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SUPPLEMENTAL MATERIALS 

Fig. S1. Additional computational results for prediction models, severity and mortality task, and 
MOFA imputation, related to Figure 2 

Fig. S2. Enrichment term clustering and selected pathway trajectories for the severity factor, 
related to Figure 3 

Fig. S3. Additional characterization of immune pathway associated with COVID-19 severity, 
related to Figures 3 and 4 

Fig. S4. Inter-omics analysis on top-contribution cytokines and significant pathways for the 
severity factor, related to Figures 3 and 4 

Fig. S5. Additional characterization of immune pathway associated with COVID-19 mortality, 
related to Figure 5. 



Fig. S6. Additional characterization of interferon signaling, anti-IFN autoantibodies, and inter-
omics analysis of top-contribution cytokines and significant pathways for the severity factor, 
related to Figures 5 and 6. 

Fig. S7. Virus-centered integrative multi-omics network of the mortality(-associated) factor (Factor 
4) in PGX, related to Figure 6 

Table s1. Baseline Characteristic by Clinical Trajectory Groups. p-value from chi-square test for 
categorical variables and Kruskal-Wallis test for continuous variables (age, SOFA score). 
Trajectory 1= brief length of stay; trajectory 2= intermediate length of stay; trajectory 3= 
intermediate length of stay with discharge limitations; trajectory 4= prolonged hospitalization; 
trajectory 5= fatal. 1not including asthma, 2current or former. 

Table s2. Baseline Characteristic by Cohort. p-value from chi-square test for categorical variables 
and Kruskal-Wallis test for continuous variables (age, SOFA score). Trajectory 1= brief length of 
stay; trajectory 2= intermediate length of stay; trajectory 3= intermediate length of stay with 
discharge limitations; trajectory 4= prolonged hospitalization; trajectory 5= fatal. 1not including 
asthma, 2current or former. 

Table s3. Analyte contributions for MCIA factors 

Table s4. MCIA factors baseline and longitudinal testing 

Table s5. Functional enrichment analysis of Factor 1 

Table s6. Functional enrichment analysis of Factor 1, filtered for baseline TG4 and TG5 
separation 

Table s7. Functional enrichment analysis of Factor 4 

Table s8. Functional enrichment analysis of Factor 4, filtered for baseline TG4 and TG5 
separation 

Table s9. Batch-effect evaluation using PVCA 

RESOURCE AVAILABILITY 

All requests for information regarding reagents and resources should be directed to the lead 
contact and will be fulfilled by the lead contact or corresponding authors. 

Lead contact 
Further information and requests for resources and reagents should be directed to and will be 
fulfilled by Dr. Leying Guan (leying.guan@yale.edu). 

Materials availability 

This study did not generate new unique reagents.  



Data and code availability 
Data files are available at ImmPort under accession number SDY1760 and dbGAP accession 
number phs002686.v1.p1. All analysis codes have been deposited at 
https://bitbucket.org/kleinstein/impacc-public-code and are publicly available. DOIs are listed in 
the key resources table.   

 

 

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS 

IMPACC Cohort characteristics 
The IMPACC cohort enrolled participants from 20 hospitals affiliated with 15 geographically 
distributed academic institutions across the U.S. Eligible participants were patients hospitalized 
with symptoms or signs consistent with COVID-19, which had SARS-CoV-2 infection confirmed 
by RT-PCR to remain in the study. The detailed study design and schedule for clinical data and 
biological sample collection were previously described (1, 2). Briefly, detailed clinical 
assessments and nasal swabs, blood, and endotracheal aspirates (intubated patients only) were 
collected within 72h of hospitalization (Visit 1) and on days 4, 7, 14, 21, 28 after hospital 
admission. If a participant required escalation of care or was readmitted to the hospital prior to 
Day 28, additional samples were collected within 24 and 96 hours of care escalation or 
readmission. If participants were discharged prior to day 14 or 28, attempts were made to collect 
limited clinical information and biologic samples on days 14 and/or 28 in outpatients. Disease 
severity was assessed using a 7-point ordinal scale based on degree of respiratory illness (23), 
modified from Beigel et al. (3). The sex of participants was determined via physician-reported sex 
at birth. 

Sex as a biological variable 

In total, the cohort used in this manuscript had 704 (61%) males and 448 (39%) females. We 
identified that male sex was significantly associated with the severity factor in line with males 
comprising a larger proportion of more severe TGs. To control for this imbalance, sex in addition 
to age were used as covariates in statistical testing to identify robust trends for both sexes. 

Cohort definition 

In this study, we used 1,152 IMPACC participants with measurements for at least one of the 
following assays: plasma targeted proteomics, plasma global proteomics, serum proteomics, 
plasma global metabolomics, PBMC transcriptomics and nasal transcriptomics. The sample 
processing and data generation was performed in phases (subsets of samples). The 
participants were divided into training and test cohorts in the following manner. In a previous 
IMPACC manuscript, we analyzed a subset of the IMPACC cohort (enrolled through September 
2020; phase 1 and 2 of the study) to perform deep immunophenotyping of COVID-19 disease 
using unimodal analyses (4). This subset was used as a training cohort in the present multi-
modal integrative analysis to investigate the immune and molecular signatures of SARS-CoV-2 



infection across tissue compartments at systems level. One participant in this subset lacked all 
six assays mentioned above, it was, therefore, excluded, resulting in 1,493 sample collection 
events from 539 participants in the training set. Unpublished data from another subset of 
IMPACC cohort (enrolled after September 2020; phase 3 of the study) was used as a test 
cohort to validate our conclusions of systems-level COVID-19 signatures from the training 
cohort. Few samples of the test cohort participants were included in phases 1 and 2, which were 
excluded from the test set, resulting in 1,584 sample collection events from 613 participants in 
the test set. The data for both the training and test sets were generated in the same manner to 
avoid any major technical biases. 

 

METHOD DETAILS 

Sample processing and batch randomization 

Biological sample collection and processing followed a standard protocol utilized by every 
participating academic institution. The complete IMPACC sample processing protocol was 
published previously (2). Briefly, blood samples (10 ml per time point) and nasal swabs (mid-
turbinate) were collected at each specified time point, and blood was processed within 6 hours of 
collection. Whole blood was used to identify distinct immune cell populations and quantify 
changes in cell populations [cytometry by time-of-flight (CyTOF)], and peripheral blood 
mononuclear cells (PBMCs) were collected to measure gene expression (bulk transcriptomics; 
PBMC gene expression: PGX) over the course of COVID-19. Serum was used to characterize 
SARS-CoV-2–specific antibodies, including virus neutralization. Plasma was used for proteomics 
(Plasma proteomics targeted: PPT & global: PPG) and metabolomics (Plasma metabolomics 
global: PMG), and serum was used to measure soluble inflammatory mediators (e.g., cytokines 
and chemokines) using oligonucleotide-linked antibody detection (Olink) (Serum proteomics 
targeted: SPT). RNA from the nasal swab was used to assess SARS-CoV-2 viral load and to 
evaluate changes in immune-related upper airway epithelial gene expression (i.e., bulk 
transcriptomics; Nasal gene expression: NGX). To mitigate potential batching effects, a 
randomization procedure was developed to help ensure that longitudinal samples from the same 
individuals were run on the same plates and were randomly distributed across the plates. We 
stratified this randomization by disease severity (moderate versus severe) and age (younger 
versus older) with the representation of these strata across plates. In addition, we verified that 
race, ethnicity, gender, and site were well-represented across the plates. 

 

Assay preparation and processing 

Raw sample collection and processing was performed as defined previously (95) in the following 
sections (names in the parentheses are section names from previous work (95)): NGX and viral 
loads (Nasal viral PCR and host transcriptomics), antibody titers  (Antibody correlates: titers), SPT 
(Serum Olink), PPG (Plasma global proteomics), PPT (Plasma targeted proteomics), PMG 
(Plasma global metabolomics), whole blood CyTOF (Blood CyTOF), and PGX (Peripheral Blood 
Mononuclear Cell transcriptomics). Additional details on PPG sample processing were recently 



published (96). The experimental methods for these assays follow the same protocols as 
described in our previous work [Core Assay] and are included below for the sake of completeness. 

Nasal host gene expression (NGX) 

Inferior nasal turbinate swabs were placed in 1mL of Zymo-DNA/RNA shield reagent (Zymo 
Research). RNA was extracted from 250 μL of sample and eluted into a volume of 50ul using the 
KingFisher Flex sample purification system (ThermoFisher) and the quick DNA-RNA MagBead 
kit (Zymo Research) following the manufacturer’s instructions. Each sample was extracted twice 
in parallel. The 2 eluted RNA samples were pooled and aliquoted into 20 μL aliquots using a 
Rainin Liquidator 96 pipettor for downstream RT-qPCR and RNA-sequencing. 

From each nasal RNA sample, 10ul was aliquoted to a library construction plate using the Perkin 
Elmer Janus Workstation (Perkin Elmer, Janus II). Ribosomal depletion, cDNA synthesis, and 
library construction steps were performed using the Total Stranded RNA Prep with Ribo-Zero Plus 
kit, following the manufacturer’s instructions (Illumina). All steps were automated on the Perkin 
Elmer Sciclone NGSx Workstation to reduce batch-to-batch variability and increase sample 
throughput. Final cDNA libraries were quantified using the Quant-it dsDNA High Sensitivity assay, 
and library insert size distribution was checked using a fragment analyzer (Advanced Analytical; 
kit ID DNF474). Samples, where adapter dimers constituted more than 4% of the 
electropherogram area, were failed before sequencing. Technical controls (K562, Thermo Fisher 
Scientific, cat# AM7832) were compared to expected results to ensure that batch to batch 
variability was minimized. Successful libraries were normalized to 10nM for sequencing. 

Barcoded libraries were pooled using liquid handling robotics prior to loading. Massively parallel 
sequencing-by-synthesis with fluorescently labeled reversibly terminating nucleotides was carried 
out on the NovaSeq 6000 sequencer using S4 flowcells with a target depth of 50 million 100 base-
pair paired-end reads per sample (25 million read pairs). 

Nasal Viral RT-qPCR (viral load) 

The RNA samples extracted from inferior nasal turbinate swabs (as described above) were used 
for this assay. Master mixes containing nuclease-Free water, combined primer/probe mixes, and 
One-Step RT-qPCR ToughMix (Quantabio) were prepared on ice, and 15 μL was dispensed in 
each well of a 384-reaction plate (Thermofisher) CoV-2 was quantitated using the CDC qRT-PCR 
assay (primers and probes from IDT). Briefly, this comprises two reactions targeting the CoV-2 
nucleocapsid gene (N1 and N2) and one reaction targeting RPP30 (RP). Each batch included 
positive controls of plasmids containing N1/N2 and RP target sequence (2019-nCoV_N_Positive 
Control and Hs_RPP30 Positive Control, IDT) to allow quantitation of each transcript. 
Primer/probe sequences were: 2019-nCOV_N1-F GAC CCC AAA ATC AGC GAA AT, 2019-
nCOV_N1-R TCT GGT TAC TGC CAG TTG AAT CTG, 2019-nCOV_N1-P ACC CCG CAT TAC 
GTT TGG TGG ACC, 2019-nCOV_N2-F TTA CAA ACA TTG GCC GCA AA, 2019-nCOV_N2-R 
GCG CGA CAT TCC GAA GAA, 2019-nCOV_N2-P ACA ATT TGC CCC CAG CGC TTC AG, 
RP-F AGA TTT GGA CCT GCG AGC G, RP-R GAG CGG CTG TCT CCA CAA GT and RP-P 
TTC TGA CCT GAA GGC TCT GCG CG. After RNA extracts were gently vortexed and added 5 
μL per sample. Plates were centrifuged for 30 s at 500 × g, 4C. Quantitative polymerase chain 



reaction was performed using a Quantstudio5 (Thermo Fisher) with cycling conditions:1 cycle 10 
min at 50°C, followed by 3 min at 95°C, 45 cycles 3 s at 95°C, followed by 30 s at 55.0°C. 

