Discovery of an Aldo-Keto Reductase 1C3 (AKR1C3) Degrader

Angelica V. Carmona,^{a,#} Shirisha Jonnalagadda,^{a,#} Alfie M. Case,^a Krishnaiah Maddeboina,^a Sravan K. Jonnalagadda,^a Louise F. Dow,^a Ling Duan,^b Trevor M. Penning,^b Paul C. Trippier^{a,c,d}

Supplementary Material

^aDepartment of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States ^bCenter of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States ^cFred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States ^dUNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States

[#]These authors contributed equally to this work

Contents

Figure S1	3
Figure S2	4
Figure S3	5
Figure S4	6
Figure S5	7
Figure S6	8
Supplementary Methods	9
Experimental Methods	9
Supplementary References	13
¹ H, ¹³ C NMR Spectra and raw Western blots	14

Figure S1. Western blots and quantification of AKR1C3, AKR1C1/C2 and ARv7 protein expression in 22Rv1 prostate cancer cells treated with A) AKR1C3 inhibitor **3** at 43 nM; B) AKR1C3 inhibitor **3** at 1 μ M; C) AKR1C3 inhibitor warhead **4** at 1 μ M and D) DMSO; for 0, 24, 48 and 72 hours. Images are representative of at least two technical replicates. Graphs represent mean values ± SEM.

Figure S2. Half-maximal inhibition (IC_{50}) curves versus AKR1C3 for Warhead **4** and PROTAC **5**. Isolated enzyme assay.

Figure S3. Activity of selected compounds to ameliorate 22Rv1 prostate cancer cell viability. A) PROTAC **5**, B) AKR1C3 inhibitor **3**, C) E3 ligase ligand lenalidomide **6**, were treated with specified concentrations for 72 h. The IC₅₀ was obtained by MTS assay. Data is representative of the mean \pm standard deviation of two independent experiments performed in duplicate.

Figure S4. (A) Time study of degradation effect of AKR1C3 upon treatment of PROTAC **5** (1 nM) at different time points (0, 2, 4, 6, 12, 16, 24, 48, and 72 h). Blots are representative of two separate experiments; (B) Quantitative of A for AKR1C3 expression; (C) Combined quantification of AKR1C3 expression from n=2 experiments; Data obtained from at least two biological independent experiments are depicted as mean ± SEM.

Figure S5 Western blot analyses of AKR1C3 degradation upon the treatment of lenalidomide **6** (10 μ M) and degrader **5** at 1, 10 and 50 μ M concentrations for 24 h (A); (B) Quantitative analyses of the relative AKR1C3 protein levels at 1, 10, and 50 μ M of A; (C) Quantification of the relative AKR1C3 protein levels at 1, 10, and 50 μ M, data was obtained from two independent experiments and shown as mean ± standard deviation.

Figure S6. Half-maximal degradation (DC₅₀) curves versus AKR1C3, AKR1C2/3 and ARv7 for PROTAC 5 in 22Rv1 cells after 72 hour treatment.

Supplementary Methods

Experimental Methods

General chemistry procedures

All reactions were carried out in oven-dried glassware under positive nitrogen pressure unless otherwise noted. Reaction progress was monitored by thin-layer chromatography carried out on silica gel plates (2.5 cm × 7.5 cm, 200 μ m thick, 60 F254) and visualized by using UV (254 nm) or by dragendorff solution as indicator. Flash column chromatography was performed with silica gel (40–63 μ m, 60 Å) using the mobile phase indicated. Commercial grade solvents and reagents were purchased from Fisher Scientific (Houston, TX) or Sigma-Aldrich (Milwaukee, WI) and were used without further purification. Anhydrous solvents were purchased from Across Organics and stored under an atmosphere of dry nitrogen over molecular sieves.

¹H and ¹³C NMR spectra were recorded in the indicated solvent on a Bruker 400 MHz Advance III HD spectrometer at 400 and 100 MHz for ¹H and ¹³C, respectively. Multiplicities are indicated by s (single), d (doublet), t (triplet), m (multiplet), and br (broad). Chemical shifts (δ) are reported in parts per million (ppm) and coupling constants (*J*), in hertz.

High-resolution mass spectra (HRMS) were recorded with an Agilent 6230 LC/TOF spectrometer using an ESI source coupled to an Agilent Infinity 1260 system running in reverse phase with a ZORBAX RRHT Extend-C18 (80 Å, 2.1 x 50 mm, 1.8 µm) column using solvent A (water with 0.1 % Formic acid), solvent B (acetonitrile with 0.1 % Formic acid), and a flow rate of 0.6 mL/min starting a mixture of 95% A and 5% B. Solvent B is gradually increased to 95% at 5 min, held at 95% until 6 min, then gradually ramped back down to 5% at 8.0 min. The purity analysis of final compounds was determined ≥95% pure using a Waters ACQUITY ultra-performance liquid chromatography (UPLC) H-Class System with TUV (254 nm) detector and Empower 2 software (Milford, MA, USA) using an Agilent Eclipse plus C18 5µ column (4.6 X 150 mm). Chromatography was performed using solvent A (water with 0.1 % Trifluoroacetic acid), solvent B (methanol with 0.1 % Trifluoroacetic acid), and a flow rate of 1.0 mL/min for 20 min. with an isocratic system (20:80, A:B)

(4-((*tert*-butyldiphenylsilyl)oxy)phenyl)methanamine (**8**). To a stirred solution of 4-(aminomethyl)phenol (**7**) (1.85 g, 15.0 mmol, 1 equiv) in anhydrous tetrahydrofuran (75 mL) imidazole (2.04 g, 30.0 mmol, 2 equiv) was added followed by the addition of *tert*-butylchlorodiphenylsilane (TBDPSiCI) (5.8 mL, 22.5 mmol, 1.5 equiv). The mixture stirred overnight at room temperature under a N₂ atmosphere. Water was added and the solution was extracted with DCM. The organic layer was collected, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash column chromatography using hexane/EtOAc as the eluents to afford the titled compound as a yellow solid (3.09 g, 57%). R_f = 0.07 (hexane/EtOAc = 9:1). ¹H NMR (400 MHz, CDCl₃): δ_{H} 1.15 (9H, s), 1.86 (2H, s), 3.75 (2H, s), 6.77 (d, *J* = 8.0 Hz, 2H), 7.05 (d, *J* = 8.0 Hz, 2H) 7.38-7.46 (6 H, m), 7.76 (d, *J* = 8.0 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃): δ_{C} 19.5, 26.6, 45.8, 119.7, 127.8, 128.1, 129.9, 133.0, 135.5, 135.5, 154.5.

