basal cells and luminal epithelial cells into

a collective novel cluster. Overall, our findings reinforce the

robustness and superiority of our method in detecting low-

abundance cell types within heterogeneous datasets.

Additional spatial transcriptomic data. Our method

has proven to be versatile, showing applicability to data

sourced from a myriad of spatial transcriptomic technologies,

encompassing those that rely on in situ hybridization,

sequencing, and imaging modalities. Within the body of the

text, we have focused our analysis on two datasets hailing

from the CODEX multiplexed imaging technique. Furthering

our investigations, we have expanded our experimental

scope to encompass additional datasets derived from in

situ hybridization and sequencing technologies, namely those

curated by Lohoff, utilizing seqFISH, and Chen, through

Stereo-seq. Their fundamental characteristics are detailed in

Table S2. Our comparative studies, involving scBOL and

five alternative methods, are showcased in Figure S3. The

comprehensive metrics are tabulated in Table S12. These results

underscore the superior and consistent performance of scBOL

across both datasets. For a granular and graphical examination

of the annotation outcomes, we have leveraged both Sankey

diagrams and UMAP plots to illustrate the methodologies’

efficacies on the Lohoff dataset. The Sankey diagram, depicted

in Figure S4A, reveals that scBOL adeptly categorizes extant

cell types and uncovers new ones with efficacy not mirrored by

other methods, which often conflate disparate cell types into

a single cluster. This finding is further corroborated by the

UMAP visualization in Figure S4B, where scBOL distinctly

segregates various cell types within the embedding space—a

feat not replicated by competing algorithms. In summation,

the exemplary performance of scBOL across diverse spatial

transcriptomic datasets not only underscores its robustness but

also its potential for broad adoption in the field.

Differential gene expression analysis. Our methodology

is capable of assigning cluster labels to target private cells;

however, the biological relevance of these clusters remains

to be substantiated. To corroborate the capability of scBOL

in unveiling novel cell types, we conducted marker gene

identification in the context of a biological analysis, which

involved classification and clustering delineation. This process

entailed leveraging gene expression matrices alongside both

predicted and true labels to isolate differentially expressed

genes (DEGs), utilizing the Scanpy software suite [7]—a step

critical for pinpointing marker genes within each cluster.

Subsequently, we ascertained the degree of concordance

between the top 100 DEGs of both the true clusters and

the predicted ones. The proportional overlap, divided by

100, furnished a quantitative measure of similarity, thereby

indicating the biological pertinence of the novel cell types

identified by our method. This experimental approach was

applied to two scRNA-seq datasets: the Vento Smart-seq2

dataset served as the reference, and the Vento 10x dataset as

the target. Comparative analysis of the outcomes, as depicted

in Figure S5, demonstrates that scBOL efficaciously discerned

four novel cell types enriched with biological significance, which

are also discernibly distinct from previously characterized

cell types. In contrast, while scArches and scNym exhibited

moderate performance in classifying known cell types, they

were less effective in accurately identifying the four novel cell

types, particularly with regard to the natural killer cells and

trophoblast cells.

Running time experiment. To investigate the association

between cell count and the computational time required for

model training, we employed the widely recognized Splatter

package [8] to simulate datasets comprising 5k, 10k, 25k, 50k,

and 100k cells. Each dataset was composed of 10 balanced

cell types, encompassing a total of 5000 genes. The simulation

settings included a dropout median (dropout.mid) of 0.5, a

dropout shape (dropout.shape) parameter set to -1, and a

differential expression factor scale (de.facScale) of 0.2. To

enhance the robustness of our findings, we produced three

distinct datasets for each specified size by initiating the

simulation process with varying random seeds. Furthermore,

we partitioned the 10 cell types into two subgroups: the first

five were designated as known cell types and the last five as

novel cell types. Within the known category, we equally split

the cells into reference and target data subsets. Subsequent

model computations were performed on a consistent hardware

setup, utilizing a cluster machine equipped with 2 Tesla

A100 GPUs. During these computational experiments, we

meticulously documented both the run-time duration and the

overall accuracy. Our analysis entailed averaging the metrics

across the separate datasets corresponding to identical cell

counts. These aggregated results were systematically tabulated

and illustrated in Figure S6 and Table S13, respectively.

