SUPPLEMENTS

Supplementary Table 1. Summary of quantitative results from human studies using HP ¹³C-MRI

Authors*	Clinical applications	Quantitative results	Additional results
Brain Miloushev et al., 2018 [25]	1st human brain tumor study	Kinetic modeling	Higher production of Pyr and Lac in normal cortical/subcortical regions; glycolytic heterogeneity
Autry et al., 2020 [26]	Post radio-chemotherapy follow-up in infiltrative glioma	Whole brain: $k_{PL} = 0.12$ <i>Kinetic modeling</i>	among different brain tumors Global elevation of k_{PL} and k_{PB} post bevacizumab; elevated k_{PL} and k_{PB} in progressive disease
		Gloma patient Normal brain: $k_{PL} = 0.020$, $k_{PB} = 0.006$; normal brain post bevacizumab:	
		$k_{PL} = 0.047$, $k_{PB} = 0.011$; glioma (contrast enhancing): $k_{PL} = 0.032-0.041$; glioma (T2 hyperintense): $k_{PL} = 0.024$	
		Healthy volunteer Normal brain: k _{PL} = 0.018, k _{PB} = 0.004	
Autry et al., 2021 [27]	Pediatric brain tumor vs. normal brain, pediatric safety profile	Model free Whole brain: $SNR_{Pyr} = 7.85 \times 10^2 - 3.52 \times 10^5$, $SNR_{Lac} = 1.75 \times 10^2 - 7.20 \times 10^4$,	Safety of HP ¹³ C-MRI in pediatric patients
Lee et al., 2021 [28]	Prediction of radiotherapy response in intracranial metastases	$SNR_{Bic} = 64 - 1.52 \times 10^{-10}$ Model free z-score = -2.33-3.74	Tumors with highest z-scores are associated with radiotherapy failure
Chen et al., 2021 [29]	Glioblastoma vs. normal brain	Model free Glioblastoma: $lac/TC = 0.310$, Bic/TC = 0.086; normal brain: $lac/TC = 0.246$	1st vs. 2nd injections: metabolites/TC were insignificantly higher in 2nd injection
7_{2}	Gliablactoma vs. normal brain	Bic/TC = 0.108 <i>Kinetic modeling</i> $(x10^{-3})$	Ric /Pur pagatively correlates with lesion volume and volume of enhancing tissue: Ric /Pur
Zaccagna et al., 2022 [30]		Glioblastoma: $k_{PL} = 16.1$, $k_{PB} = 1.7$; normal brain: $k_{PL} = 16.5$, $k_{PB} = 2.4$	positively correlates with percentage of non-enhancing core; LDHA positively correlates with
		Glioblastoma: Lac/Pyr = 0.34, Bic/Pyr = 0.06; normal brain: Lac/Pyr = 0.36, Bic/Pyr = 0.10	Lac/Fyr, MC14 positively conetates with Bic/Fyr and Bic/Lac
Grist et al., 2019 [31]	Technical feasibility in healthy human brain	Kinetic modeling Whole brain: $k_{\rm Pl} = 0.012$, $k_{\rm Pl} = 0.002$	Higher metabolites signal in gray matter compared to white matter
Lee et al., 2020 [32]	Metabolite topography in healthy human brain	Not available	Lac topography unveils a region-specific distribution of Lac in the brain, which is consistent
Hackett et al., 2020 [33]	Traumatic brain injury	Model free	Mild traumatic brain injury without discernible anatomic change or hemorrhage on MRI
		Patient 1: trauma vs normal: Bic/TC = 0.027 vs. 0.059, Lac/TC = 0.236 vs. 0.191 Patient 2: trauma vs normal: Bic/TC = 0.025 vs. 0.047, Lac/TC = 0.164 vs. 0.162	
Ma et al., 2022 [34]	Technical feasibility in healthy human brain	<i>Kinetic modeling</i> Whole brain: $k_{PL} = 0.014 - 0.018$, $k_{PB} = 0.004 - 0.006$	Lac/TC and Bic/TC linearly correlate with fractional gray matter volume