3-bromo-*N*-(4-((*tert*-butyldiphenylsilyl)oxy)benzyl)-5-iodobenzamide (**10**). To a stirred solution of 3bromo-5-iodobenzoic acid (**9**) (0.72 g, 2.2 mmol, 1 equiv) in anhydrous DCM (12 mL) was added EDC·HCI (0.51 g, 2.7 mmol, 1.2 equiv) and HOBt hydrate (0.44 g, 2.7 mmol, 1.2 equiv) at 0 °C under a N₂ atmosphere. At room temperature DIPEA (0.86 g, 6.6 mmol, 3 equiv) and **8** (0.80 g, 2.2 mmol, 1 equiv) was added, the mixture stirred overnight at room temperature under a N₂ atmosphere. The reaction mixture was washed with a saturated solution of NH₄Cl, water, and extracted with DCM. The organic layer was collected, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo to afford the titled compound as a tan solid (1.29 g, 87%). R_f = 0.43 (hexane/EtOAc = 6:1). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 1.13 (9H, s), 4.46 (d, *J* = 4.0 Hz, 2H), 6.41 (t, *J* = 6.0 Hz, 1H), 6.75 (d, *J* = 12.0 Hz, 2H), 7.05 (d, *J* = 12.0 Hz, 2H), 7.37-7.47 (7H, m), 7.73 (d, *J* = 8.0 Hz, 4H), 7.85 (1H, s), 7.96 (d, J= 16.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 19.5, 26.5, 43.9, 94.5, 120.0, 123.2, 127.8, 129.1, 129.9, 130.1, 132.6, 134.7, 135.5, 137.8, 142.4, 155.3, 164.3.

Methyl (*E*)-3-(3-bromo-5-((4-((*tert*- butyldiphenylsilyl)oxy)benzyl)carbamoyl)phenyl)acrylate (**11**) To a stirred solution of (**10**) (2.1 g, 3.1 mmol, 1 equiv) in anhydrous toluene (42 mL) was added methyl acrylate (0.42 mL, 4.7 mmol, 1.5 equiv), P(Ph)₃ (0.08 g, 0.3 mmol, 0.1 equiv), NEt₃ (1.31 mL, 9.4 mmol, 3 equiv) and Pd(OAc)₂ (0.07 g, 0.3 mmol, 0.1 equiv) and the reaction refluxed overnight under a N₂ atmosphere. While the reaction mixture was still hot, the contents were filtered. The filtrate was then allowed to cool and was filtered through a celite® pad with DCM. The reaction mixture was washed with a saturated solution of NH₄Cl, water, and extracted with DCM. The organic layer was collected, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash column chromatography using DCM/MeOH as the eluents to afford the titled compound as a brown semi-solid (0.60 g, 30%). R_f = 0.1 (DCM/MeOH = 1:0). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 1.10 (9H, s), 3.80 (3H, s), 4.47 (d, *J* = 4.0 Hz, 2H), 6.36 (1H, br. s), 6.43 (d, *J* = 16.0 Hz, 1H), 6.73 (d, *J* = 8.0 Hz, 2H), 7.05 (d, *J* = 8.0 Hz, 2H), 7.35-7.44 (6H, m), 7.56 (d, *J* = 16.0 Hz, 1H), 7.70 (d, *J* = 8.0 Hz, 5H), 7.80 (d, *J* = 12.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 19.5, 26.5, 43.9, 52.0, 120.0, 120.5, 123.2, 125.3, 127.8, 129.1, 129.9, 130.0, 131.3, 132.7, 133.3, 135.5, 136.8, 137.0, 142.1, 155.3, 165.2, 166.7.

methyl (*E*)-3-(5-((4-((*tert*-butyldiphenylsilyl)oxy)benzyl)carbamoyl)-[1,1'-biphenyl]-3-yl)acrylate (**12**) To a stirred solution of (**11**) (0.8 g, 1.3 mmol, 1 equiv) in anhydrous toluene (45 mL) was added phenyl boronic acid (0.24 g, 2.0 mmol, 1.5 equiv), Pd(dppf)Cl₂·CH₂Cl₂ (0.11 g, 0.13 mmol, 0.1 equiv), and Cs₂CO₃ (0.85 g, 2.6 mmol, 2 equiv) and the reaction refluxed overnight under a N₂ atmosphere. While the reaction mixture was still hot, the contents were filtered, and the filtrate was concentrated in vacuo. The concentrated filtrate was washed with hexane (5x), dissolved in diethyl ether, concentrated in vacuo, washed again with hexane (2x), and concentrated in vacuo. The crude product was purified by flash column chromatography using DCM/MeOH as the eluents to afford the titled compound as a white solid (0.16 g, 18%). R_f = 0.30 (DCM/MeOH = 1:0). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 1.12 (9H, s), 3.84 (3H, s), 4.54 (d, *J* = 8.0 Hz, 2H), 6.40 (t, *J* = 6.0 Hz, 1H), 6.54 (d, *J* = 16.0 Hz, 1H), 6.76 (d, *J* = 8.0 Hz, 2H), 7.10 (d, *J* = 8.0 Hz, 2H), 7.36-7.50 (9H, m), 7.59 (d, *J* = 8.0 Hz, 2H), 7.73 (d, *J* = 4.0 Hz, 5H), 7.78 (d, *J* = 20.0 Hz, 2H), 7.88 (1H, s), 7.96 (1H, s). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 19.5, 26.5, 43.8, 51.9, 119.4, 120.0, 125.1, 127.2, 127.3, 127.8, 128.2, 129.0, 129.1, 129.5, 130.0, 130.2, 132.8, 135.4, 135.5, 135.9, 139.5, 142.5, 143.7, 155.3, 166.6, 167.1.