Inspection of these results revealed a notable pattern: with

increasing cell numbers, the runtime exhibited divergent

trends across the different methodologies tested. Notably, only

MARS and scBOL demonstrated significant improvements in

overall accuracy, with scBOL consistently outperforming other

methods. Except for scCNC and scDECL, scBOL demonstrated

a trend that closely approximated a linear increase, much

in alignment with four other methods. Contrastingly, scCNC

and scDECL’s computational times surged disproportionately

beyond a specific dataset threshold. In the context of

computational efficiency, scBOL performed admirably; it was

slower compared to scNym, ItClust, and MARS but showed a

superior speed relative to scArches, scDECL, and scCNC.

Hyperparameter sensitivity. We first investigate the

robustness of annotation results when using different temperature

parameter τ settings (0.1, 0.2, 1.0, 5.0, 10.0) on Quake 10x

and Quake Smart-seq2 datasets. Figure S7(a) shows that the

performance of scBOL is quite robust no matter the variation

of τ , which indicates the stability of our method. Meanwhile, we

also examine the robustness of scBOL by artificially changing

the value of sample ratio α, which varies in the range of [10, 15,

20, 25, 30]. From Figure S7(b), it is easy to conclude that the

overall accuracy of scBOL changes little and is relatively stable

in the face of the variation of α.
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Table S1. Summary of eight baseline methods for comparison.

Method Year Programming Download URL

Clustering
scCNC [9] 2022 Python https://github.com/WHY-17/scCNC

scDECL [10] 2023 Python https://github.com/DBLABDHU/scDECL

STAGATE [11] 2022 Python https://github.com/QIFEIDKN/STAGATE

Annotation

MARS [12] 2020 Python https://github.com/snap-stanford/mars

ItClust [13] 2020 Python https://github.com/jianhuupenn/ItClust

scNym [14] 2020 Python https://www.github.com/calico/scnym

scArches [15] 2022 Python https://github.com/theislab/scarches

STELLAR [16] 2022 Python https://github.com/snap-stanford/stellar

Table S2. Real datasets information without batch effect in intra-data annotation experiments.

Dataset Organ Platform Cell types Cells Reference

Cao Atlas sci-RNA-seq 16 30960 [17]

Quake 10x Atlas 10x 36 53587 [18]

Quake Smart-seq2 Atlas Smart-seq2 45 41526 [18]

Wagner Atlas inDrop 14 34348 [19]

Zeisel Nervous System 10x 17 110704 [20]

Hubmap Intestine CODEX 6 110633 [21]

Lohoff Embryo seqFISH 6 11529 [22]

Chen Embryo Stereo-seq 8 38746 [23]

Table S3. Real datasets information with batch effect in inter-data annotation experiments.

Domain Dataset Organ Platform Cell types Cells Reference

Reference Muraro Pancreas Smart-seq2 4 1724 [24]

Target Baron human Pancreas inDrop 8 8451 [25]

Reference Vento-Tormo Smart-seq2 Placenta Smart-seq2 4 4310 [26]

Target Vento-Tormo 10x Placenta 10x 8 54976 [26]

Reference Mammary Smart-seq2 Mammary Gland Smart-seq2 4 2405 [18]

Target Mammary 10x Mammary Gland 10x 7 4481 [18]

Reference Haber largecell Small Intestine 10x 3 10396 [27]

Target Haber region Small Intestine 10x 6 11665 [27]

Reference Plasschaert Trachea inDrop 2 6152 [28]

Target Montoro 10x Trachea 10x 4 7006 [29]

Reference Tonsil Tonsil CODEX 3 173968 [21]

Target BE Barretts Esophagus CODEX 6 45958 [21]

Table S4. The split information of datasets used in our intra-data and inter-data cell type identification experiments.