Antibody titers 

Antibody levels against the recombinant receptor-binding domain (RBD) and full-length spike 
were measured using a research-grade ELISA (5, 6). Briefly, samples were heat-inactivated at 
56°C for 1 h. 96-well plates (Thermo Fisher Lot # 4199147) were coated with 50 μL/well of RBD 
or spike proteins at 2 μg/mL concentration in phosphate-buffered saline (PBS; Gibco lot # 
2388102) and incubated overnight at 4°C. Plates were washed 3× in an automatic plate washer 
(BioTek) with PBS 0.01% Tween 20 (Fisher Scientific, Cat#BP337-100, TPBS) and blocked for 1 
h with 200 μL/well of 3% non-fat dry milk (Cat#AB10109-01000) prepared in TPBS. Serum 
samples were serially diluted (3-fold starting at 1:80 dilution) in 1% non-fat dry milk in TPBS. The 
blocking solution was removed, and 100 μL/well of serially diluted samples were added to the 
plates and incubated for 2h at 20°C. Plates were washed 3× with TPBS, and 50 μL/well of the 
corresponding secondary antibody, prepared in 1% non-fat dry milk in TPBS, were added for 1h 
at RT: Anti-human IgG (Fc specific)-Peroxidase antibody produced in goat (Sigma-Aldrich 
Cat#A0170); Goat anti-human IgM-HRP (SouthernBiotech Cat#2020–05); Anti-human IgA (α-
chain specific)-Peroxidase antibody produced in goat (Sigma-Aldrich Cat#A0295). Plates were 
washed 3× with TPBS, and 100 μL/well of peroxidase substrate (SigmaFAST o-
phenylenediamine dihydrochloride, Sigma-Aldrich Cat#P9187) were added for 10 min 50 μL/well 
of 3M hydrochloric acid (HCl, Thermo Fisher Scientific, Cat#S25856) was added to stop the 
reaction. Optical density (OD) was measured in a Synergy 4 (BioTek) plate reader at 490 nm. The 
area under the curve was calculated, considering 0.15 OD as the cutoff. Data were analyzed 
using Graphpad Prism 9. 

Serum proteomics targeted (Olink; SPT) 

Study samples were assayed in plate batch layouts following a centralized randomized scheme 
that we described previously (4). Three samples (IMPACC_Serum, IMPACC_Plasma, and 
IMPACC_Plasma_Stim) were used as IMPACC inter-plate references (Reference samples) in 
every plate. All samples (participant sera and reference) were subjected to PEA (Olink) multiplex 
assay Inflammatory panel (Olink Bioscience, Uppsala, Sweden), according to the manufacturer’s 
instructions. This inflammatory panel included 92 proteins associated with human inflammatory 
conditions. An incubation master mix containing pairs of oligonucleotide-labeled antibodies to 
each protein was added to the samples and incubated for 16 h at 4°C. Each protein was targeted 
with two different epitope-specific antibodies, increasing the assay’s specificity. The presence of 
the target protein in the sample brought the partner probes in close proximity, allowing the 
formation of a double-strand oligonucleotide polymerase chain reaction (PCR) target. On the 
following day, the extension master mix in the sample initiated the specific target sequences to 
be detected and generated amplicons using PCR in 96 well plates. For the detection of the specific 
protein, Dynamic array integrated fluidic Circuit (IFC) 96 × 96 chip was primed, loaded with 92 
protein-specific primers, and mixed with sample amplicons, including three inter-plate controls 
(IPS) and three negative controls (NC). Real-time microfluidic qPCR was performed in Biomark 
(Fluidigm, San Francisco, CA) for the target protein quantification. 



Plasma proteomics global (PPG) 

Fifty microliters of neat plasma samples were diluted with 450 μL of water, and 25 μL of perchloric 
acid was added (7). After vigorous agitation, the suspension was kept at −20°C for 15 min, then 
centrifuged for 60 min (4°C, 3200 ×g). 390 μL of the supernatant was mixed with 40 μL of 1% 
trifluoroacetic acid and loaded onto a μSPE HLB plate, previously conditioned once with 300 μL 
methanol and twice with 500 μL of 0.1% trifluoroacetic acid. Proteins were eluted from the μSPE 
HLB plate with 100 μL of 90% acetonitrile and 0.1% trifluoroacetic acid. After elution, the samples 
were dried with a Speedvac, resuspended with 35 μL of 50 mM ammonium bicarbonate, and 
digested with 10 μL trypsin (500 ng) overnight at 37°C. Digestion was stopped by the addition of 
5 μL 10% formic acid. The samples were stored at −80°C before LC/MS analysis. Two microliters 
of tryptic peptides were loaded onto Evotips and analyzed using an Evosep ONE liquid 
chromatography system (EVOSEP, Odense, Denmark) connected to a timsTOF Pro mass 
spectrometer (Bruker Daltonics, Billerica, MA, USA). The Evosep ONE was set to 60 samples per 
day, and the mass spectrometer was operated in DDA-PASEF mode. DDA-PASEF parameters 
were set as follows: m/z range 100–1700, the mobility (1/K0) range was set to 0.70–1.45 Vs./cm2, 
and the accumulation time was set to 100 ms. 

Plasma proteomics targeted (PPT) 

All chemicals and reagents were purchased at the highest purities available. Solvents used in this 
study were LC/MS grade and were purchased from Fisher Chemicals (Thermo Fisher Scientific). 
Briefly, a volume of 10 μL of 10-fold diluted plasma was mixed with 60 μL of urea buffer (8M urea 
in 50 mM ammonium bicarbonate, Sigma Aldrich) and 15 μL of dithiothreitol buffer (DTT, 50 mM 
in urea buffer, Sigma Aldrich) before incubated 30 min on a thermomixer (800 rpm, room 
temperature). The samples were alkylated using iodoacetamide buffer (IAA, 375 mM in urea 
buffer, Sigma Aldrich) and incubated for 30 min (800 rpm, room temperature, and dark). A volume 
of 10 μL of DTT buffer was added to quench the alkylation. The samples were transferred to the 
SP3 beads mixture (Sera-Mag SpeedBeads, 1:1 v/v, GE Healthcare) previously washed with 
HPLC water (scale 1:10 protein to beads). Then a volume of 150 μL of absolute ethanol (Supelco) 
was added, and the mix was incubated for 15 min on a thermomixer (1,000 rpm at room 
temperature). The samples were placed on the magnetic rack, and the clear supernatant was 
removed. The beads were washed in three cycles in 200 μL of 80% ethanol. After the final 
washing step, the samples were trypsinized using 100 μL of trypsin buffer (Promega, 20 μg/mL 
in 50 mM ammonium bicarbonate) and placed on a thermomixer (1,000 rpm, 2 h, 37°). After 
digestion, the samples were centrifuged to pulldown the liquid and placed on a magnetic rack to 
collect the supernatant and were then acidified with 2% v/v formic acid in HPLC water (Sigma 
Aldrich). The C18 cleanup was performed using a 96-well MACROSPIN C18 plate (TARGA, The 
NestGroup Inc.), and the tryptic peptides were eluted off the C18 particles using 40% ACN/0.1% 
FA. The samples were dried and stored at −20°C until LC/MS analysis (8). The samples were 
analyzed using an LC system (Nexera Mikros, Shimadzu) equipped with a Capillary C18 column 
(0.2 × 100mm, 2.7um particle diameter, Shimadzu) coupled online to an 8060 triple quadrupole 
mass spectrometer instrument (Shimadzu). From each sample, 1 μg peptide quantity was 
separated using a non-linear gradient over a 15-min run time operated at 10 μL/min (5% solvent 
B for 0.2 min; 5 to 40%B for 10.3 min; 85%B for 1.5 min and 5% for 3 min). The final scheduling 



method was performed using the following parameters: 1.2 s of maximum loop time with minimum 
dwell time of 2 msec and pause time of 1 msec, Q1 and Q3 resolution set at the ‘unit’ level. 

Plasma metabolomics global (PMG) 

Plasma metabolite profiling was conducted by Metabolon using in-house standards (9, 10). The 
samples were divided into randomized sample batches, extracted, and prepared for analysis 
using Metabolon’s solvent extraction method (Evans, 2008). Recovery standards were added to 
the first step in the extraction process to ensure proper quality control. Protein was removed by 
methanol precipitation under vigorous shaking for 2 min (Glen Mills GenoGrinder 2000) and then 
by centrifugation. The supernatants were divided into five fractions: two for analysis by two 
separate reverse phases (RP)/UPLC-MS/MS methods with positive ion mode electrospray 
ionization (ESI); one for analysis by RP/UPLC-MS/MS with negative ion mode ESI; one for 
analysis by HILIC/UPLC-MS/MS with negative ion mode ESI; and one sample was reserved for 
backup analysis using Waters ACQUITY ultra-performance liquid chromatography (UPLC) and a 
Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer interfaced with a 
heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer operated at 35,000 
mass resolution. Metabolites were identified by comparison to Metabolon library entries of 
standard metabolites (9) based on three criteria: retention index (RI) within a narrow RI window 
of the proposed identification; accurate mass match to the library ±10 ppm; and the MS/MS 
forward and reverse scores between the experimental data and authentic standards. Compounds 
were categorized according to reporting standards set by the Chemical Analysis Working Group 
of the Metabolomics Standards Initiative (11–13), and appropriate orthogonal analytical 
techniques were applied to the metabolite of interest and a chemical reference standard. 
Metabolites were reported that had their corresponding accurate mass confirmed via MS with 
retention index, chemical, and composition ID. 

Blood CyTOF 

Samples from a given batch were acquired on the Fluidigm Helios mass cytometer in multiple 
acquisitions. The PROT-1 fixed whole blood samples were processed in batches of 20 samples. 
Due to sample quality issues, some samples remained pink or red after the barcoding step; those 
samples were discarded, and the remaining samples were pooled for the remaining staining 
steps. After staining was completed, the pooled sample was counted and split into 2–3 
subsamples to be frozen as FBS/DMSO samples stored at −80C until the day of acquisition. On 
the day of acquisition, the Helios instrument was tuned according to the manufacturer’s software 
standards; if the signal of Tb159 or Tm169 from the Fluidigm Tuning Solution was more than 10% 
lower than previous days, the process was repeated until the margin was achieved. The final 
Tuning results were exported as a CSV from the software for the record. 