methyl (*E*)-3-(5-((4-hydroxybenzyl)carbamoyl)-[1,1'-biphenyl]-3-yl)acrylate (**13**) To a stirred solution of (**12**) (0.23 g, 0.37 mmol, 1 equiv) in anhydrous THF (5 mL) was added TBAF (1M solution in THF, 0.16 mL, 0.55 mmol, 1.50 equiv) at 0 °C. The reaction was stirred for 40 minutes at 0 °C. Water was added and the solution was extracted with EtOAc and washed with brine. The organic layer was collected, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was washed with hexane/EtoAc (50:1, 40:1) resulting in solid precipitation. The solid was left in hexane (15 mL) overnight. The solid was then washed with hexane/EtOAc (2x 1:0, 3x 1:1). The overall yield of the titled compound as a white solid was 60% (0.1 g). R_f = 0.46 (hexane/EtOAc = 1:1). ¹H NMR (400 MHz, (CD₃)₂SO): $\delta_{\rm H}$ 3.75 (s, 3H), 4.43 (d, *J* = 4.0 Hz, 2H), 6.73 (d, *J* = 8.0 Hz, 2H), 6.83 (d, *J* = 16.0 Hz, 1H), 7.17 (d, *J* = 8.0 Hz, 2H), 7.41 (t, *J* = 6.0 Hz, 1H), 7.49 (t, *J* = 8.0 Hz, 2H), 7.78 (t, *J* = 8.0 Hz, 3H), 8.17 (s, 1H), 8.21 (s,2H), 9.10 (t, *J* = 6.0 Hz, 1H), 9.34 (s, 1H). ¹³C NMR (100 MHz, (CD₃)₂SO): $\delta_{\rm C}$ 42.8, 52.1, 115.5, 119.7, 126.0, 127.4, 127.7, 128.6, 129.2, 129.5, 129.8, 130.0, 135.4, 136.1, 139.3, 141.4, 144.3, 156.8, 165.8, 167.1.

methyl(*E*)-3-(5-((4-(prop-2-yn-1-yloxy)benzyl)carbamoyl)-[1,1'-biphenyl]-3-yl)acrylate (**14**) To a stirred solution of **13** (0.23 g, 0.59 mmol, 1 equiv), in anhydrous DMF was added Cs_2CO_3 (0.25 g, 0.78 mmol, 1.31 equiv) and the mixture refluxed under a N₂ atmosphere. After 10 min, propargyl bromide (0.04 mL, 0.41 mmol, 0.69 equiv) was added. The reaction mixture refluxed for 6 h. The reaction mixture was filtered, water was added, and the reaction mixture was extracted with EtOAc. The organic layer was collected, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was then extracted with diethyl ether and washed with water. The organic layer was collected, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo and left to dry at room temperature overnight. The residual DMF was removed by washing with copious amounts of water in toluene, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo to afford the titled compound as a white solid (0.19 g, 75%). $R_f = 0.75$ (hexane/EtOAc = 1:1)

¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 2.53 (t, J = 2.4 Hz, 1H), 3.82 (3H, s), 4.61 (d, J = 8.0 Hz, 2H), 4.69 (d, J = 4.0 Hz, 2H), 6.53 (d, J = 16.0 Hz, 1H), 6.65 (t, J = 4.0 Hz, 1H), 6.97 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.39-7.43 (m, 1H), 7.45-7.49 (m, 2H), 7.59 (d, J = 4.0 Hz, 2H), 7.73 (d, J = 16.0 Hz, 1H), 7.82 (t, J = 1.4 Hz, 1H), 7.90 (t, J = 1.4 Hz, 1H), 7.99 (t, J = 1.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 43.8, 51.9, 55.9, 75.6, 78.5, 115.2, 119.4, 125.1, 127.2, 127.4, 128.2, 129.0, 129.4, 129.6, 131.0, 135.4, 135.8, 139.5, 142.5, 143.7, 157.1, 166.7, 167.1.

(*E*)-3-(5-((4-Methylbenzyl)carbamoyl)-[1,1'-biphenyl]-3-yl)acrylic acid **(3)** The titled compound was afforded as a white solid (68 mg, 71%). ¹H NMR (400 MHz, (CD₃)₂SO): $\delta_{\rm H}$ 2.29 (3H, s), 4.49 (d, *J* = 5.6 Hz, 2H), 6.74 (d, *J* = 16.0 Hz, 1H), 7.15 (d, *J* = 8.0 Hz, 2H), 7.25 (d, *J* = 8.0 Hz, 2H), 7.43 (t, *J* = 7.2 Hz, 1H), 7.52 (t, *J* = 7.6 Hz, 2H), 7.72 (d, *J* = 16.0 Hz, 1H), 7.81 (d, *J* = 7.2 Hz, 2H), 8.15 (1H, s), 8.20 (2H, s), 9.18 (t, *J* = 5.6 Hz, 1H). ¹³C NMR (100 MHz, (CD₃)₂SO): $\delta_{\rm C}$ 21.14, 42.99, 121.45, 125.79, 127.46, 127.81, 128.53, 129.34, 129.46, 129.76, 135.74, 135.95, 136.35, 136.88, 137.03, 139.40, 141.43, 143.45, 165.90, 168.01. ESI-HRMS (*m*/*z*): [M+H]⁺ calcd for C₂₄H₂₂NO₃, 372.1594; found, 372.1595.

tert-butyl 2-(2-(2-azidoethoxy)ethoxy)acetate (**16**) Following a modified literature procedure¹: Under a N₂ atmosphere, to a stirred solution of NaH (60% dispersion in mineral oil, 0.59 g, 14.87 mmol, 1.51 equiv) in anhydrous THF (35 mL) was added a stirred solution of 2-(2-azidoethoxy)ethanol (**15**) (1.29 g, 9.85 mmol, 1 equiv) in anhydrous THF (69 mL) at 0 °C. After the reaction mixture stirred for 30 min at 0 °C, *tert*-butyl bromoacetate (2.88 mL, 19.69 mmol, 2 equiv) was added. The mixture stirred for 24 hr at room temperature under a N₂ atmosphere. The reaction mixture was quenched with water (350 mL) and when the effervescence ceased the solution was extracted with EtOAc. The organic layer was collected, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash column chromatography using Toluene/EtOAc as the eluents to afford the titled compound as a yellow oil (0.72 g, 30%). R_f = 0.29 (Toluene/EtOAc = 1:0). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 1.48 (9H, s), 3.39 (t, *J* = 6.0 Hz, 2H), 3.68-3.75 (6H, m), 4.04 (2H, s). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 28.1, 50.7, 69.1, 70.0, 70.7, 70.8, 81.6, 169.6.