Cao Quake1 Quake2 Wagner Zeisel Hubmap

|Cs| 6 12 15 5 3 3

|C̄r| 4 12 15 4 0 0

|C̄t| 6 12 15 5 3 3

Muraro (R)

Baron human (T)

Vento Smart-seq2 (R)

Vento 10x (T)

Plasschaert (R)

Montoro 10x (T)

Mammary Smart-seq2 (R)

Mammary 10x (T)

Haber largecell (R)

Haber region (T)

Tonsil (R)

BE (T)

|Cs| 4 4 2 4 3 3

|C̄r| 0 0 0 0 0 0

|C̄t| 4 4 2 3 3 3
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Table S5. Performance comparison between the various baselines on five scRNA-seq datasets in the intra-data setting. Quake1 and Quake2

refer to Quake 10x and Quake Smart-seq2, respectively.

Cao Quake1 Quake2 Wagner Zeisel

known novel overall known novel overall known novel overall known novel overall known novel overall

scCNC [9] 55.8 42.8 28.7 84.4 65.3 68.5 58.0 35.3 38.5 83.1 57.4 59.8 64.9 79.1 70.1

scDECL [10] 51.4 41.6 26.3 31.7 45.9 26.1 22.0 30.3 25.9 32.5 48.8 35.0 55.8 69.4 49.5

MARS [12] 92.7 58.2 63.1 96.4 49.8 67.5 88.1 78.9 78.3 78.0 53.0 54.8 89.8 87.0 83.9

ItClust [13] 3.4 45.0 48.0 54.3 43.3 53.2 10.9 62.0 65.9 29.4 30.8 36.0 32.1 69.3 63.7

scNym [14] 98.5 63.1 61.2 98.5 48.1 53.7 95.3 69.6 65.9 93.9 44.6 43.5 99.3 62.2 62.4

scArches [15] 78.0 45.4 57.7 90.3 57.3 70.1 64.0 56.1 58.1 65.2 41.0 46.8 73.1 63.2 63.6

scBOL 96.5 74.6 77.4 98.0 65.8 77.5 96.2 82.1 82.5 94.9 54.7 62.5 96.5 91.7 89.1

Table S6. Performance comparison between the various baselines on five groups of scRNA-seq datasets in the inter-data setting. “R”

represents the reference data and “T” refers to the target data.

Muraro (R)

Baron human (T)

Vento Smart-seq2 (R)

Vento 10x (T)

Plasschaert (R)

Montoro 10x (T)

Mammary Smart-seq2 (R)

Mammary 10x (T)

Haber largecell (R)

Haber region (T)

known novel overall known novel overall known novel overall known novel overall known novel overall

scCNC [9] 75.0 40.8 61.1 83.4 47.1 43.7 79.7 73.1 73.0 92.4 65.5 76.2 62.7 69.4 55.9

scDECL [10] 36.7 38.4 29.9 42.8 46.4 22.9 59.9 72.9 54.9 93.7 92.0 83.9 83.6 63.8 39.3

MARS [12] 79.5 82.3 80.0 94.5 78.6 83.8 88.6 94.5 89.1 81.5 97.5 86.9 57.1 75.1 68.2

ItClust [13] 80.9 56.4 69.2 64.3 75.0 58.2 90.1 75.1 83.2 36.8 70.5 67.2 53.4 58.2 56.4

scNym [14] 88.2 55.5 63.9 98.1 70.4 80.6 96.1 77.7 83.1 95.1 48.6 49.8 95.8 44.4 51.2

scArches [15] 89.3 52.8 80.9 83.4 66.8 75.2 91.4 67.4 85.3 62.0 55.5 59.0 72.3 51.7 59.6

scBOL 96.1 81.9 91.8 95.7 97.0 93.3 95.6 88.7 93.1 95.8 98.8 97.6 90.9 77.4 79.7

Table S7. Performance comparison between the various baselines on two spatial transcriptomics datasets, i.e., Hubmap and TonsilBE from

CODEX multiplexed imaging technology.