		<i>Model free</i> Whole brain: Lac/TC = 0.21-0.24, Bic/TC = 0.065-0.091	
Uthayakumar et al., 2023 [35]	Metabolic changes in brain aging	Model free A 7% \pm 2% decrease per decade for Lac and a 9% \pm 4% decrease per decade for Bic	Variability in aging-related metabolic changes is observed across different brain regions
Heart and skeletal muscle Cunningham et al., 2016 [36]	1st human healthy heart study	Model free	Pyr signal observed only in cardiac chamber, Bic only in myocardium, Lac in both chamber and
Rider et al., 2020 [37]	Healthy vs. diabetic heart	$SNR_{Pyr} = 115$, $SNR_{Bic} = 56$, $SNR_{Lac} = 53$ Model free (x 10 ⁻²)	myocardium Significantly increased Pyr-to-Bic flux after oral glucose challenge
		Healthy heart: Bic/Pyr = 0.84, Lac/Pyr = 5.16, Ala/Pyr = 3.17; diabetic heart: Bic/Pyr = 0.16, Lac/Pyr = 8.51, Ala/Pyr = 3.82	
Park et al., 2020 [38]	Cardiotoxicity of doxorubicin	Model free Pafara deverybicin: $\operatorname{Pic}/\mathrm{TC} = 0.026$ $\operatorname{Las}/\mathrm{TC} = 0.668$ $\operatorname{Ala}/\mathrm{TC} = 0.0651$	Hemoglobin, high-sensitivity troponin, and left ventricular global longitudinal strain also
		after doxorubicin: Bic/TC = 0.032 , Lac/TC = 0.448 , Ata/TC = 0.045 ;	
Ma et al., 2022 [39]	End diastolic vs. end systolic in healthy heart	<i>Model free</i> End diastolic to end systolic: Bic/Lac = 21.6 decrease, Bic/Ala = 9.4 decrease	The decrease in Bic/Lac from end diastolic to end systolic occurs prominently in the mid- anterior and mid-inferoseptal segments of heart
Park et al., 2021 [40]	Rest vs. exercise vs. recovery in healthy calf skeletal muscle	Model free Rest: Lac/TC = 0.18, Bic/TC = 0.004; exercise: Lac/TC = 0.31, Bic/TC = 0.036;	TC (perfusion) at rest increases to 2.8-fold with exercise and to 3.2-fold during recovery
Body and oncology		recovery: Lac/TC = 0.42, Bic/TC = 0.002	
Woitek et al., 2020 [41]	Post neoadjuvant chemotherapy follow-up in breast cancer	<i>Kinetic modeling</i> 37% decrease in k_{PL} after neoadjuvant chemotherapy	After neoadjuvant chemotherapy 76% decrease in tumor volume but 132% increase in K^{trans} and 31% increase in k_{ep} ; pathologic complete response after neoadjuvant chemotherapy
		<i>Model free</i> 34% decrease in Lac/Pyr after neoadjuvant chemotherapy	
Woitek et al., 2021 [42]	Very early neoadjuvant chemotherapy response assessment in breast cancer	Kinetic modeling Breast cancer post chemotherapy	\ge 20% increase of Lac/Pyr predicts pathologic complete response
		$k_{\rm PL} = 0.0064 \rightarrow 0.0079$ Model free	
		Breast cancer post chemotherapy: $SNR_{Pyr} = 19.7 \rightarrow 16.5$, $SNR_{Lac} = 7.0 \rightarrow 4.5$, $Lac/Pyr = 0.28 \rightarrow 0.34$	
Tran et al., 2019 [43]	Intratumoral metabolic heterogeneity of RCC	Not available	Variability in Lac signal correlates with Lac levels in tumor samples on LC-MS analysis
Tang et al., 2021 [44]	Tumor grade and histopathologic type of RCC	<i>Model free</i> Lac/Pyr: chromophobe RCC > grade 3 ccRCC > grade 2 ccRCC	Demonstration of good reproducibility of HP ¹³ C-MRI by performing 2 acquisitions in the same day