One FBS/DMSO subsample was thawed, washed once with Fluidigm Cell Staining Buffer, and 
then counted on a Bio-Rad TC20 cell counter. If necessary, the sample was split into subsamples 
of 2 × 106 cells, centrifuged, and the resulting pellet was left with a minimal overlay of CSB. One 
CSB subsample was washed twice in MilliQ water, or Fluidigm Cell Acquisition Solution then 
resuspended to 7–8 x 105/mL in CAS or MilliQ containing a 10-fold dilution of Fluidigm EQ 4-
Element normalization beads and acquired on the tuned Helios instrument using either the PSI 



or SuperSampler for sample introduction. This dilution was chosen to give approximately 250–
350 events/sec acquisition rate. The next CSB subsample or FBS/DMSO subsample was 
processed when the previous sample had less than 1mL of sample remaining. The instrument 
was cleaned with Fluidigm Wash Solution whenever clogging occurred, or approximately every 2 
× 106 cell events were acquired. These cleaning steps resulted in multiple FCS files per pooled 
sample acquisition. Pooled samples were acquired until a total of 6 × 106 cell events had been 
collected, or all FBS/DMSO samples were collected, whichever occurred first. This corresponds 
to an average target event number of 3 × 105 events per original donor subsample. 

Peripheral blood mononuclear cell (PBMC) gene expression (PGX) 

RNA was extracted from cells (2.5 × 105 PBMCs) homogenized in 200 μL of Buffer RLT (Qiagen) 
and then extracted using the Quick-RNA MagBead Kit (Zymo) with DNase digestion. RNA quality 
was quantitated using Qubit HS RNA assays and assessed using a Fragment Analyzer (Agilent). 
Library preps were performed using the SMART-Seq v4 Ultra Low Input RNA Kit (Takara Bio) to 
synthesize full-length cDNA from an input of 10ng of RNA. After a bead-based clean-up to purify 
the cDNA, the Nextera XT kit was used to create libraries through a process of tagmentation and 
fragment amplification and appended with dual-indexed bar codes using the NexteraXT DNA 
Library Preparation kit (Illumina). Libraries were validated by capillary electrophoresis on a 
Fragment Analyzer (Agilent), pooled at equimolar concentrations, and sequenced on an Illumina 
NovaSeq6000 (Emory) at 100 bp, paired-end read length targeting ∼25 million reads per sample. 
Repeated measures from a group of PBMC samples collected from healthy controls and repeated 
measures of a subset of IMPACC samples were used across library prep and sequencing batches 
to assess inter-site batch effects throughout the study. Universal Human References controls 
were included to assess intra-site batch variation. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Quantification: OMIC-specific processing from raw to computable matrices 

Nasal gene expression (NGX) 

Base calls were generated in real-time on the NovaSeq6000 instrument (RTA 3.1.5). 
Demultiplexed, unaligned BAM files were produced by Picard (14) ExtractIlluminaBarcodes, and 
IlluminaBasecallsToSam were converted to FASTQ format using SamTools bam2fq (15) (v1.4). 
The sequence read, and base quality were checked using the Trimmomatic-toolkit (16) 
(v0.36.5). Reads were processed using workflows managed on the Galaxy platform. Reads 
were trimmed by 1 base at the 3′ end, then trimmed from both ends until base calls had a 
minimum quality score of at least 30. Any remaining adapter sequence was removed as well. 
The STAR aligner (17) (v2.4.2a) with the GRCh38 (18) reference genome and gene annotations 
from Ensembl release 91 (19) was used to align the trimmed reads. Gene counts were 
generated using HTSeq-count (20) (v0.4.1). Quality metrics were compiled from Picard 
(v1.134), FASTQC (21) (v0.11.3), Samtools (15) (v1.2), and HTSeq-count (v0.4.1). Failed 
samples were identified as median cv gene coverage >0.8 and Aligned Counts <1 million. 
These samples were removed from further downstream analyses. 



Serum proteomics targeted (SPT) 

Data were analyzed using Real-time PCR analysis software via the ΔΔCt method and 
Normalized Protein Expression (NPX) manager. NPX is calculated in three steps from the Cq-
values: (i) ΔCqsample = Cqsample − Cqextensioncontrol, (ii) ΔΔCq = ΔCqsample − 
ΔCqinterplatecontrol, (iii) NPX = Correction factor − ΔΔCqsample. Data were normalized using 
internal controls in every sample, inter-plate control (IPC) and negative controls, and correction 
factor and expressed as Log2 scale proportional to the protein concentration. One NPX 
difference equals to the doubling of the protein concentration. 

Batch normalization was performed to account for potential batch effects caused by re-assayed 
samples which were not able to adhere to the study randomization scheme or assay condition 
changes including those due to assay kit lot# changes or differences in study collection phases. 
Olink Data Analysis Normalization employed identical reference samples in all plates. NPX 
value for each analyte was adjusted based on the adjust factor that makes the median of all 
reference samples the same for all plates. Sequential steps included: 1) the reference sample 
the-inter-plate-median was calculated; 2) for each assay, the pairwise difference from the inter-
plate median was calculated in first step 1 for each of the reference sample on all plates; 3) 
plate- and assay-specific differences in step 2 were used as normalization factors; and 4) plate- 
and assay-specific normalization factors were added from step 3 to each value for each assay 
and plate. 

Plasma global proteomics data processing and quality control 

All raw timsTOF data were searched on a high-performance computing environment where 
Fragpipe (including MSFragger, Philosopher, and IonQuant (22–25)) was run to identify and 
quantify peptides and protein throughout the data (26). MSFragger 3.4 was run using the standard 
settings without the fixed modification of carboxylmethylation and with the variable modification’s 
oxidation and N-term acetylation. Data were scored against a human FASTA file without isoforms 
where SARS-COV-2 proteins were manually added. Philosopher 4.1.1 was used where 
PeptideProphet was used for statistical validation of identified peptides. IonQuant 1.7.17 was 
used for quantification, where a minimum of 1 ion was used for peptide quantification. 

Genes were first filtered based on “Homo Sapiens” and “Homo sapiens OX = 9606”. For each 
sample, the “Total intensity” column was selected. Then Genes without any values across the 
samples were removed. Finally, sample outliers were removed. A sample is considered an outlier 
if its total number of quantified proteins is more than 3 standard deviations below the mean of 
quantified proteins of all samples. In brief, the number of proteins quantified for each sample was 
calculated, and log2-transformed. Then the mean and standard deviation of quantified proteins 
across all samples was calculated, and any samples outside 3 standard deviations were 
considered an outlier and removed. Finally, a protein had to be identified and quantified in at least 
half of all samples to be analyzed in any of the downstream analyses. We identified 508 proteins 
that were present in at least 699 (50%) of the samples (out of 2109 proteins in total). 

Plasma targeted proteomics data processing 



The raw data were exported into Skyline software (27) (v20.2.1.315) for peak area and retention 
time refinement. The peptide intensity (average of transition pairs) and the protein abundance 
(average of peptide intensities) in all samples were exported from Skyline. These effects were 
corrected using Combat (28). The means of the peptide intensities were used for the different 
protein abundances, which were exported for further analysis using RStudio Pro Server. 

 

Plasma global metabolomics data processing and quality control 

Raw data were measured based on LC-MS peak areas proportional to feature concentration. For 
quality control, missing values were imputed with half the minimum detected level for a given 
metabolite. Metabolites with an interquartile range of 0 were excluded from the analysis, as 
previously described (29). All features were log-transformed, normalized then Pareto-scaled to 
reduce variation in fold-change differences between features (Figures S5A and S5B). After pre-
processing, 5 metabolites were filtered out with zero interquartile range, yielding 1012 remaining 
metabolites (Figure S5C). Statistical analyses for univariate, chemometrics, and clustering 
analysis used in-house algorithms, R statistical packages, and MetaboAnalyst 5.0 (30, 31). 

Blood CyTOF data processing and demultiplexing 

Samples from a given batch were acquired on the Fluidigm Helios mass cytometer in multiple 
acquisitions. The resulting FCS files were normalized and concatenated using Fluidigm’s CyTOF 
software. The FCS file was further cleaned using the Human Immune Monitoring Center at Mt. 
Sinai’s internal pipeline. The pipeline removed any aberrant acquisition time windows of 3 s where 
the cell sampling event rate was too high or too low (2 standard deviations from the mean). EQ 
normalization beads that were spiked into every acquisition and used for normalization were 
removed, along with events that had low DNA signal intensity. 

The pipeline was also used to demultiplex the cleaned and pooled FCS files into single sample 
files. The cosine similarity of every cell’s Pd barcoding channels to every possible barcode used 
in a batch was calculated and then was assigned to its highest similarity barcode. Once the cell 
had been assigned to a sample barcode, the difference between its highest and second highest 
similarity scores was calculated and used as a signal-to-noise metric. Any cells with low signal-
to-noise were flagged as multiplets and removed from that sample. Finally, acquisition multiplets 
were removed based on the Gaussian parameters Residual and Offset acquired by the Helios 
mass cytometer. 

Cells from a single biological sample were clustered into 1000 K-means clusters. A subset of 
samples was then selected and manually annotated into cell types using Clustergrammer2’s 
widget interface (https://github.com/ismms-himc/clustergrammer2) to create a training dataset (n 
x n matrix of cell types by median marker intensities) for each manually annotated sample. 

To annotate a given sample’s 1000 K-means clusters, the cosine similarity of every cluster to all 
possible cell types within the training datasets was calculated, and that cluster was assigned to 
either its highest similarity score cell type or the greatest consensus cell type across the training 
datasets. Finally, the cluster cell-type annotation was assigned back to the single cells within that 
cluster, and the number of cells was calculated for a cell type within a given single sample. 



PBMC transcriptomics data processing and quality control 

Processing and quality control was performed using an internal Snakemake workflow for RNA-
Seq analysis (Github: https://github.com/yerkes-gencore/IMPACC-RNA_Seq). Reads were 
trimmed for adapter sequence and quality score with cutadapt v1.14112. Reads were aligned with 
STAR v2.4.2a (17) to a composite reference of human (GRCh38) (18) reference sequence with 
gene annotations from Ensembl release 91 (19) and SARS-CoV-2 (NCBI strain MN908947.3). 
Transcript abundance estimates were calculated internal to the STAR aligner using the algorithm 
of htseq-count94. Sequencing quality metrics were determined using FastQC77 (v0.11.5), 
alignment quality metrics with Picard tools (v2.22)93 and STAR logs and gene counts, including 
average quality per read > Q30, percent and absolute counts of reads uniquely mapped to 
annotated transcripts. 

Data preprocessing and additional quality control 
Samples included for analysis have undergone prior core internal and assay-specific quality 
control steps. In addition, proper procedures for quality assurance outlined previously were 
performed to ensure the data standards for each assay were met. The table below provides 
information on additional steps to prepare the data for statistical analysis. 