Hubmap (CODEX) TonsilBE (CODEX)

known novel overall known novel overall

MARS [12] 97.5 60.3 58.4 95.0 45.4 67.4

scNym [14] 66.9 64.8 63.1 7.1 66.4 65.9

scArches [15] 9.4 49.6 47.0 19.0 34.6 40.6

STAGATE [11] 10.9 69.8 60.4 4.9 59.1 50.8

STELLAR [16] 92.5 72.9 68.8 95.2 60.4 76.1

scBOL 93.1 96.3 95.8 92.5 96.9 94.3



7

Table S8. Performance comparison for different novel cell type numbers with labeled ratio 0.5 across various methods on two scRNA-seq

datasets.

Quake 10x

Known=32, novel=4

Quake 10x

Known=25, novel=11

Quake 10x

Known=18, novel=18

Quake 10x

Known=11, novel=25

Quake 10x

Known=4, novel=32

Methods Known Novel Overall Known Novel Overall Known Novel Overall Known Novel Overall Known Novel Overall

MARS [12] 81.8 55.1 77.4 90.0 47.4 69.0 92.1 52.8 68.9 97.7 57.8 67.8 98.4 65.2 69.1

scNym [14] 95.8 75.2 81.8 93.5 51.0 61.1 98.4 52.8 60.8 99.0 43.4 46.7 99.0 30.6 31.9

scArches [15] 85.9 61.8 81.9 88.0 58.2 72.5 88.3 56.6 69.1 78.2 52.3 59.8 87.0 42.7 49.3

ItClust [13] 23.3 26.1 25.4 53.3 43.3 43.7 70.5 47.3 52.3 73.3 34.0 55.3 42.7 51.6 74.1

scCNC [9] 76.6 80.7 65.9 79.8 53.1 62.2 85.0 49.8 61.3 81.2 53.0 58.1 73.4 46.9 56.0

scDECL [10] 17.0 78.7 14.6 22.3 47.2 22.4 24.8 38.9 21.3 32.3 27.8 19.2 61.5 19.6 16.8

scBOL 98.4 60.8 91.8 98.4 69.5 83.2 98.7 69.6 78.5 88.2 65.3 71.9 93.9 67.7 71.4

Quake Smart-seq2

Known=40, novel=5

Quake Smart-seq2

Known=31, novel=14

Quake Smart-seq2

Known=22, novel=23

Quake Smart-seq2

Known=13, novel=32

Quake Smart-seq2

Known=4, novel=41

Methods Known Novel Overall Known Novel Overall Known Novel Overall Known Novel Overall Known Novel Overall

MARS [12] 78.0 63.8 74.8 79.6 80.2 74.8 80.3 70.6 69.2 89.3 70.3 69.9 91.0 72.0 72.6

scNym [14] 95.3 63.2 82.3 95.4 69.4 64.9 96.9 59.2 56.4 96.3 57.7 54.2 99.3 29.6 29.4

scArches [15] 73.5 65.2 68.9 74.3 60.6 64.7 72.3 54.7 57.2 55.2 50.7 49.9 41.2 38.2 37.6

ItClust [13] 9.3 49.3 67.4 12.4 68.5 65.9 32.7 55.5 49.4 30.7 44.1 40.2 7.4 23.2 22.1

scCNC [9] 39.8 48.8 34.7 56.8 31.7 34.1 65.0 40.8 39.0 59.1 21.7 23.8 86.6 26.6 25.9

scDECL [10] 11.2 30.7 9.8 12.1 31.4 15.9 15.6 21.8 14.3 45.1 23.8 20.0 85.8 39.4 37.5

scBOL 91.1 71.2 84.4 92.3 81.3 79.5 94.8 70.6 73.0 98.6 68.9 70.0 98.7 73.2 73.9

Table S9. Performance comparison for different labeled ratios across various methods on tested two scRNA-seq datasets.