Ursprung et al., 2022 [45]	Prediction of tumor grade of RCC	<i>Kinetic modeling</i> (median) k_{PL} : ccRCC = 0.0065, normal kidney = 0.0043, liposarcoma = 0.0152,	Increasing k_{PL} correlates with higher tumor grade; Lac/Pyr negatively correlates with ADC; MCT1 expression (but not MCT4) positively correlates with k_{PL} ; MCT1 expression independently
		pheochromocytoma = 0.0086, oncocytoma = 0.0022 Model free (median)	predicts overall survival of RCC patients
		SNR _{Pyr} : ccRCC = 26.7, normal kidney = 30.1, liposarcoma = 31.9, pheochromocytoma = 34.0, oncocytoma = 12.3; SNR _{Lac} : ccRCC = 5.7,	
		normal kidney = 3.4, liposarcoma = 10.5, pheochromocytoma = 6.0, oncocytoma = 1.0: Lac/Pyr: ccRCC = 0.13, normal kidney = 0.14,	
lee et al 2022 [46]	Comparison among normal intrabdominal solid organs:	liposarcoma = 0.35, pheochromocytoma = 0.17, oncocytoma = 0.14 Kinetic modeling	The liver exhibits a comparatively lower absolute metabolite signal, yet the highest metabolite
Lee et al., 2022 [40]	liver, kidney, pancreas, spleen	k_{PL} : liver = 0.019, kidney (R) = 0.0036, kidney (L) = 0.0033, pancreas = 0.0063, spleen = 0.0006; k_{PL} : liver = 0.012, kidney (R) = 0.0011, kidney (L) = 0.00087	conversion rates
Stadkildo Jargoncon et al	Tumor vs. normal in paneroatic cancor	pancreas = 0.0034, spleen = 0.00073	Ala/Lac ac a notantial biomarker to detect pancreatic ancer
2020 [47]		Pancreatic cancer: Ala/Lac = 0.33; normal pancreas: Ala/Lac = 0.23	
Gordon et al., 2023 [48]	cancer	Pancreatic cancer: Lac/Pyr = 0.30–1.65, Ala/Pyr = < 0.01–0.14,	Early metabolic response at 4 weeks correlates with subsequent tumor response
	-	Ala/Lac = < 0.01–0.46; normal pancreas: Lac/Pyr = 0.20–0.27, Ala/Pyr = 0.06–0.15, Ala/Lac = 0.24–0.79	
Nelson et al., 2013 [49]	Tumor vs. normal in prostate cancer	Kinetic modeling Prostate cancer: k _{PL} = 0.013	1st human study in prostate cancer, safety profile
Aggarwal et al., 2017 [50]	Early response for androgen deprivation therapy in prostate cancer	<i>Kinetic modeling</i> Prostate cancer post androgen deprivation therapy: $k_{PL} = 0.025 \rightarrow 0.007$	Only modest changes in tumor size and ADC value
Chen et al., 2020 [51]	Feasibility in bone and liver metastasis in castration-	Kinetic modeling	RNA-seq found higher LDHA expression relative to the dominant isoform of LDH
	resistant prostate cancer	Bone metastases: $k_{PL} = 0.020$; liver metastases: $k_{PL} = 0.026$; liver metastasis post chemotherapy: $k_{PL} = 0.026 \rightarrow 0.015$	
		<i>model free</i> Bone metastasis: $SNR_{TC} = 117$; liver metastasis: $SNR_{TC} = 85$	
Granlund et al., 2020 [52]	Tumor grade of prostate cancer	Model free max Lac/TC = 0.35	Lac increases with Gleason tumor grade; regions exhibiting high Lac also show high MCT1 expression and loss of PTEN
de Kouchkovsky et al.,	Early immunotherapy response assessment in castration-	Time to max Lac/TL = 44 s Kinetic modeling	Metabolic response is more significant than morphologic response
2022 [53]	resistant prostate cancer	Prostate cancer post immunotherapy: $k_{PL} = 0.0273 \rightarrow \text{undetectable},$ $k_{PL} = 0.0147 \rightarrow 0.0006$	