Assay name Sample 
filtering 

Feature 
filtering 

Additional batch 
correction 

Missing value 
imputation 

Data 
transformation 

PBMC and Nasal 
gene expression 
(PGX & NGX)  

Passed & 
questionable 
QC 

Protein coding, 
genes with 
CPM >= 1 
in >5% of 
samples in a 
trajectory group, 
top 75% highly 
variable genes  

removeBatcheffect 
from limma  

N/A  Scaling   

Blood CyTOF Passed & 
questionable 
QC 

 N/A N/A Normalized by 
total counts per 
sample with 
Log1p 
normalization.  

Serum proteomics 
targeted (SPT) 

Passed & 
questionable 
QC 

N/A N/A Impute.knn Scaling 

Plasma 
proteomics global 
and targeted 
(PPG & PPT) 

Passed & 
questionable 
QC 

Removed 
features with > 
30% missing 
values in training 
and test sets, 
separately 

N/A Half-min Median 
normalization in 
linear space,  

Log2 
transformation 
with 
pseudocount of 
1 and scaling 



Plasma 
metabolomics 
global (PMG) 

Passed & 
questionable 
QC 

Removed non-
xenobiotic 
features with 
IQR = 0 

N/A Half-min Pareto-Scaling 

 

Table S10: Information on data preparation. For each assay, we first filtered out samples using 
the sample filtering criterion and followed by a filtration on features based on the feature filtering 
criteria, we performed data imputation and data transformation as indicated in the table. N/A: no 
additional step taken. Half-min: replacing missing value using half of the minimum of observed 
values for the corresponding feature. Impute.knn: using impute.knn function from R package 
impute. Pareto-Scaling: in-house function of dividing each centered variable by the square root of 
the standard deviation. We evaluated the influence of potential batch effects on different assays 
using Principal variance component analysis (PVCA) (table S9). 

The preprocessing of omic datasets was performed as defined previously (4). These processing 
steps are briefly described below.  Samples with failed or missing QC information were removed 
for all assays. 

Gene expression (PBMC and Nasal) (PGX and NGX) 

We filtered for the protein-coding genes and removed lowly expressed genes (genes that do not 
qualify for counts per million >= 1 in more than 5% of samples in at least one outcome group 
(trajectory group)). We also removed the 25% least variable gene as evaluated using median 
absolute deviation (MAD) of log-transformed counts per million values. Finally, we transformed 
the count data using voom (32), performed batch-correction to remove the effects of technical 
variables, including phase sample processing batch (phase) and library preparation plates using 
removeBatchEffect of limma (33), and scaled the data. 

Serum proteomics targeted (SPT) 

The missing measurements (missing at random) were imputed using nearest neighbor averaging 
using impute.knn function in R package impute and scaled the data. 

Plasma Proteomics (Global and Targeted) 

Features with more than 30% missing values separately in training and test sets were removed, 
and the data was median normalized in linear space, imputed using the half-min approach, log-
transformed using pseudocount of 1 and scaled. 

Plasma metabolomics global (PMG) 

The missing measurements (missing at random) were imputed using the half-min approach, the 
non-xenobiotic features with IQR = 0 were removed, and pareto-scaled the data. 

Whole Blood CyTOF 

Cellular population counts were converted to a normalized frequency by dividing by the total 
counts per sample then log1p transformed. Granulocytes were excluded from the total counts for 
non-granulocyte populations. 



Data imputation via MOFA 

Complete assay imputation for the six multi-omic assays (Fig. 1A) was performed using Multi-
Omic Factor Analysis (MOFA) via the MOFA2 R package (34, 35). MOFA performs dimensionality 
reduction through a variational Bayesian framework, modeling high-dimensional multi-omic 
assays as a product of low-dimensional factor loadings and scores with error, allowing the 
imputation of entire missing biological assays from the loadings and scores. Imputation was 
performed on the preprocessed training and test datasets separately to prevent any imputation-
wise association between them. 

The MOFA model used for imputation featured a large number of factors (200) and had the 
following summed explained variance per view across all 200 factors: Train - PGX:82.7%, 
NGX:84.5%, PMG:53.8%, SPT:49.3%, PPG:39.3%, PPT:35.3%. Test - PGX:82.9%, NGX:85.6%, 
PMG:50.4%, SPT:47.6%, PPG:40.0%, PPT:40.4%.  

The effects of MOFA imputation were explored by constructing separate composite regression 
models for samples missing 0, 1, or 2 assays (fig. S1J). All three models were then tested using 
the severity task (TG1 vs. TG2/TG3 vs. TG4/TG5) as described in the manuscript and achieved 
comparable results (fig. S1K). 

Multi-omics factor construction via MCIA 

Factors were constructed from the preprocessed training multi-omic dataset using Multiple Co-
Inertia Analysis (MCIA), which projects data into low-dimensional factors that maximize 
covariance between each omic and the global data matrix (36). MCIA has shown strong 
performance in comparison to other unsupervised joint dimensionality reduction methods in multi-
omics benchmark comparisons (37, 38). Prior to implementing MCIA, the multi-omics data were 
standardized using a centered row profile (36), followed by block-level variance normalization 
(39). Implementation was performed using the mogsa R Bioconductor package (40), with custom 
modification of the deflation step to constrain global (factor) scores to be orthogonal. MCIA factor 
scores for preprocessed testing multi-omic samples were calculated by generating block and 
global scores using coefficients derived from the pretrained MCIA model. 

Hierarchical classification model construction and evaluation 

Many multi-omic signatures have been found to be associated with disease severity. However, it 
has also been noticed that mortality sometimes does not lead to immunological variation along 
the direction of increased severity (41). To capture the signatures indicative of a more severe 
disease course while accounting for abrupt changes happening for the mortality group, we built a 
composite prediction model combining a global ordinal regression with a sub-model separating 
the two most severe groups TG4 and TG5. More specifically, we first fit an ordinal regression 
model grouping TG4 and TG5 together using the ordinalNet R package (42): 

𝑃(𝑦 ∈∪!"# 𝐺!) =
1

1+ 𝑒𝑥𝑝	(−𝑥$𝛽 − 𝛼#)	
,  𝑘 = 1,2,3 

where G1= {1}, G2= {2,3}, G3= {4,5}. Then, we further fit a logistic regression model to separate 
TG4 and TG5 using the glmnet R package (43): 
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Both included Lasso penalties to reduce the influence from nuisance features. The Lasso penalty 
is tuned using a 10-fold cross-validation, which is recommended to account for both the training 
efficiency and model variability (44). When compared it to the unstructured multinomial regression 
model, this structured composite model is more interpretable since the model is characterized by 
two coefficients: 1) the coefficient ‘𝛽’ measuring the global trend of being severe, and 2) the 
coefficient ‘𝜃’ identifying the high-risk sub-population among severe patients. Despite being 
simpler, this composite model provides similar performance to the multinomial logistic regression 
in our analyses (fig. S1E). Finally, we opted to combine TG2 and TG3 together for both classifiers 
due to poor performance when separating TG2 from TG3 in the training cohort (AUROC=0.558, 
fig. S1G).  

 

 

MCIA model construction and rank selection 

Composite regression models were constructed using different ranks of MCIA multi-omic factors 
from the grid (2, 3, …., 10, 15, 20, 25, 30, 40) using a 50-folds (nested) cross-validation on the 
training cohort as shown steps 1-2 of the figure below. Minimum deviance loss was achieved for 
the predictive model with 7 multi-omic MCIA factors (fig. S1F) which we established as the MCIA 
model. The MCIA model was then used on both the training and testing cohorts to achieve 
predictions on the testing cohort as shown in step 3 below. 



 

 

Clinical model construction 

A composite regression model utilizing baseline clinical measurements, denoted as the clinical 
model, was constructed for comparison with the MCIA model. The clinical model features 
consisted of sex, BMI, age, ethnicity, and race as well as various baseline laboratory values and 
comorbidities (fig. S1A). We opted to not include the baseline respiratory status into the model as 
they were utilized in the construction trajectory groups (5). 

Ensemble (MCIA + clinical) model construction 

We considered a simple ensemble of the MCIA model and the clinical model by weighting their 
predictions where the weights are chosen based on the cross-validation prediction. More 
specifically, let 𝑝01203	  and 𝑝02!04 denote the prediction of severity (TG4|TG5), we consider the 
following ensemble prediction for the severity task 

𝑙𝑜𝑔 	 )"#$%#&'(#

1/)"#$%#&'(# ← 𝛼1203 𝑙𝑜𝑔
)"&)"*

1/)"&)"* + 𝛼2!04 𝑙𝑜𝑔
)")("$

1/)")("$
, 

where 𝛼1203 and 𝛼2!04 are chosen by considering an ordinal regression model with response being 
the TGs and features being log odds of the nested cross-validation prediction version of 𝑝01203 
and 𝑝02!04 on the training cohort. 

Similarly, we consider the weighted prediction for the mortality task where the weights are chosen 
by considering an ordinal regression model with response being the TG5 or TG4 on the among 



critical illness, and features being log odds of the nested cross-validation prediction for TG5 in the 
mortality task. 

Model exploration and comparisons via training cohort cross-validation 

Both MCIA and ensemble models improved over the clinical model on the training data based on 
cross-validation (fig. S1B) and conveyed a similar message as the results from the test cohort 
(Fig. 1C). Additional predictive models were constructed and assessed to the MCIA model (fig. 
S1, E, H, and I). Groups of constructed models are described below with results sharing the 
corresponding title. Model performance was measured using both the severity (TG1 vs. TG2/TG3 
vs. TG4/TG5) and mortality (TG4 vs. TG5) tasks as described in the manuscript (Fig. 1A). 

Multi-omics vs. Single-omics using Concatenation 

The MCIA model (MCIA) was compared against the following predictive models: PPT, PPG, SPT, 
PMG, NGX, and PGX – six separate composite regression models using concatenated analytes 
from each of the 6 multi-omic assays (without performing dimensionality reduction), All Assays 
(Concat.) - A composite regression model using all concatenated 27,320 analytes as predictors. 
MCIA (Multinom.) - A multinomial regression model using the 7 MCIA multi-omics factors rather 
than the composite classifier framework (fig. S1E). 

Multi-omics vs. Single-omics using MCIA 

The following models were constructed by using MCIA per-block construction on each assay 
individually (rather than together): PPT, PPG, SPT, PMG, NGX, and PGX. The MCIA model was 
shown to emphasize the most predictive assays for each prediction task (fig. S1H). 

MCIA Factors vs. Literature 

A systematic literature review was performed, searching for biomarkers in the context of COVID-
19 severity. Publications were manually assessed for suitability, considering time of biospecimen 
collection, hospitalization, comparator groups and molecular data types to be as similar to the 
IMPACC study as possible. Three articles were found as viable candidates, each one containing 
a molecular signature associated with COVID-19 severity (45–47). Each molecular biomarker was 
matched to the corresponding IMPACC collected analyte and subsequently utilized to train a 
separate composite regression model as stated above (fig. S1I). 