Quake 10x

ratio=0.1

Quake 10x

ratio=0.3

Quake 10x

ratio=0.5

Quake 10x

ratio=0.7

Quake 10x

ratio=0.9

Methods Known Novel Overall Known Novel Overall Known Novel Overall Known Novel Overall Known Novel Overall

MARS [12] 88.8 63.3 77.1 91.0 58.8 74.8 92.1 52.8 68.9 91.4 54.3 65.7 67.3 50.7 52.5

scNym [14] 94.0 52.0 68.2 98.4 54.7 64.0 98.4 52.8 60.8 93.8 53.7 59.1 88.9 62.3 60.2

scArches [15] 86.7 54.4 73.2 90.4 59.1 74.9 88.3 56.6 69.1 86.1 57.8 66.1 73.5 52.4 54.3

ItClust [13] 71.2 49.1 58.9 75.5 51.1 62.1 70.5 47.3 52.3 42.3 41.4 45.0 26.3 39.1 35.7

scCNC [9] 85.5 48.1 65.5 85.3 41.4 60.8 85.0 49.8 61.3 86.5 50.2 56.3 86.4 54.4 55.2

scDECL [10] 40.5 56.0 34.7 24.9 38.9 18.0 24.8 38.9 21.3 24.9 38.9 26.0 24.7 38.9 33.5

scBOL 98.0 69.4 82.8 98.6 71.7 81.6 98.7 69.6 78.5 98.3 65.4 72.3 98.0 70.3 70.2

Quake Smart-seq2

ratio=0.1

Quake Smart-seq2

ratio=0.3

Quake Smart-seq2

ratio=0.5

Quake Smart-seq2

ratio=0.7

Quake Smart-seq2

ratio=0.9

Methods Known Novel Overall Known Novel Overall Known Novel Overall Known Novel Overall Known Novel Overall

MARS [12] 81.0 72.4 74.7 79.1 76.3 74.9 80.3 70.6 69.2 78.5 72.2 71.3 74.0 67.7 67.2

scNym [14] 85.4 58.8 59.0 86.8 65.5 59.2 96.9 59.2 56.4 97.2 49.1 49.8 90.4 53.5 52.4

scArches [15] 71.4 53.6 60.5 71.2 49.8 57.3 72.3 54.7 57.2 64.7 54.5 53.5 39.9 54.9 52.8

ItClust [13] 48.8 67.2 57.8 43.4 55.1 50.7 32.7 55.5 49.4 5.8 55.2 49.0 0.0 47.3 44.6

scCNC [9] 65.3 43.1 42.2 63.7 32.1 35.3 65.0 40.8 39.0 89.6 70.9 72.1 81.7 71.7 70.9

scDECL [10] 41.8 55.3 37.9 15.5 21.8 12.5 15.6 21.8 14.3 15.5 21.8 16.6 15.8 21.8 19.8

scBOL 94.5 70.0 75.3 95.3 73.1 76.3 94.7 70.6 73.0 96.3 73.1 74.0 88.0 75.5 70.5
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Table S10. Performance comparison for different labeled ratios across various methods on tested two spatial transcriptomics datasets.

Hubmap

ratio=0.3

Hubmap

ratio=0.4

Hubmap

ratio=0.5

Hubmap

ratio=0.6

Hubmap

ratio=0.7

Methods Known Novel Overall Known Novel Overall Known Novel Overall Known Novel Overall Known Novel Overall

MARS [12] 80.8 73.6 75.1 79.4 71.7 73.1 97.5 60.3 58.4 96.8 58.1 59.4 95.2 60.1 59.4

scNym [14] 66.7 62.2 60.8 66.8 63.5 62.0 66.9 64.8 63.1 67.3 65.9 64.3 68.9 62.5 60.1

scArches [15] 1.0 48.7 44.3 1.0 52.4 49.6 9.4 49.6 47.0 0.0 70.7 64.7 1.0 54.4 51.7

STAGATE [11] 23.4 62.6 54.3 10.8 70.0 59.0 10.9 69.8 60.4 11.2 69.7 62.0 11.4 69.9 64.0

STELLAR [16] 95.0 77.6 81.3 95.5 79.9 73.9 92.5 72.9 68.8 96.3 82.6 78.0 98.1 67.0 65.3

scBOL 95.0 85.5 87.3 90.8 96.8 95.7 93.1 96.3 95.8 95.9 89.1 91.6 92.4 97.0 96.6

TonsilBE

ratio=0.3

TonsilBE

ratio=0.4

TonsilBE

ratio=0.5

TonsilBE

ratio=0.6

TonsilBE

ratio=0.7

Methods Known Novel Overall Known Novel Overall Known Novel Overall Known Novel Overall Known Novel Overall