Following a modified literature procedure²: To a stirred solution of **16** (0.26 g, 1.06 mmol, 1 equiv) in DCM (0.51 mL) was added TFA (0.25 mL) and the reaction stirred at room temperature for 2 h under a N₂ atmosphere. The reaction mixture was then concentrated in vacuo. At 0° C, the reaction mixture was diluted with DCM (1.30 mL) followed by dropwise addition of SOCl₂. The reaction stirred at room temperature for 2 h under a N₂ atmosphere. The solvent was concentrated in vacuo to afford **17** (dark brown oil) which was used in the following steps without purification.

2-(2-(2-azidoethoxy)ethoxy)-*N*-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)acetamide (**18**) To solution **17** was added NMP (2.57 mL) and the cereblon ligand (lenalidomide) (0.16 g, 0.63 mmol, 0.5 equiv). The reaction mixture stirred at room temperature overnight under a N₂ atmosphere. Water was added and the solution was extracted with EtOAc and washed with brine. The organic layer was collected, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash column chromatography using DCM/MeOH as the eluents to afford the titled compound as an off white solid (0.18 g, 37%). R_f = 0.47 (DCM/MeOH = 14:1). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 2.18-2.22 (1H, m), 2.35-2.40 (1H, m), 2.81-2.86 (2H, m), 3.38 (t, *J* = 4.0 Hz, 2H), 3.71-3.76 (4H, m), 3.81-3.83 (2H, m), 4.19 (2H, s), 4.46 (2H, s), 5.20-5.25 (1H, m), 7.49 (t, *J* = 16.0 Hz, 1H), 7.67 (d, *J* = 8.0 III

Hz, 1H), 7.76 (d, J = 8.0 Hz, 1H), 8.52 (1H, s), 8.71 (1H, s). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 23.3, 31.5, 46.5, 50.5, 51.9, 70.1, 70.1, 70.5, 71.1, 121.6, 126.3, 129.2, 131.8, 132.9, 134.7, 168.1, 168.9, 169.7, 171.4.

methyl oxoethoxy)ethoxy)ethyl)-1H-1.2.3-triazol-4-yl)methoxy)benzyl)carbamoyl)-[1.1'-biphenyl]-3-yl)acrylate (19) 14 (0.150 g, 0.35 mmol, 1 equiv) and 18 (0.150 g, 0.35 mmol, 1 equiv) were dissolved in a solution of DCM (2.61 mL), MeOH (2.61 mL), and water (1.31 mL). To which CuSO₄·5H₂O (8.8 mg, 0.03 mmol, 0.1 equiv) dissolved in water (6.53 mL) was added and the reaction mixture stirred under a N₂ atmosphere for 5 min at room temperature. Sodium ascorbate (28.5 mg, 0.14 mmol, 0.41 equiv) was dissolved in water (6.53 mL) and added to the reaction mixture. The reaction stirred overnight at room temperature under a N₂ atmosphere. Water was added (13 mL) and the solution was extracted with EtOAc. The organic layer was collected, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash column chromatography using DCM/MeOH as the eluents to afford the titled compound as a white solid (47.9 mgs, 16%). $R_f = 0.25$ (DCM/MeOH = 20:1). ¹H NMR (400 MHz, CD₃OD): $\delta_{\rm H}$ 1.31 (1H, s), 2.08-2.14 (1H, m), 2.33-2.44 (1H, m), 2.71-2.89 (2H, m), 3.69 (4H, s), 3.81 (d, J = 4.0 Hz, 3H), 3.94 (t, J = 8.0 Hz, 2H), 4.10 (d, J = 4.0 Hz, 2H), 4.44 (d, J = 4.0 Hz, 2H)Hz, 2H), 4.50 (d, J = 8.0 Hz, 1H), 4.54 (1H, s), 4.59-4.61 (4H, m), 5.06 (2H, s), 5.09-5.18 (2H, m), 6.69 (d, J = 16.0 Hz, 1H), 6.90 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 7.39 (t, J = 6.0 Hz, 1H), 7.47 (t, J = 0.0 Hz, 100 Hz)J = 16.0 Hz, 2H), 7.62-7.73 (4H, m), 7.80 (d, J = 16.0 Hz, 1H), 8.00 (1H, s), 8.06 (1H, s), 8.11 (1H, s), 8.17 (1H, s). ¹³C NMR (100 MHz, CD₃OD): $\delta_{\rm C}$ 22.7, 30.9, 42.7, 49.8, 50.9, 52.2, 60.9, 68.9, 69.7, 69.9, 70.5, 114.5, 118.9, 120.5, 124.7, 125.0, 126.7, 126.8, 127.3, 127.8, 128.7, 128.7, 129.4, 131.3, 132.2, 132.6, 135.3, 135.4, 135.5, 139.4, 142.3, 143.5, 143.8, 157.4, 167.4, 167.7, 169.5, 169.5, 170.6, 173.2.