MCIA separates TG groups with aggregated predictions 

To further explore the MCIA model predictions, we combined the results from the severity and 
mortality tasks to achieve four unique classes: TG1, TG2/TG3, TG4 and TG5. We chose to keep 
TG2 and TG3 binned together after observing a low AUROC when trying to separate them on the 
training cohort (fig. S1F). The four classes were utilized in a multi-class AUROC prediction (one 
versus all) framework. The clinical model was outperformed by the MCIA and ensemble models 
for every class (fig. S1C).  

Finally, we combined the classifier-assigned probabilities from the severity and mortality tasks 
together to embed participants (fig. S1D). Grouping participants by their TGs revealed a gradual 



shift in both the severity (x-axis) and mortality (y-axis) directions, with severity and mortality scores 
increasing from TG1 < TG2/TG3 < TG4 < TG5. 

MCIA predicted risk and hypothesis testing conditional on baseline 

To investigate if MCIA model provided additional about clinical trajectory groups conditional on 
participant’s ordinal scale for baseline respiratory, we constructed a predicted severity from the 
MCIA model and test if the predicted risk is significant in following ordinal regression model: 

log 𝑃(𝑇𝐺 ≥ 𝑘) = 5
5&678	(/39'∗;*+#/<'(∗;%#,/=3<'!04'∗;'*%#/>0<#∗;-"%./?)
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where “baseline” refers to the score for baseline respiratory status, and “risk” refers to the 
predicted risk defined as below:  

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑟𝑖𝑠𝑘 = E𝑃(𝑇𝐺 = 5) ∗ 	𝑃(𝑇𝐺 ∈ {4,5}), 

which assigns higher risk to patients more likely being in TG4 and TG5 from our MCIA model and 
shows higher aversion for TG5 compared to TG4. We considered the predicted risk to have 
significant contribution to the clinical trajectory prediction conditional on the baseline respiratory 
status if the p-value is smaller than 0.05. We consider this test separately for test-cohort patients 
with moderately impaired baseline respiratory status (baseline score in [3,4]) and for test-cohort 
patients with severely impaired baseline respiratory status (baseline score in [5,6]) to examine if 
the predicted risk if conditionally informative about future clinical trajectory given different 
incoming status. 

Baseline and longitudinal differential analysis of factors 
We performed a cumulative link mixed effect analysis using MCIA factor scores from baseline 
samples and investigated (1) if there is an ordinal trend from TG1 to TG5 and (2) if any pair of 
groups exhibit significant differences. Enrollment sites were assigned as a random effect and age 
group (split across five quantiles ([18,35], [36,51], [52,66], [67,81], [82,96])) and sex were included 
as fixed effects. We tested for the ordinal trend with the clmm function from the R package ordinal 
(48) (v 2019.12-10) and pairwise difference with the lmer function from the R package lme4 (49) 
(v 1.1-27.1). We identified significant MCIA factors whose adjusted p values (Benjamini-Hochberg 
Procedure (50)) are below 0.05 for the ordinal trend or for the pairwise comparisons between TG4 
and TG5. Significant factors can potentially be used for separating clinical groups at hospital 
admission.  

We next moved to longitudinal analysis for scheduled visits (Visits 1-6) to identify MCIA factors 
whose scores differ for different clinical groups from the training set ranging from day 0 
(admission) to day 41. We performed a linear mixed modeling analysis for the factor levels using 
the lme function from the R package nlme (51) (v 3.1-148) and a mixed generalized additive 
modeling analysis and modeled the factor levels as a smooth function (cubic regression) of 
admission time using the R package gamm4 (52) (v 0.2-6) function gamm4. For each pair of 
groups, we tested if the two groups have different longitudinal trends for the MCIA factors after 
including the participant ID and enrollment site as random effects while sex and age group as 
fixed effects. We claimed significance when the adjusted p-value is below 0.05, and significant 
factors could indicate interesting molecular dynamics across clinical groups: 



factor ~ s(admission date, bs = cr) + s(admission date, bs = cr, by =TG) + TG + sex + age+ 
(1|enrollment_site/participant id). 

Here, s(., bs=cr) indicates we are using a smooth spline to model the overall kinetics over 
admission dates, for pooled participants and each TG group (by=TG), and the term (1|enrollment 
site/participant id) indicates a nested random effect by participant id and enrollment site.a 

The testing results for baseline (visit) and longitudinal analysis for 7 selected factors are shown 
in table s4.  

Definition of high-contribution features 
The MCIA dimension reduction uses all features in its multi-omics factor construction. To identify 
the top contributing features associated with each MCIA multi-omics factor, we defined high-
contribution features for each assay as the features whose absolute factor weights >=0.2 and 
Benjamini-Hochberg adjusted p-values for correlation with a factor satisfying p.adj <= 0.01. 

Factor annotation and enrichment analysis 

Databases: Publicly available knowledge databases were used for functional enrichment 
analysis, with details listed below. 

● KEGG: A list of KEGG pathways and their corresponding mappings with genes and 
metabolites were extracted using the KEGG REST API (Release 102.0). KEGG pathways 
were used for gene/protein/metabolite annotations. 

● Hallmark: Hallmark pathways are extracted from MsigDB database (Homo sapien) using 
msigdbr (version 7.5.1). Hallmark pathways were used for gene and protein annotations. 

● Subpathway: Many metabolites in the plasma global metabolomics lack KEGG id 
correspondence. Hence, when we encountered difficulty using KEGG pathways, we used 
the subpathway database provided by Metabolon for metabolite annotation (9, 53, 54). 

● Immunoglobulin gene sets: The GO terms with “IMMUNOGLOBULIN” in the name were 
extracted from MSigDB (c5 v7.5.1) 

● C3 was extracted from MSigDB (C3 v7.5.1): for transcription factor and miRNA gene sets 
functional enrichment. 

● Ligand-receptor signaling-based gene sets were constructed from the ligand/receptor and 
intracellular signaling reported in Omnipath, with ligand’s gene sets being composed of all 
genes within one connection of their receptors. 

● A list of IFN inhibitors was extracted from Porritt and Herzog (55) for enrichment and 
generation of composite scores of these genes for baseline and longitudinal analysis. 

Enrichment analysis using high-contribution features with mHG: 

Enrichment analyses were conducted on the MCIA predictive model trained using the initial 539 
participants and validated on the remaining 613 participants. Enrichment of the factors was 
conducted using the minimum hypergeometric test (mHG) from the R package mHG (56) (v 1.1) 
using the gene, proteins and metabolite sets from the Hallmark, KEGG (downloaded on August 
04, 2022), and C3 on high-contribution features of a factor. The joint p-value combines enrichment 
p-values from assays which contained non-zero features in each pathway using the Cauchy 



combination test, which is known to be robust to the dependence structure underlying p-values to 
be combined (57). The selection of an appropriate background set of features is crucial for the 
accurate enrichment analysis. We used only those features as background that were measured 
in our assays. Since the serum Olink (SPT) included only 92 proteins in total, which were 
preselected for their function in inflammation, the enrichment over the background of 92 features 
did not yield many significant pathways as expected. Therefore, to capture meaningful signal from 
the SPT, we also performed a direct comparison of the SPT features with features and pathways 
of other datasets using an ‘inter-omics association analysis’ (see below). 

 

Selection of enriched pathways of severity factor for further consideration  

The pathway databases are comprised of many broad and redundant biological pathways with 
highly overlapping genesets (58). We obtained significant enrichment for a large number of 
pathways, many of which represented redundant biological function. To handle this redundancy, 
we first collected biological pathways that were significantly enriched (adj.p<0.1) in each assay in 
the severity factor, and we clustered them based on the number of shared leading-edge features 
and visualized using enrichment map plot (fig. S2A). We observed main four major functional 
categories: inflammation, T-cell activity, cell death, and dysregulated metabolism of essential 
amino acids (fig. S2, A and B, table s5). We prioritized the pathways based on the strongest joint 
p-values (as described above) and selected the representative pathways from each of the four 
functional categories that reflected specialized biological functions and displayed most significant 
aggregated p-values. We favored the pathways with significant enrichment in at least two omics 
as representatives from each functional category, except for “Th1 and Th2 cell differentiation” and 
“T-cell receptor signaling pathway” in T-cell activity and “Tryptophan metabolism” in dysregulated 
metabolism categories. (Fig 3C), because the features of some of these pathways are not 
expected to be highly represented in other datasets, for example, metabolic features are present 
only in PMG and the genes encoding the enzymes involved in those metabolic pathways are not 
very well defined in existing knowledge bases. Similarly, TCR-signaling genes are expected to be 
enriched in the gene expression datasets compared to the plasma/serum proteomics datasets. 

For the pathways enriched in the mortality factor, we further selected only those pathways that 
separated TG4 and TG5 at baseline because the dominant signal that the mortality factor 
captures is related to the separation of these two groups at baseline (table s7 for all enriched 
pathways and table s8 for pathways that show separation between TG4 and TG5, p.val < 0.05 ). 
Transcriptomics pathways including Influenza A, Epstein-Barr virus infection, Hepatitis C, 
Measles and Herpes simplex virus 1 infection are subsets of the listed interferon signaling 
pathways shown in Fig. 5C, hence omitted from the main Figure. 

TG4|5 filtered enrichment: 

The mHG test allows for flexible filtering of the ordered feature list before passing to the MHG test 
function. Apart from the plain enrichment analysis, we further considered a TG4|5 filtered 
enrichment analysis for each factor where we kept only high-contribution metabolites and soluble 
proteins who can separate TG4 and TG5 at baseline (training samples only) with p.val <=0.05 
and performed MHG test using the filtered list (table s6 and table s8). This helped us avoid 



overlooking important functions related to the early separation of TG4 and TG5 due to the 
overwhelming signals from temporal kinetics and related to the overall disease severity (from TG1 
to TG5). 

Cell-type enrichment analysis via GSEA: 

Due to the limited size of overlaps between cell markers and high-contribution feature, Gene Set 
Enrichment Analysis (GSEA) for cell type enrichment of the PBMC and nasal transcriptomics was 
conducted using gene sets from Nakaya H. et al. (59) and a combined gene set of Ziegler et al. 
(60) with the neutrophil and eosinophil marker genes from Ordovas-Montanes et al. (61) 
respectively. 

Pathway activity construction 

The pathway activities were calculated as a weighted sum of selected features of a pathway. 
Specifically, for pathways included in the enrichment analysis, we identified the features that 
contributed to the enrichment of the pathway, also known as the leading-edge features. We 
multiplied the levels of each leading-edge feature with its absolute factor weight in the factor and 
calculated a sum of the weighted levels across the features as pathway activity. For an unbiased 
evaluation of the NGX IFN inhibitory genes and NGX Hallmark IFN Alpha Response in Fig. 6, the 
pathway activities were instead calculated and modeled as the average of all detected features 
in the gene sets. 