MARS [12] 82.5 58.0 67.3 90.4 43.2 66.0 95.0 45.4 67.4 82.1 52.0 63.7 75.9 56.6 65.3

scNym [14] 6.8 66.7 66.3 6.8 66.5 66.1 7.1 66.4 65.9 7.1 66.5 66.0 17.3 51.8 53.7

scArches [15] 14.0 62.6 56.9 16.7 57.2 48.1 19.0 34.6 40.6 18.1 40.6 40.3 15.5 63.2 49.3

STAGATE [11] 5.2 37.2 40.7 5.4 37.1 39.6 4.9 59.1 50.8 5.2 34.4 37.4 5.3 56.3 49.0

STELLAR [16] 96.5 56.0 75.6 95.0 76.1 83.3 95.2 60.4 76.1 94.1 63.6 76.5 94.9 64.8 77.3

scBOL 92.4 92.7 92.5 94.7 96.5 95.6 92.5 96.9 94.3 95.2 94.3 94.7 95.9 93.7 94.8

Table S11. Performance comparison for different novel ratios across various methods on tested two scRNA-seq datasets.

Quake 10x

ratio=0.2

Quake 10x

ratio=0.4

Quake 10x

ratio=0.6

Quake 10x

ratio=0.8

Quake 10x

ratio=1.0

Methods Known Novel Overall Known Novel Overall Known Novel Overall Known Novel Overall Known Novel Overall

MARS [12] 86.3 61.5 80.1 88.9 61.2 78.1 90.8 58.3 75.8 93.3 59.4 75.5 92.1 52.8 68.9

scNym [14] 98.5 57.2 82.5 98.7 51.6 71.5 98.7 48.7 66.4 98.6 52.9 65.7 98.4 52.8 60.8

scArches [15] 93.4 46.6 83.5 92.1 49.7 77.1 90.7 50.5 72.5 89.4 50.8 69.0 88.3 56.6 69.1

ItClust [13] 84.0 46.3 81.9 76.2 45.0 70.7 75.5 54.5 67.6 64.3 48.5 60.2 70.5 47.3 52.3

scCNC [9] 83.6 50.9 72.4 87.9 48.8 69.9 83.6 42.4 60.5 80.5 47.6 60.0 85.0 49.8 61.3

scDECL [10] 24.8 39.7 19.9 24.8 38.7 16.7 24.8 38.6 16.3 24.8 39.2 18.4 24.8 38.9 21.3

scBOL 98.7 65.3 88.0 97.7 63.6 81.9 97.1 64.5 79.8 97.4 68.6 79.6 96.9 69.6 78.5

Quake Smart-seq2

ratio=0.2

Quake Smart-seq2

ratio=0.4

Quake Smart-seq2

ratio=0.6

Quake Smart-seq2

ratio=0.8

Quake Smart-seq2

ratio=1.0

Methods Known Novel Overall Known Novel Overall Known Novel Overall Known Novel Overall Known Novel Overall

MARS [12] 78.1 75.0 75.9 79.7 73.7 74.0 82.0 72.6 72.8 79.1 72.9 71.6 80.3 70.6 69.2

scNym [14] 96.7 57.9 69.5 96.8 52.7 60.2 96.6 62.1 59.5 96.8 50.4 53.3 96.9 59.2 56.4

scArches [15] 83.1 53.3 70.6 77.8 50.7 62.0 77.7 57.8 63.4 74.0 52.8 57.2 72.3 54.7 57.2

ItClust [13] 24.6 53.8 65.6 60.3 60.1 59.9 50.5 50.3 50.0 37.8 67.7 59.2 32.7 55.5 49.4

scCNC [9] 66.4 42.7 52.8 65.9 42.0 48.6 65.0 40.9 42.3 65.2 40.5 41.1 64.3 40.8 39.0

scDECL [10] 15.5 21.8 11.2 15.5 22.0 9.5 15.5 21.8 11.6 15.5 21.9 13.2 15.6 21.8 14.3

scBOL 95.2 69.3 77.1 94.9 73.1 75.8 94.2 74.7 75.0 93.6 73.6 74.4 94.7 70.6 73.0

Table S12. Performance comparison between the various baselines on another two spatial transcriptomics datasets, i.e., Lohoff from seqFISH

technology and Chen from Stereo-seq technology.