oxoethoxy)ethoxy)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)benzyl)carbamoyl)-[1,1'-biphenyl]-3-yl)acrylic acid (5) To a stirred solution of 19 (41 mg, 0.05 mmol, 1 equiv) in a mixture of THF/MeOH (1:1) (2 mL) was added aqueous 1N NaOH (5 mg, 0.14 mmol, 3 equiv) solution. The mixture was stirred at 56 °C for 2 hours. The solvent was concentrated in vacuo, and pH was adjusted to 2-5 with 1 N HCl solution. The solution was extracted with EtOAc. The organic layer was collected, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The precipitate was air-dried to afford the titled compound as a colorless semi-solid (19.3 mgs, 48%). $R_f = 0.13$ (Hexane/EtOAc = 1:1). ¹H NMR (400 MHz, CD₃OD): $\delta_{\rm H}$ 2.14-2.48 (4H, m), 3.70 (5H, br. s), 3.95-3.99 (2H, m), 4.10-4.12 (2H, m), 4.54 (2H, s), 4.60-4.63 (2H, m), 4.94-4.98 (2H, m), 5.07 (2H, s), 6.65-6.75 (1H, m), 6.92 (d, J = 8.8 Hz, 2H), 7.29 (d, J = 7.6 Hz, 2H), 7.41 (t, J = 6.8 Hz, 1H), 7.47-7.51 (3H, m), 7.63 (d, J = 7.2 Hz, 1H), 7.73 (d, J = 7.6 Hz, 3H), 7.79-7.84 (1H, m), 8.01 (1H, s), 8.09 (d, J = 5.2 Hz, 1H), 8.12 (d, J = 1.6 Hz, 1H), 8.17-8.18 (1H, m).¹³C NMR (150 MHz, CD₃OD): δ_C 15.5,15.6,16.7, 24.4, 24.9, 27.9, 28.6, 28.9, 29.5, 29.8, 31.3, 42.3, 45.9, 48.9, 49.4, 53.4, 53.6, 55.4, 55.6, 55.7, 60.4, 68.4, 69.3, 69.5, 70.0, 114.1, 119.5, 119.9, 124.2, 124.5, 126.0, 126.3, 126.3, 126.7, 127.3, 128.1, 128.2, 128.9, 130.8, 131.7, 132.1, 132.2, 134.8, 135.0, 135.1, 139.0, 141.8, 143.1, 143.1, 157.0, 167.3, 168.2, 169.1, 172.6, 174.2, 175.4. ESI-HRMS (m/z): [M + H]+ calcd for C₄₅H₄₃N₇O₁₀, 842.3144; found 842.3143.

Supplementary References:

- Wan, Z.; Li, Y.; Bo, S.; Gao, M.; Wang, X.; Zeng, K.; Tao, X.; Li, X.; Yang, Z.; Jiang, Z.-X. Amide bond-containing monodisperse polyethylene glycols beyond 10 000 Da. *Org. Biomol. Chem.* 2016, 14, 7912.
- 2. Zhang, F.; Wu, Z.; Chen, P.; Zhang, J.; Wang, T.; Zhou, J.; Zhang, H. Discovery of a new class of PROTAC BRD4 degraders based on a dihydroquinazolinone derivative and lenalidomide/pomalidomide. *Biorg. Med. Chem.* **2020**, *28*, 115228.

¹H NMR (400 MHz, CDCl₃), (4-((*tert*-butyldiphenylsilyl)oxy)phenyl)methanamine (8)

CDC13

¹³C NMR (100 MHz, CDCl₃), (4-((*tert*-butyldiphenylsilyl)oxy)phenyl)methanamine **(8)**

Image: Signed state Current Data 2*connector Image: Signed state Signed state Image: Signed state	AVC-74 CDC13	154.5	135.5 135.5 133.0 129.9	128.1	77.14 77.1	45.8		BRUKER	
PROTEND Smith <	Si Si	NH2	2 					Current Data Parameters NAME Oct04-2021-PTlab EXPNO 11 PROCNO 1 F2 - Acquisition Parameters Date_ 20211004 Time 14 58	5
								INTRUM spect PROBHD 5 mm PABBO BB/ PULPROG zggg30 TD 65536 SOLVENT CDC13 NS 512 DS 4 SWH 24038.461 Hz FIDRES 0.366798 Hz AQ 1.3631488 sec RG 2050 DW 20.800 use DE 6.50 use TE 300.0 K D1 2.00000000 sec TD0 1	: 20 2
PLW13 0.20050000 F2 - Processing paramete SI 32768 SF 100.6504861 WDW EM SSB 0 LB 1.00					í			CHANNEL f1 SF01 100.6605506 MHz NUC1 13C P1 11.00 use PLW1 48.00000000 W CHANNEL f2 SF02 400.2816011 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 90.00 use PLW2 17.0000000 W	= :C :=
	·				 	 	 	PLW13 0.20050000 W F2 - Processing parameters SI 32768 SF 100.6504861 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 DC 1 40	

¹H NMR (400 MHz, CDCl₃), 3-bromo-*N*-(4-((*tert*-butyldiphenylsilyl)oxy)benzyl)-5-iodobenzamide (10)

AVC-76 CDC13

AVC-76 CDC13			4 ∞ い レ ∞ ⊙ ー ⊂	000H0004	ى م	4 L 7		5 N	പറ			
		0	134	123	94.	77. 76.		43.	26. 19.		Current NAME EXPNO	Data Parameters Oct11-2021-PT1ab 11
O Si			Br								PROCNO F2 - Acq Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 D11 TD0	1 uisition Parameters 20211011 10.30 spect 5 mm PABBO BB/ 2gpg30 65536 CDC13 512 4 24038.461 Hz 0.366798 Hz 1.3631488 sec 2050 20.800 usec 6.50 usec 300.1 K 2.00000000 sec 0.03000000 sec 1
		1									SF01 NUC1 P1 PLW1 ======== SF02 NUC2 CPDPRG[2 PCPD2 PLW2 PLW12 PLW13	100.6605506 MHz 13C 11.00 usec 48.00000000 W CHANNEL f2 ====== 400.2816011 MHz 1H waltz16 90.00 usec 17.0000000 W 0.24753000 W 0.20050000 W
100 100 100 100 100 100 100 100 100 100							urutati u ana antaga atak nagi	 			F2 - Pro SI SF WDW SSB LB	cessing parameters 32768 100.6504861 MHz EM 0 1.00 Hz
	180	160	140	120	100	80	60	40	20	ppm	GB PC	0 1.40

¹³C NMR (100 MHz, CDCl₃), 3-bromo-N-(4-((*tert*-butyldiphenylsilyl)oxy)benzyl)-5-iodobenzamide (10)

¹H NMR (400 MHz, CDCl₃), Methyl (*E*)-3-(3-bromo-5-((4-((*tert*- butyldiphenylsilyl)oxy)benzyl)carbamoyl)phenyl)acrylate (11)