Detailed evaluations of pathway activities 

For pathways of interest, we performed mixed generalized additive modeling analysis and 
modeled the pathway activity as a smooth function of admission time using the R package gamm4 
(52) (v 0.2-6) function gamm4. We included participant ID and enrollment site as random effects 
while sex and age quintile as fixed effects, as we have done in the factor longitudinal test: 

pathway_activity ~ s(admission date, bs = cr) + s(admission date, bs = cr, by =TG) + TG + sex + 
age+(1|enrollment site/participant id) 

For the T cell pathway analysis in Fig. S3C, we calculated a sum of PBMC transcriptomic levels 
of all features in the indicated KEGG pathway and used our longitudinal modal analysis (as 
described above) while using T cell frequencies measured in whole blood CyTOF (combined 
across all T cell subsets) as a covariate to adjust for the cell abundance changes: 

pathway_activity ~ s(admission date, bs = cr) + s(admission date, bs = cr, by =TG) + TG + sex + 
age+ CD4+T cell frequency + CD8+T cell frequency+(1|enrollment site/participant id) 

Inter-omics association analysis 

The inter-omics associations test for identifying strong connections between two different omics 
used the Pearson correlation test after adjusting for age, sex, enrollment site. In addition, we 
further adjusted visit numbers and clinical trajectory groups to account for the global co-varying 
patterns and the feature selection effects as we investigated the inter-omics associations among 
high-contribution features. We used a stringent cutoff to identify the strongest associations 
between assays using the Bonferroni correction to control the family wise error rate (FWER) with 



adj.p<0.01. The p-value for covariates-adjusted association was calculated using a linear mixed-
effect modeling where we also included random effects at the participant level to account for 
spurious correlation caused for correlated noise for samples from the same participant. 

Although each factor captures co-varying patterns across omics, the factor represents global 
systematic changes, and does not directly guarantee local connections between a pair of high-
contribution features. Additionally, the factors do not provide direct connection of individual 
features to biological pathways (combined expression signatures over multiple genes/proteins). 
We performed inter-omics association analysis to investigate the local connections between 
immune components from different assays. The inter-omics analysis not only assesses the direct 
association between two analytes or pathway functions, but it also helps to capture meaningful 
functional descriptions additional to the enrichment test, by linking SPT analytes directly to 
enriched pathways from other assays. We consider the associations between the following types 
(fig. S4, fig. S6C): 

1. Task 1: Association between plasma metabolite pathway activities and serum targeted 
proteomics. Association between metabolite pathway activities and plasma protein/gene 
pathway activities (both nasal and PBMC).  

2. Task 2: Association between serum targeted proteomics and plasma protein/gene 
pathway activities (both nasal and PBMC).  

3. Task 3: Association between plasma metabolite pathway activities and plasma 
protein/gene pathway activities (both nasal and PBMC). 

4. Task 4: Association between metabolite pathway activities/ serum targeted proteomics 
and whole blood cell frequencies (parent population) measured by CyTOF. 

We performed Tasks 1-4 for high-contribution cytokines and highlighted pathways activities for 
each factor.  We summarized assay variability captured by a factor for assays other than serum 
targeted proteomics (Olink) using pathway activities because they were of high dimensions and 
individual features revealed less-interpretable information than the pathway activity.  Exact 
formulas for calculating covariates-adjusted Pearson correlation and p-values from mixed effect 
modeling are given below. 

Tasks 1-3 (inter-omics associations among primary assays used in MCIA factors). 

P-value calculation: We further adjust for the visit numbers and TG assignments to alleviate the 
co-selection effects of high-contribution features, and consider the formula: Omic feature1 ~ Omic 
feature 2 + sex+age+visit_number+TG+(1|enrollment site/participant id). 

Correlation calculation: Pearson correlations between the residual of an omic feature and the 
residual of another omic feature after regressing out age, sex, and enrollment site, visit numbers 
and TG groups. 

Task 4 (inter-omics associations with CyToF cell frequencies) 

P-value calculation: we consider Omic feature ~ cell frequency + Omic feature ~ cell frequency + 
sex + age + (1|enrollment site/participant id), where (1|enrollment site/participant id) indicates a 
nested random effect by participant id and enrollment site. 



Correlation calculation: Pearson correlations between the residual of an omic feature and the 
residual of a cell frequency after regressing out age, sex, and enrollment site. 

Viral-adjusted IFN signaling analysis 
To understand the influence of viral loads in the IFN signaling differences observed comparing 
TG4 and TG5, we conducted a viral-adjusted IFN signaling analysis.  Since the interaction 
between viral loads and IFN signaling are highly non-linear, we adjust for viral loads using random 
forest to avoid subjective transformation. 

1. Baseline comparison: We fitted a random forest model predicting baseline IFN signaling 
pathway levels from baseline viral loads (default parameter, keeping samples where both 
viral loads nasal transcriptomics and viral loads measurements), and the fitted residuals 
were used Wilcoxon test for comparing TG4 and TG5 and moderate illness 
(TG1/TG2/TG3) vs. critical illness (TG4/TG5). 

2. Kinetics comparison: We fitted a random forest model predicting IFN signaling pathway 
levels from viral loads using all samples (default parameter, keeping samples where both 
viral loads nasal transcriptomics and viral loads measurements were available), and the 
fitted residuals were used for comparing the kinetics from TG4 and TG5 (gamm4, mixed 
effect modeling where participant id is modeled as the random effect). 

The viral adjusted results were compared to the unadjusted results. For a fair comparison, in 
this analysis alone, we used the same set of samples for the unadjusted/adjusted tests where 
both nasal transcriptomics and viral loads were available. 

 
 

References: 

1. Ozonoff A, et al. Phenotypes of disease severity in a cohort of hospitalized COVID-19 
patients: Results from the IMPACC study. eBioMedicine. 2022;83:104208. 
2. IMPACC Manuscript Writing Team, IMPACC Network Steering Committee. 
Immunophenotyping assessment in a COVID-19 cohort (IMPACC): A prospective longitudinal 
study. Sci Immunol. 2021;6(62):eabf3733. 
3. Beigel JH, et al. Remdesivir for the Treatment of Covid-19 - Final Report. N Engl J Med. 
2020;383(19):1813–1826. 
4. Diray-Arce J, et al. Multi-omic longitudinal study reveals immune correlates of clinical course 
among hospitalized COVID-19 patients. Cell Rep Med. 2023;4(6):101079. 
5. Carreño JM, et al. Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron. 
Nature. 2022;602(7898):682–688. 
6. Carreño JM, et al. Evidence for retained spike-binding and neutralizing activity against 
emerging SARS-CoV-2 variants in serum of COVID-19 mRNA vaccine recipients. 
EBioMedicine. 2021;73:103626. 
7. Viodé A, et al. Plasma Proteomic Analysis Distinguishes Severity Outcomes of Human Ebola 
Virus Disease. mBio. 2022;13(3):e0056722. 
8. Hughes CS, et al. Single-pot, solid-phase-enhanced sample preparation for proteomics 
experiments. Nat Protoc. 2019;14(1):68–85. 



9. Evans AM, et al. Integrated, nontargeted ultrahigh performance liquid 
chromatography/electrospray ionization tandem mass spectrometry platform for the 
identification and relative quantification of the small-molecule complement of biological 
systems. Anal Chem. 2009;81(16):6656–6667. 
10. Long T, et al. Whole-genome sequencing identifies common-to-rare variants associated with 
human blood metabolites. Nat Genet. 2017;49(4):568–578. 
11. Spicer RA, Salek R, Steinbeck C. A decade after the metabolomics standards initiative it’s 
time for a revision. Sci Data. 2017;4:170138. 
12. Sumner LW, et al. Proposed minimum reporting standards for chemical analysis Chemical 
Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics. 
2007;3(3):211–221. 
13. MSI Board Members, et al. The metabolomics standards initiative. Nat Biotechnol. 
2007;25(8):846–848. 
14. Picard Toolkit. 2019. https://broadinstitute.github.io/picard/. 
15. Li H, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 
2009;25(16):2078–2079. 
16. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence 
data. Bioinformatics. 2014;30(15):2114–2120. 
17. Dobin A, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–
21. 
18. Schneider VA, et al. Evaluation of GRCh38 and de novo haploid genome assemblies 
demonstrates the enduring quality of the reference assembly. Genome Res. 2017;27(5):849–864. 
19. Cunningham F, et al. Ensembl 2019. Nucleic Acids Research. 2019;47(D1):D745–D751. 
20. Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput 
sequencing data. Bioinformatics. 2015;31(2):166–169. 
21. Andrews, S. FastQC:  A Quality Control Tool for High Throughput Sequence Data. 2010. 
http://www.bioinformatics.babraham.ac.uk/projects/fastqc. 
22. Yu F, Haynes SE, Nesvizhskii AI. IonQuant Enables Accurate and Sensitive Label-Free 
Quantification With FDR-Controlled Match-Between-Runs. Molecular & Cellular Proteomics. 
2021;20:100077. 
23. da Veiga Leprevost F, et al. Philosopher: a versatile toolkit for shotgun proteomics data 
analysis. Nat Methods. 2020;17(9):869–870. 
24. Kong AT, et al. MSFragger: ultrafast and comprehensive peptide identification in mass 
spectrometry–based proteomics. Nat Methods. 2017;14(5):513–520. 
25. Yu F, et al. Fast Quantitative Analysis of timsTOF PASEF Data with MSFragger and 
IonQuant. Mol Cell Proteomics. 2020;19(9):1575–1585. 
26. van Zalm P, et al. A Parallelization Strategy for the Time Efficient Analysis of Thousands of 
LC/MS Runs in High-Performance Computing Environment. J Proteome Res. 
2022;21(11):2810–2814. 
27. MacLean B, et al. Skyline: an open source document editor for creating and analyzing 
targeted proteomics experiments. Bioinformatics. 2010;26(7):966–968. 
28. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using 
empirical Bayes methods. Biostatistics. 2007;8(1):118–127. 
29. Diray-Arce J, et al. Bacille Calmette-Guérin vaccine reprograms human neonatal lipid 
metabolism in vivo and in vitro. Cell Rep. 2022;39(5):110772. 