Lohoff (seqFISH) Chen (Stereo-seq)

known novel overall known novel overall

MARS [12] 79.0 63.3 53.0 52.5 48.8 36.5

scNym [14] 58.1 50.4 51.3 67.2 38.8 38.6

scArches [15] 48.5 71.1 62.0 46.1 45.4 44.8

STAGATE [11] 42.1 47.5 45.7 12.8 58.2 43.4

STELLAR [16] 98.4 84.7 79.5 35.2 61.1 50.9

scBOL 96.4 93.7 94.8 83.9 69.1 71.2
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Table S13. Time-consuming (second) and performance (overall accuracy) comparison for different data sizes across various methods.

size = 5k size = 10k size = 25k size = 50k size = 100k

Methods Time Overall Time Overall Time Overall Time Overall Time Overall

scCNC [9] 9104 50.5 32170 55.4 163152 54.2 509184 52.7 1578470 54.8

scDECL [10] 12037 13.7 22038 14.2 53095 13.6 211591 13.5 222072 13.4

ItClust [13] 420 38.2 1480 34.9 1876 36.0 3592 34.9 7972 36.9

MARS [12] 1248 58.4 2304 84.0 4182 95.5 7893 97.8 12438 98.5

scNym [14] 342 38.5 534 39.3 1032 39.7 1614 40.8 3024 41.1

scArches [15] 2798 37.5 5903 36.7 12620 36.3 28408 35.9 56764 39.3

scBOL 1785 63.5 3367 87.9 8564 98.3 19913 99.6 37558 99.9
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Fig. S1. Robustness analysis. A. The trend of known accuracy, novel accuracy, and overall accuracy with varying proportions of target private cells

sampled in Quake 10x datasets respectively. B. The trend of known accuracy, novel accuracy, and overall accuracy with varying proportions of target

private cells sampled in Quake Smart-seq2 datasets respectively.
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ItClust scNym

scArches scBOL

Fig. S2. Mapping relationship among prediction results of scBOL and other three methods via Sankey plots for the experiment where Quake 10x Limb

Muscle is the reference data and Quake 10x Mammary Gland is the target data.
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Fig. S3. Radar plot of scBOL and other five competing methods measured by three kinds of accuracy. A. Radar plots on the Lohoff dataset

obtained by seqFISH. B. Radar plots on the Chen dataset obtained by Stereo-seq.
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A scNym scArches

STELLAR scBOL

B

Fig. S4. Intra-data experiments on the Lohoff dataset. A. Mapping relationship among prediction results of scBOL and other three methods via

Sankey plots. B. Visualization plots via UMAP calculated using the latent representations of scBOL and other five methods colored by cell types.
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Fig. S5. Differential gene expression analysis: the similarity heatmap based on marker gene sets identified by ground-truth cell types and prediction

cell types of each method.
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Fig. S6. A. The trend of time-consuming (hour) with respect to the change in data sizes (K). Since the running time of scCNC is much longer than

the other methods, we do not draw its line to make the line graph clearer. B. The trend of overall accuracy with respect to the change in data sizes.



13

72.5

75.0

77.5

80.0

82.5

0.1 0.2 1 5 10
tau

ov
er

al
l_

ac
cu

ra
cy

dataset
Quake 10x
Quake Smart−seq2

(a) τ value

76

78

80

82

10 15 20 25 30
alpha

ov
er

al
l_

ac
cu

ra
cy

dataset
Quake 10x
Quake Smart−seq2

(b) α value

Fig. S7. Hyperparameter sensitivity of scBOL to the changes of τ and α on Quake 10x, Quake Smart-seq2 datasets.
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