¹³C NMR (100 MHz, CDCl₃), Methyl (*E*)-3-(3-bromo-5-((4-((*tert*-butyldiphenylsilyl)oxy)benzyl)carbamoyl)phenyl)acrylate (11)

AVC-98 (F1) CDCl3

¹H NMR (400 MHz, CDCl₃), Methyl (*E*)-3-(5-((4-((*tert*-butyldiphenylsilyl)oxy)benzyl)carbamoyl)-[1,1'-biphenyl]-3-yl)acrylate (12)

AVC-122(F2) CDC13

φ φ	AVC-122(F2 CDC13	$\int_{142.7}^{167.1} 167.1$	135.9 135.5 135.4 130.2 130.0	129.5 129.1 129.0 127.8 127.3	L 125.1 120.0 119.4	4.77.0 77.0 76.7				Current I	UKER
	o									NAME EXPNO PROCNO F2 - Acqu Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 D1 D11 TD0	Mar11-2022-PTlab 41 1 nisition Parameters 20220314 19.06 spect 5 mm PABBO BB/ 2gpg30 65536 CDC13 1024 4 24038.461 Hz 0.366798 Hz 1.3631488 sec 2050 20.800 usec 6.50 usec 300.0 K 2.0000000 sec 1
	1111-1111-1111-1111-1111-1111-1111-11						-	1		SF01 NUC1 P1 PLW1 ======= SF02 NUC2 CPDPRG[2 PCPD2 PLW2 PLW12 PLW12 PLW13 F2 - Proc SI SF WDW SSB LB GB	CHANNEL f1 ===== 100.6605506 MHz 13C 11.00 usec 48.0000000 W CHANNEL f2 ====== 400.2816011 MHz 1H waltz16 90.00 usec 17.0000000 W 0.24753000 W 0.20050000 W cessing parameters 32768 100.6504861 MHz EM 0 1.00 Hz 0

¹H NMR (400 MHz, (CD₃)₂SO), Methyl (*E*)-3-(5-((4-hydroxybenzyl)carbamoyl)-[1,1'-biphenyl]-3-yl)acrylate (13)

AVC-2-44 DMSO

¹³C NMR (100 MHz, (CD₃)₂SO), Methyl (*E*)-3-(5-((4-hydroxybenzyl)carbamoyl)-[1,1'-biphenyl]-3-yl)acrylate **(13)**

AVC-2-44 DMSO

DMSO	167.1 165.8 156.8	144.3 141.4 139.3 135.4 135.4 135.4 129.8	129.5 129.2 129.2 127.7 127.4 126.4 119.7	~ 115.5		7 52.1 7 42.8	40.5 40.3 39.9 39.7 39.7	→ 39.3		BRI Current D	JKER ata Parameters
	>>									EXPNO PROCNO F2 - Acqu Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 D11 TD0 =======	Aay31-2022-F11ab 61 1 isition Parameters 20220531 18.06 spect 5 mm PABBO BB/ 2gpg30 65536 DMSO 1536 4 24038.461 Hz 0.366798 Hz 1.3631488 sec 2050 20.800 usec 6.50 usec 300.1 K 2.0000000 sec 1 CHANNEL f1 =======
								1991 - Lange Alberto, Alberto - Lange MA		SF01 NUC1 P1 PLW1 ======== SF02 NUC2 CPDPRG[2 PCPD2 PLW2 PLW12 PLW12 PLW13 F2 - Proc SI SF WDW SSB	100.6605506 MHz 13C 11.00 usec 48.00000000 W CHANNEL f2 ===================================
180	160	140	120	100	80	60	40	20	ppm	GB PC	1.00 HZ 0 1.40

¹H NMR (400 MHz, CDCl₃), Methyl(*E*)-3-(5-((4-(prop-2-yn-1-yloxy)benzyl)carbamoyl)-[1,1'-biphenyl]-3-yl)acrylate (14)

CDC13

¹³C NMR (100 MHz, CDCl₃), Methyl(*E*)-3-(5-((4-(prop-2-yn-1-yloxy)benzyl)carbamoyl)-[1,1'-biphenyl]-3-yl)acrylate (14)

AVC-2-49 CDCl3

CDC13												
	167.1		135.8 135.4 131.0 131.0 129.6 129.4	129.0	► 115.2	- 78.5 77.4 77.0 76.7 75.6		43.8			Current I NAME EXPNO	JAER Jata Parameters Jul27-2022-PTlab 21
				1							PROCNO F2 - Acqu Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 D11 TD0	1 isition Parameters 20220727 15.14 spect 5 mm PABBO BB/ zgpg30 65536 CDC13 1024 4 24038.461 Hz 0.366798 Hz 1.3631488 sec 20.800 usec 6.50 usec 300.0 K 2.0000000 sec 0.03000000 sec 1
											======= SF01 NUC1 P1 PLW1	CHANNEL f1 ====== 100.6605506 MHz 13C 11.00 usec 48.00000000 W
	I										SF02 NUC2 CPDPRG[2 PCPD2 PLW2 PLW12 PLW13	CHANNEL f2 400.2816011 MHz 1H waltz16 90.00 usec 17.0000000 W 0.24753000 W 0.20050000 W
nalayaryarin ya katayata ina ya		wight at the one paratic			in de san dit se dit se di an di se di		- Labelyn an an an internation of the start		less for the second	agi yi ki nani yika ki daga ya kada ya ku	F2 - Proc SI SF WDW	essing parameters: 32768 100.6504861 MHz EM
180) 16	, , , , , , , , , , , , , , , , , , ,	140	120	100	80	60	40	20	ppm	SSB LB GB PC	0 1.00 Hz 0 1.40

¹H NMR (400 MHz, (CD₃)₂SO), (*E*)-3-(5-((4-Methylbenzyl)carbamoyl)-[1,1'-biphenyl]-3-yl)acrylic acid (3)

¹³C NMR (100 MHz, (CD₃)₂SO), (*E*)-3-(5-((4-Methylbenzyl)carbamoyl)-[1,1'-biphenyl]-3-yl)acrylic acid **(3)**