30. Pang Z, et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional 
insights. Nucleic Acids Research. 2021;49(W1):W388–W396. 
31. Xia J, Wishart DS. Metabolomic Data Processing, Analysis, and Interpretation Using 
MetaboAnalyst. Current Protocols in Bioinformatics. 2011;34(1):14.10.1-14.10.48. 
32. Law CW, et al. voom: Precision weights unlock linear model analysis tools for RNA-seq 
read counts. Genome Biol. 2014;15(2):R29. 
33. Ritchie ME, et al. limma powers differential expression analyses for RNA-sequencing and 
microarray studies. Nucleic Acids Res. 2015;43(7):e47. 
34. Argelaguet R, et al. Multi-Omics Factor Analysis-a framework for unsupervised integration 
of multi-omics data sets. Mol Syst Biol. 2018;14(6):e8124. 
35. Argelaguet R, et al. MOFA+: a statistical framework for comprehensive integration of multi-
modal single-cell data. Genome Biol. 2020;21(1):111. 
36. Meng C, et al. A multivariate approach to the integration of multi-omics datasets. BMC 
Bioinformatics. 2014;15:162. 
37. Tini G, et al. Multi-omics integration-a comparison of unsupervised clustering 
methodologies. Brief Bioinform. 2019;20(4):1269–1279. 
38. Cantini L, et al. Benchmarking joint multi-omics dimensionality reduction approaches for the 
study of cancer. Nat Commun. 2021;12(1):124. 
39. Abdi H, et al. STATIS and DISTATIS: optimum multitable principal component analysis 
and three way metric multidimensional scaling. WIREs Computational Statistics. 2012;4(2):124–
167. 
40. Meng C, et al. MOGSA: Integrative Single Sample Gene-set Analysis of Multiple Omics 
Data. Mol Cell Proteomics. 2019;18(8 suppl 1):S153–S168. 
41. Lucas C, et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. 
Nature. 2020;584(7821):463–469. 
42. Wurm MJ, Rathouz PJ, Hanlon BM. Regularized Ordinal Regression and the ordinalNet R 
Package. J Stat Softw. 2021;99(6). https://doi.org/10.18637/jss.v099.i06. 
43. Friedman JH, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models 
via Coordinate Descent. Journal of Statistical Software. 2010;33:1–22. 
44. Hastie T, Tibshirani, R., Friedman, J. The elements of statistical learning: data mining, 
inference, and prediction. New York: Springer; . 
45. Gisby J, et al. Longitudinal proteomic profiling of dialysis patients with COVID-19 reveals 
markers of severity and predictors of death. Elife. 2021;10:e64827. 
46. Ling L, et al. Longitudinal Cytokine Profile in Patients With Mild to Critical COVID-19. 
Front Immunol. 2021;12:763292. 
47. Patterson BK, et al. Immune-Based Prediction of COVID-19 Severity and Chronicity 
Decoded Using Machine Learning. Front Immunol. 2021;12:700782. 
48. Christensen RHB. ordinal—Regression Models for Ordinal Data. https://CRAN.R-
project.org/package=ordinal. 
49. Bates D, et al. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical 
Software. 2015;67:1–48. 
50. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful 
Approach to Multiple Testing. Journal of the Royal Statistical Society Series B 
(Methodological). 1995;57(1):289–300. 
51. Jose C. Pinheiro, Douglas M. Bates. Mixed-Effects Models in S and S-PLUS. New York: 
Springer; . 



52. Simon Wood, Fabian Scheipl. gamm4: Generalized Additive Mixed Models using “mgcv” 
and “lme4.” 
53. Evans AM, et al. Dissemination and analysis of the quality assurance (QA) and quality 
control (QC) practices of LC-MS based untargeted metabolomics practitioners. Metabolomics. 
2020;16(10):113. 
54. Dehaven CD, et al. Organization of GC/MS and LC/MS metabolomics data into chemical 
libraries. J Cheminform. 2010;2(1):9. 
55. Porritt RA, Hertzog PJ. Dynamic control of type I IFN signalling by an integrated network of 
negative regulators. Trends Immunol. 2015;36(3):150–160. 
56. Perl K. mHG: Minimum-Hypergeometric test. 2015. 
57. Liu Y, Xie J. Cauchy combination test: a powerful test with analytic p-value calculation 
under arbitrary dependency structures. J Am Stat Assoc. 2020;115(529):393–402. 
58. Vivar JC, et al. Redundancy control in pathway databases (ReCiPa): an application for 
improving gene-set enrichment analysis in Omics studies and “Big data” biology. OMICS. 
2013;17(8):414–422. 
59. Nakaya HI, et al. Systems biology of vaccination for seasonal influenza in humans. Nat 
Immunol. 2011;12(8):786–795. 
60. Ziegler CGK, et al. Impaired local intrinsic immunity to SARS-CoV-2 infection in severe 
COVID-19. Cell. 2021;184(18):4713-4733.e22. 
61. Ordovas-Montanes J, et al. Allergic inflammatory memory in human respiratory epithelial 
progenitor cells. Nature. 2018;560(7720):649–654. 
 

 



#The IMPACC Network  

National Institute of Allergy and Infectious Diseases, National Institute of Health, 

Bethesda, MD 20814, USA: Patrice M. Becker, Alison D. Augustine, Steven M. Holland, 

Lindsey B. Rosen, Serena Lee, Tatyana Vaysman 

Clinical and Data Coordinating Center (CDCC) Precision Vaccines Program, Boston 

Children’s Hospital, Boston, MA 02115, USA: Al Ozonoff, Joann Diray-Arce, Jing Chen, 

Alvin Kho, Carly E. Milliren, Annmarie Hoch, Ana C. Chang, Kerry McEnaney, Brenda Barton, 

Claudia Lentucci, Maimouna D. Murphy, Mehmet Saluvan, Tanzia Shaheen, Shanshan Liu, 

Caitlin Syphurs, Marisa Albert, Arash Nemati Hayati, Robert Bryant, James Abraham, Sanya 

Thomas, Mitchell Cooney 

Benaroya Research Institute, University of Washington, Seattle, WA 98101, USA: Matthew 

C. Altman, Naresh Doni Jayavelu, Scott Presnell, Bernard Kohr, Tomasz Jancsyk, Azlann Arnett 

La Jolla Institute for Immunology, La Jolla, CA 92037, USA: Bjoern Peters, James A. 

Overton, Randi Vita, Kerstin Westendorf 

Knocean Inc. Toronto, ON M6P 2T3, Canada: James A. Overton 

Precision Vaccines Program, Boston Children’s Hospital, Harvard Medical School, Boston, 

MA 02115, USA: Ofer Levy, Hanno Steen, Patrick van Zalm, Benoit Fatou, Kinga Smolen, 

Arthur Viode, Simon van Haren, Meenakshi Jha, David Stevenson 

Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA: 

Lindsey R. Baden, Kevin Mendez, Jessica Lasky-Su, Alexandra Tong, Rebecca Rooks, Michael 

Desjardins, Amy C. Sherman, Stephen R. Walsh, Xhoi Mitre, Jessica Cauley, Xiofang Li, 

Bethany Evans, Christina Montesano, Jose Humberto Licona, Jonathan Krauss, Nicholas C. Issa, 

Jun Bai Park Chang, Natalie Izaguirre 

Metabolon Inc, Morrisville, NC 27560, USA: Scott R. Hutton, Greg Michelotti, Kari Wong 

Prevention of Organ Failure (PROOF) Centre of Excellence, University of British 

Columbia, Vancouver, BC V6T 1Z3, Canada: Scott J. Tebbutt, Casey P. Shannon 



Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH 

44106, USA: Rafick-Pierre Sekaly, Slim Fourati, Grace A. McComsey, Paul Harris, Scott Sieg, 

Susan Pereira Ribeiro 

Drexel University, Tower Health Hospital, Philadelphia, PA 19104, USA: Charles B. Cairns, 

Elias K. Haddad, Michele A. Kutzler, Mariana Bernui, Gina Cusimano, Jennifer Connors, Kyra 

Woloszczuk, David Joyner, Carolyn Edwards, Edward Lee, Edward Lin, Nataliya Melnyk, Debra 

L. Powell, James N. Kim, I. Michael Goonewardene, Brent Simmons, Cecilia M. Smith, Mark 

Martens, Brett Croen, Nicholas C. Semenza, Mathew R. Bell, Sara Furukawa, Renee McLin, 

George P. Tegos, Brandon Rogowski, Nathan Mege, Kristen Ulring, Pam Schearer, Judie Sheidy, 

Crystal Nagle 

MyOwnMed Inc., Bethesda, MD 20817, USA: Vicki Seyfert-Margolis 

Emory School of Medicine, Atlanta, GA 30322, USA: Nadine Rouphael, Steven E. Bosinger, 

Arun K. Boddapati, Greg K. Tharp, Kathryn L. Pellegrini, Brandi Johnson, Bernadine 

Panganiban, Christopher Huerta, Evan J. Anderson, Hady Samaha, Jonathan E. Sevransky, 

Laurel Bristow, Elizabeth Beagle, David Cowan, Sydney Hamilton, Thomas Hodder, Amer 

Bechnak, Andrew Cheng, Aneesh Mehta, Caroline R. Ciric, Christine Spainhour, Erin Carter, 

Erin M. Scherer, Jacob Usher, Kieffer Hellmeister, Laila Hussaini, Lauren Hewitt, Nina Mcnair, 

Susan Pereira Ribeiro 

Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA: Ana Fernandez-

Sesma, Viviana Simon, Florian Krammer, Harm Van Bakel, Seunghee Kim-Schulze, Ana Silvia 

Gonzalez-Reiche, Jingjing Qi, Brian Lee, Juan Manuel Carreño, Gagandeep Singh, Ariel Raskin, 

Johnstone Tcheou, Zain Khalil, Adriana van de Guchte, Keith Farrugia, Zenab Khan, Geoffrey 

Kelly, Komal Srivastava, Lily Q. Eaker, Maria C. Bermúdez-González, Lubbertus C.F. Mulder, 

Katherine F. Beach, Miti Saksena, Deena Altman, Erna Kojic, Levy A. Sominsky, Arman Azad, 

Dominika Bielak, Hisaaki Kawabata, Temima Yellin, Miriam Fried, Leeba Sullivan, Sara Morris, 

Giulio Kleiner, Daniel Stadlbauer, Jayeeta Dutta, Hui Xie, Manishkumar Patel, Kai Nie 

Immunai Inc. New York, NY 10016, USA: Adeeb Rahman 



Oregon Health Sciences University, Portland, OR 97239, USA: William B. Messer, Catherine 

L. Hough, Sarah A.R. Siegel, Peter E. Sullivan, Zhengchun Lu, Amanda E. Brunton, Matthew 

Strnad, Zoe L. Lyski, Felicity J. Coulter, Courtney Micheleti 

Stanford University School of Medicine, Palo Alto, CA 94305, USA: Holden Maecker, Bali 

Pulendran, Kari C. Nadeau, Yael Rosenberg-Hasson, Michael Leipold, Natalia Sigal, Angela 

Rogers, Andrea Fernandes, Monali Manohar, Evan Do, Iris Chang, Alexandra S. Lee, Catherine 

Blish, Henna Naz Din, Jonasel Roque, Linda Geng, Maja Artandi, Mark M. Davis, Neera Ahuja, 

Samuel S. Yang, Sharon Chinthrajah, Thomas Hagan 

David Geffen School of Medicine at the University of California Los Angeles, Los Angeles 

CA 90095, USA: Elaine F. Reed, Joanna Schaenman, Ramin Salehi-Rad, Adreanne M. Rivera, 

Harry C. Pickering, Subha Sen, David Elashoff, Dawn C. Ward, Jenny Brook, Estefania 

Ramires-Sanchez, Megan Llamas, Claudia Perdomo, Clara E. Magyar, Jennifer Fulcher 

University of California San Francisco, San Francisco, CA 94115, USA: David J. Erle, 

Carolyn S. Calfee, Carolyn M. Hendrickson, Kirsten N. Kangelaris, Viet Nguyen, Deanna Lee, 

Suzanna Chak, Rajani Ghale, Ana Gonzalez, Alejandra Jauregui, Carolyn Leroux, Luz Torres 

Altamirano, Ahmad Sadeed Rashid, Andrew Willmore, Prescott G. Woodruff, Matthew F. 