unen et al., 2022 [54]	Integration with MR/TRUS fusion-guided biopsy in prostate cancer	Kinetic modeling $k_{PL} > 0.02$ as biomarker of suspected cancer; prostate cancer:	4 of 6 <i>K</i> _{PL} targets on HP ⁴³ C-MRI did not correlate to PIRDAS targets on conventional MRI
Sushentsev et al., 2022 [55]	Metabolic phenotyping in intermediate risk prostate cancer	$K_{PL} = 0.0519$; normal prostate: $K_{PL} = 0.0110$ Kinetic modeling	SNR_{Lac} positively correlates to % Gleason pattern 4 and mean ADC values
		Model free	
Lin et al., 2024 [56]	Immune activation of spleen post chemoradiotherapy	Prostate cancer: $SNK_{Lac} = 12$, $SNK_{Pyr} = 33$, $SNK_{TC} = 53$ Model free (x 10 ⁻²)	Lower baseline metabolism in spleen correlates with better response to chemoradiotherapy
		Responder: Pyr/TC = 91.5, Lac/TC = 3.6; nonresponder: Pyr/TC = 74.4, Lac/TC = 19.9	

Unless specified otherwise, data are presented as mean values. *The numbers enclosed in brackets correspond to the numbers of the articles listed in the reference section of the main paper. HP = hyperpolarized, Pyr = pyruvate, Lac = lactate, Ala = alanine, Bic = bicarbonate, TC = total carbon, SNR = signal-to-noise ratio, LDH = lactate dehydrogenase (isoform: LDHA), MCT = monocarboxylate transporter (isoform: MCT1, MCT4), RCC = renal cell carcinoma, cc = clear cell, ADC = apparent diffusion coefficient, TRUS = transrectal ultrasound

Supplementary Fig. 1. Fundamental principles of nuclear spin. **A:** Nuclear spin is an intrinsic property of particles, always manifesting as either +1/2 or -1/2. **B:** In nature, nuclear spin results from the combined spins of protons and neutrons, existing exclusively in the ground state (*I*) with values such as 0, 1/2, 1, 3/2, and so on. **C:** The ground state comprises "2*I* + 1" sublevels. Upon the application of a magnetic field, slight energy differences arise between these sublevels, leading to Zeeman splitting. Nuclei with *I* = 0 exhibit only one sublevel, lack Zeeman splitting, and remain inactive in MRI (¹²C), whereas nuclei with I \neq 0 (¹H and ¹³C) are nuclear magnetic resonance active due to having multiple sublevels. Notably, nuclei with higher gyromagnetic ratios (γ) experience more significant splitting when a magnetic field is applied.

Supplementary Fig. 2. Basic concepts of DNP. **A:** Polarization is a function of gyromagnetic ration (γ), magnitude of magnetic field (B₀), and temperature (T). To polarize nuclei with lower γ , higher magnetic field and lower temperature environment are required. For example, clinical polarizer SPINlabTM operates at B₀ = 5T and T = 0.8 k. **B:** Directly polarizing the ¹³C nucleus (the brute force method) presents an engineering challenge and is time-consuming, making it impractical for clinical use. Electrons have a high γ of 28025 and are more amenable to polarization. DNP offers a clinically feasible solution by transferring polarization from electrons to ¹³C nuclei, achieving 20%–30% ¹³C polarization (equivalent to > 10000 signal enhancement) within 2–3 hours. DNP = dynamic nuclear polarization