¹H NMR (400 MHz, CDCl₃), tert-butyl 2-(2-(2-azidoethoxy)ethoxy)acetate (16)

CDC13

AVC-118-3 CDC13	, <i>tert</i> -dutyl 2-(2-(2-a	azidoetnoxy)etnoxy)aceta	ie (16)		
169.6		81.6 777.1 777.1 76.7 70.8 70.7 70.7 70.7	50.7	28.1	Current Data Parameters NAME Feb25-2022-PTlab EXPNO 51
					PROCNO 1 F2 - Acquisition Parameters Date_ 20220225 Time 19.08 INSTRUM spect PROBHD 5 mm PULPROG zgpg30 TD 65536 SOLVENT CDC13 NS 1024 DS 4 SWH 24038.461 FIDRES 0.366798 AQ 1.3631488 RG 2050 DW 20.800 DE 6.50 DI 2.0000000 DI 2.0000000 SCITE 300.0 TI 0.0300000
					===== CHANNEL f1 ====== second state secondstate second state <th< td=""></th<>
1					CHANNEL f2 f2 SF02 400.2816011 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 90.00 usec PLW2 17.0000000 W PLW12 0.24753000 W PLW13 0.20050000 W
					F2 - Processing parameters SI 32768 SF 100.6504861 MHz WDW EM
180 160	140 120	100 80	60 40	20 ppn	LB 0 Hz GB 0 PC 1.40

130 NMD (400 MLL CDCL) to the work of 2 (2 (2 and a stream) at here is a state (40)

¹H NMR (400 MHz, CDCl₃), 2-(2-(2-azidoethoxy)ethoxy)-*N*-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)acetamide **(18)** AVC-2-1

CDC13

¹³C NMR (100 MHz, CDCl₃), 2-(2-(2-azidoethoxy)ethoxy)-*N*-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)acetamide (18)

AVC-2-1 CDCl3				
	171.4 169.7 168.9 168.1	134.7 132.9 131.8 129.2 126.3 121.6	$\begin{array}{c} 77.4 \\ 77.0 \\ 76.7 \\ 76.7 \\ 71.1 \\ 70.1 \\ 70.1 \\ 70.1 \\ 70.1 \\ 70.1 \\ 70.1 \\ 70.3 \\ 31.5 \\ 23.3 \\ 23.3 \end{array}$	BRUKER
N ₃ C	O ↓ NH O ↓ NH			Current Data Parameters NAME Apr12-2022-PTlab EXPNO 11 PROCNO 1
				F2 - Acquisition Parameters Date_ 20220412 Time 19.06 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG zgpg30 TD 65536 SOLVENT CDC13 NS 1024 DS 4 SWH 24038.461 Hz FIDRES 0.366798 Hz AQ 1.3631488 sec RG 2050 DW 20.800 usec DE 6.50 usec TE 300.1 K D1 0.03000000 sec D11 0.03000000 sec TD0 1
				CHANNEL f1 SF01 100.6605506 MHz NUC1 13C P1 11.00 usec PLW1 48.00000000 W
	ı ¹			======= CHANNEL f2 ======= SF02

120

180

160

140

100

80

60

CPDPF	G[Z Wallzig	
PCPD2	90.00	usec
PLW2	17.0000000	W
PLW12	0.24753000	W
PLW13	0.20050000	W
F2 –	Processing paramete	ers
SI	32768	
SF	100.6504861	MHz
WDW	EM	
SSB	0	
LB	1.00	Hz
GB	0	
PC	1.40	

20

ppm

40

yl)amino)-2-oxoethoxy)ethoxy)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)benzyl)carbamoyl)-[1,1'-biphenyl]-3-yl)acrylate (19)

AVC-2-54.2.1 MeOD

NAME	Jun23-2022-PTlab
EXPNO	20
PROCNO	1
F2 - Acqu	aisition Parameters
Date_	20220623
Time	13.03
INSTRUM	spect
PROBHD	5 mm PABBO BB/
PULPROG	2g30
TD	30046
SOLVENT	MeOD
NS	112
DS	1
SWH	8012.820 Hz
FIDRES	0.266685 Hz
AQ	1.8748704 sec
RG	256
DW	62.400 usec
DE	6.50 usec
TE	300.0 K
D1	6.00000000 sec
TD0	1
SFO1 NUC1 P1 PLW1	CHANNEL f1 400.2821952 MHz 1H 10.86 usec 17.00000000 W
F2 - Proc	cessing parameters
SI	131072
SF	400.2800000 MHz
WDW	EM
SSB	0
LB	0.20 Hz
GB	0
PC	1.00

¹³C NMR (100 MHz, CD₃OD), Methyl (*E*)-3-(5-((4-((1-(2-(2-(2-((2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)amino)-2-oxoethoxy)ethoxy)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)benzyl)carbamoyl)-[1,1'-biphenyl]-3-yl)acrylate (**19**) AVC-2-54.2.1

MeOD	173.2 170.5 169.5 167.7 167.7 167.4 157.4 157.4 143.8 143.5	139.4 135.5 135.3 135.3 132.2 132.2 131.3	129.4 128.7 128.7 127.3 127.3 126.7 126.7	114.5 114.5	69.9 68.9 68.9	60.9 52.2 49.8 48.2 48.2 48.2 48.2 48.2 48.2 48.2 48	47.8 47.6 47.4 47.2 47.2 47.0 42.7	22.7		BR	JKER
		0								Current D NAME EXPNO PROCNO)ata Parameters Jun24-2022-PTlab 10 1
o - on										F2 - Acqu Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 D11 TD0	isition Parameters 20220624 10.24 spect 5 mm PABBO BB/ 2gpg30 65536 MeOD 2560 4 24038.461 Hz 0.366798 Hz 1.3631488 sec 2050 20.800 usec 6.50 usec 300.4 K 2.0000000 sec 0.03000000 sec 1
										======= SF01 NUC1 P1 PLW1	CHANNEL f1 ====== 100.6605506 MHz 13C 11.00 usec 48.0000000 W
		Ι.			Ш	1		I		SF02 NUC2 CPDPRG[2 PCPD2 PLW2 PLW12 PLW13	CHANNEL f2 ====== 400.2816011 MHz 1H waltz16 90.00 usec 17.0000000 W 0.24753000 W 0.20050000 W
ta a U., a Marana da Karana Ng pangananana da Karana da Karana				a la se de antes de la facto de la sectión de la section de Section de la section de la s			and and all the second rates	na seta di adala ta azi a di a di a di a di a di ang di di Na gang ng ta saga na gang ng na gang ng ng ng ng ng	nanden mener val de lan de Konsennen de Kalading Konsennen gener gener van de Konsennen gener Konsennen gener gener gener gener gener gener gener gener gener gen	F2 - Proc SI SF WDW	essing parameters 32768 100.6504861 MHz EM
	180 160	140	120	100	80	60	40	20	ppm	SSB LB GB PC	0 1.00 Hz 0 1.40

¹H NMR (600 MHz, CD3OD), (E)-3-(5-((4-((1-(2-(2-(2-((2-(2-(dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)amino)-2oxoethoxy)ethoxy)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)benzyl)carbamoyl)-[1,1'-biphenyl]-3-yl)acrylic acid (5)

AC-1-001 YSH2

¹³C NMR (150 MHz, CD₃OD), (*E*)-3-(5-((4-((1-(2-(2-(2-((2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)amino)-2-

oxoethoxy)ethoxy)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)benzyl)carbamoyl)-[1,1'-biphenyl]-3-yl)acrylic acid (5) AVC-2-66HH MeOD

175.4 175.4 175.6 174.2 174.2 174.2 174.2 174.2 174.2 174.2 177.0 177.0 177.1 177.1 177.1 177.1 177.1 177.1 177.1 177.1 177.1 177.1 177.1 177.1 177.2 177.1 177.2 177.1 177.2 177.1 177.2 177.1 177.2 177.1 17	4.6.5.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7
	F2 - Acquisition Parameters Date_ 20220718 Time 15.05 h INSTRUM spect PROBHD Z150313_0002 (PULPROG zgpg30 TD 65536 SOLVENT MeOD NS 3072 DS 4 SWH 36057.691 Hz FIDRES 1.100393 Hz AQ 0.9087659 sec RG 194.35 DW 13.867 usec DE 25.00 usec TE 298.0 K D1 2.00000000 sec
	D11 0.03000000 sec TD0 1 SF01 150.8349112 MHz NUC1 13C P0 4.00 usec P1 12.00 usec PLW1 95.0000000 W SF02 599.8023992 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 70.00 usec PLW2 7.09999990 W PLW12 0.09273500 W PLW13 0.04664500 W F2 - Processing parameters
	SI 65536 SF 150.8199049 MHz WDW EM SSB 0 LB 3.00 Hz GB 0 PC 1.40 50 40 20 ppm

Hill Kiple using Kiple using Shrished. 2 20 48 22 0 20 48 27 h 245/23 Fig. 2A, AKR1C3 Fig. 2A, AKR1C3	11-1 11.2
ssile - Arelics	AKAC3
ester - Areculter	
Fig. 2A, ARv7 Fig. 2A, ARv7	Fig. 2A, actin Fig. 2A, actin
sshp - actin	ath

/	att 9-1 at 10-1 Shirishe J. on so also app on adds who are stan stored at a start	at Rol OMSO RISI Q JUM
sslip -	Fig. 2B, AKR1C3	Fig. 2D, AKR1C3
3560 = 25169 -	mexc3	Fig. 2D, AKR1C1/C2
5540 - 55760 -	presculus	340 - MERICINEZ
2540 -	Fig. 2B, ARv7	Fig. 2D, ARv7
150k0 139k9 76W9 55140	ARU4	
5549 -		
3560 - 2860 -	Fig. 2B, actin	Fig. 2D, actin

Expt 152 Expt 16. Expt 152 Expt 16. Expelled a set up on a up of Fig. 2C. AKR1C3	Down P2-	Timebh) 0 24 48 22	Bipt 16.2 protine comm o 24 48 72	Shinisha J. still2023 22Rv1 cells
3540 - 1	AKRIC3	35kp - 25kp -		AXRICZ
3040 - 3360 -	AKRICILLO	53% - Fig. 2C, AKR1C1/C2 35% -		Areacilics
23.42 - 13aka - taska - Roka -	- ARVA	Fig. 2C, ARv7		ARVA
55% = 2,3% Fig. 2C, actin	audin	55ko -		actin
2500-		2540 -	•	

55 kD - NKK423 35 KD - 25 kD - 55 kD - KDN 35 KD - 28 KD -	AVC-2-46HH 10 nM Ch 2h 4h 4h 12h 14h 24h 48h1 2-h Fig. 4A-C AKR1C3	Ansi 12 Ex14, 5.3 11/2/22	ARV7 1000- 5560- 5560- 5560- AKRICLIC2 3560- 2560-	ANC 2-44HH 10 nM Oh 2h 4h 4h 72n 14h 72h 14h 72h 172h Fig. 4A,E ARV7 Fig. 4A-B,D AKR1C1/C2	Angie Expt: 4.) 12/15/22
5560 - AKUK4C3 35 - 5640 - 5540 - ACTIN 3560 - 25,60 -	лис-2-сынн 10 пм on 2.h 4h uh 12h иа 24h цан 72.h Fig. 4B AKR1C3	Antile EX19-522 N/1/22	22.6.VI 55kp - AKELCHICE 25kD - 25kD - HOTIM 35kp -	AVC-2-464HH 10nM 0h 2h 4h 48h 72h Fig. 4B AKR1C1/C2 Fig. 4A Actin	Angie Expt. 6 12/7/22

	Fig. 5A, AKR1	C3	Durk Kigt Top, beam	
594P -	214 BBC 888 877	163		
2010 -				
		5540 <u>-</u>		actin
		3540-	Fig. 5A. actin	
		vship -	g,	

mg 132 th pretty	DW10 WENTY BUDGE Product	V Anso malit produce produce	22RV1 cells 7/21/23
	F	Fig. 5B, AKR1C3	
55149 - 25160 -			AKRICS
2560 -		Fig. 5B, ARv7	
100kp - 70kp -			ARV7
sskp -			actin
35KD - 25Kp -		Fig. 5B, actin	
			#