Krummel, Sidney Carrillo, Alyssa Ward, Charles R. Langelier, Ravi Patel, Michael Wilson, Ravi 

Dandekar, Bonny Alvarenga, Jayant Rajan, Walter Eckalbar, Andrew W. Schroeder, Gabriela K. 

Fragiadakis, Alexandra Tsitsiklis, Eran Mick, Yanedth Sanchez Guerrero, Christina Love, Lenka 

Maliskova, Michael Adkisson, Aleksandra Leligdowicz, Alexander Beagle, Arjun Rao, Austin 

Sigman, Bushra Samad, Cindy Curiel, Cole Shaw, Gayelan Tietje-Ulrich, Jeff Milush, Jonathan 

Singer, Joshua J. Vasquez, Kevin Tang, Legna Betancourt, Lekshmi Santhosh, Logan Pierce, 

Maria Tecero Paz, Michael Matthay, Neeta Thakur, Nicklaus Rodriguez, Nicole Sutter, Norman 

Jones, Pratik Sinha, Priya Prasad, Raphael Lota, Sadeed Rashid, Saurabh Asthana, Sharvari 

Bhide, Tasha Lea, Yumiko Abe-Jones 

Yale School of Medicine, New Haven, CT 06510, USA: David A. Hafler, Ruth R. Montgomery, 

Albert C. Shaw, Steven H. Kleinstein, Jeremy P. Gygi, Shrikant Pawar, Anna Konstorum, Ernie 

Chen, Chris Cotsapas, Xiaomei Wang, Leqi Xu, Charles Dela Cruz, Akiko Iwasaki, Subhasis 



Mohanty, Allison Nelson, Yujiao Zhao, Shelli Farhadian, Hiromitsu Asashima, Omkar 

Chaudhary, Andreas Coppi, John Fournier, Khadir Raddassi, Michael Rainone, William Ruff, 

Syim Salahuddin, Wade L. Schulz, Pavithra Vijayakumar, Haowei Wang, H. Patrick Young 

Yale School of Public Health, New Haven, CT 06510, USA: Denise Esserman, Leying Guan, 

Anderson Brito, Jessica Rothman, Nathan D. Grubaugh, Elsio Wunder Jr., Catherine Muenker, 

Albert I. Ko 

Baylor College of Medicine and the Center for Translational Research on Inflammatory 

Diseases, Houston, TX 77030, USA: David B. Corry, Farrah Kheradmand, Li-Zhen Song, 

Ebony Nelson 

Oklahoma University Health Sciences Center, Oklahoma City, OK 73104, USA: Jordan P. 

Metcalf, Nelson I. Agudelo Higuita, Lauren A. Sinko, J. Leland Booth, Douglas A. Drevets, 

Brent R. Brown 

University of Arizona, Tucson AZ 85721, USA: Monica Kraft, Chris Bime, Jarrod Mosier, 

Heidi Erickson, Ron Schunk, Hiroki Kimura, Michelle Conway, Dave Francisco, Allyson 

Molzahn, Connie Cathleen Wilson, Ron Schunk, Trina Hughes, Bianca Sierra 

University of Florida, Gainesville, FL 32611, USA: Mark A. Atkinson, Scott C. Brakenridge, 

Ricardo F. Ungaro, Brittany Roth Manning, Lyle Moldawer 

University of Florida, Jacksonville, FL 32218, USA: Jordan Oberhaus, Faheem W. Guirgis 

University of South Florida, Tampa FL 33620, USA: Brittney Borresen, Matthew L. Anderson 

University of Texas, Austin, TX 78712, USA: Lauren I. R. Ehrlich, Esther Melamed, Cole 

Maguire, Dennis Wylie, Justin F. Rousseau, Kerin C. Hurley, Janelle N. Geltman, Nadia Siles, 

Jacob E. Rogers. 



IMPACC Network Competing Interests 

The Icahn School of Medicine at Mount Sinai has filed patent applications relating to SARS-
CoV-2 serological assays and NDV-based SARS-CoV-2 vaccines which list Florian Krammer as 
co-inventor. Mount Sinai has spun out a company, Kantaro, to market serological tests for 
SARS-CoV-2. Florian Krammer has consulted for Merck and Pfizer (before 2020), and is 
currently consulting for Pfizer, Seqirus, 3rd Rock Ventures, Merck and Avimex. The Krammer 
laboratory is also collaborating with Pfizer on animal models of SARS-CoV-2. Viviana Simon is 
a co-inventor on a patent filed relating to SARS-CoV-2 serological assays (the "Serology 
Assays"). Ofer Levy is a named inventor on patents held by Boston Children’s Hospital relating 
to vaccine adjuvants and human in vitro platforms that model vaccine action. He is a cofounder 
of Ovax, Inc, has consulted for GlaxoSmithKline (GSK) and Hillevax and leads a laboratory that 
has received research support from GSK. Charles Cairns serves as a consultant to bioMerieux 
and is funded for a grant from Bill & Melinda Gates Foundation. James A Overton is a consultant 
at Knocean Inc. Jessica Lasky-Su serves as a scientific advisor of Precion Inc. Scott R. Hutton, 
Greg Michelloti and Kari Wong are employees of Metabolon Inc. Vicki Seyfer- Margolis is a 
current employee of MyOwnMed. Nadine Rouphael reports contracts with Lilly and Sanofi for 
COVID-19 clinical trials and serves as a consultant for ICON EMMES for consulting on safety 
for COVID19 clinical trials. Adeeb Rahman is a current employee of Immunai Inc. Steven 
Kleinstein is a consultant related to ImmPort data repository for Peraton. Nathan Grabaugh is a 
consultant for Tempus Labs and the National Basketball Association. Akiko Iwasaki is a 
consultant for 4BIO, Blue Willow Biologics, Revelar Biotherapeutics, RIGImmune, Xanadu Bio, 
Paratus Sciences. Monica Kraft receives research funds paid to her institution from NIH, ALA; 
Sanofi, Astra-Zeneca for work in asthma, serves as a consultant for Astra-Zeneca, Sanofi, Chiesi, 
GSK for severe asthma; is a co-founder and CMO for RaeSedo, Inc, a company created to 
develop peptidomimetics for treatment of inflammatory lung disease. Esther Melamed received 
research funding from Babson Diagnostics, honorarium from Multiple Sclerosis Association of 
America and has served on advisory boards of Genentech, Horizon, Teva and Viela Bio. Carolyn 
Calfee receives research funding from NIH, FDA, DOD, Roche-Genentech and Quantum Leap 
Healthcare Collaborative as well as consulting services for Janssen, Vasomune, Gen1e Life 
Sciences, NGMBio, and Cellenkos. Wade Schulz was an investigator for a research agreement, 
through Yale University, from the Shenzhen Center for Health Information for work to advance 
intelligent disease prevention and health promotion; collaborates with the National Center for 
Cardiovascular Diseases in Beijing; is a technical consultant to Hugo Health, a personal health 
information platform; cofounder of Refactor Health, an AI-augmented data management 
platform for health care; and has received grants from Merck and Regeneron Pharmaceutical for 
research related to COVID-19. 



Conflict of interest: The Icahn School of Medicine at Mount Sinai has filed patent applications related to SARS-CoV-2 serological assays and NDV-based SARS-CoV-2 vaccines, which list FK 
as co-inventor (Tech ID 200314G/US 17/913,783; Tech ID 200502G/US 17/922,777; Tech ID 211012G/PCT/US2022/077254; Tech ID 220404G/PCT/US2023/065225). Mount Sinai has created a 
company, Kantaro, to market serological tests for SARS-CoV-2. FK has consulted for Merck and Pfizer (before 2020) and is currently consulting for Pfizer, Seqirus, 3rd Rock Ventures, Merck, 
and Avimex. FK’s laboratory is also collaborating with Pfizer on animal models of SARS-CoV-2. OL is a named inventor on patents held by Boston Children’s Hospital relating to vaccine 
adjuvants and human in vitro platforms that model vaccine action (IDs US20150152385A1, WO2019099578A1). He is a cofounder of Ovax, Inc; has consulted for GlaxoSmithKline (GSK) and 
Hillevax; and leads a laboratory that has received research support from GSK. CBC serves as a consultant to bioMérieux. NR reports contracts with Lilly and Sanofi for COVID-19 clinical trials 
and serves as a consultant for ICON EMMES regarding safety for COVID-19 clinical trials. SHK is a consultant for ImmPort data repository for Peraton. MK receives funding from Sanofi and 
AstraZeneca for work in asthma and serves as a consultant for Sanofi, Chiesi, and GSK for severe asthma. EM received research funding from Babson Diagnostics and has served on the 
advisory boards of Genentech, Horizon, Teva, and Viela Bio. 



Severity Task
(TG1vsTG2/3vsTG4/5)

Mortality Task
(TG4vsTG5)

0.0

0.2

0.4

0.6

Model
All Assays (MCIA)

PPT

PPG

SPT

PMG

NGX

PGX

All Assays (Concat.)

All Assays (Multinom.)

.VMUJ¦PNJDT�WT��4JOHMF¦PNJDT�VTJOH�$PODBUFOBUJPO

TG4 vs. TG5

TG1 vs. TG2/TG3 vs. TG4/TG5

Factor 1

Factor 2

Factor 3

Factor 4

Factor 5

Factor 6

Factor 7

Sex

BM
I

"HF����¦��

"HF����¦��

"HF����¦��

"HF����¦��

#BTFMJOF��"-5

#BTFMJOF��$
IFTU�*N

BHF�3
BEJPHSBQIZ

#BTFMJOF��$
SFBUJOJOF

#BTFMJOF��$
3
1

#BTFMJOF��%
¦EJN

FS

#BTFMJOF��-ZN
QIPDZUF

#BTFMJOF��1MBUFMFU

#BTFMJOF��5SPQPOJO

$
PN

PSC��"TUIN
B

$
PN

PSC��$
ISPOJD�$

BSEJBD�%
JTFBTF

$
PN

PSC��$
ISPOJD�,JEOFZ�%

JTFBTF

$
PN

PSC��$
ISPOJD�/

FVSPMPHJDBM�%
JTPSEFS

$
PN

PSC��%
JBCFUFT

$
PN

PSC��%
SVHT�"MDPIPM�"CVTF�$

BOOJCJT

$
PN

PSC��)
*7

$
PN

PSC��)
ZQFSUFOTJPO

$
PN

PSC��-JWFS�%
JTFBTF

$
PN

PSC��.
BMJHOBOU�/

FPQMBTN

$
PN

PSC��0
SHBO�#.

�5SBOTQMBOU

$
PN

PSC��1VMN
POBSZ�%

JTFBTF

$
PN

PSC��4N
PLJOH�7BQJOH

$
PN

PSC��5PUBM�$
PVOU

$
PN

PSC��5PUBM�$
PVOU�	DBUFHPSJDBM


&UIOJDJUZ��)
JTQBOJD�-BUJOP

&UIOJDJUZ��/
PU�)

JTQBOJD�-BUJOP

3
BDF��"N

FSJDBO�*OEJBO�"MBTLB�/
BUJWF

3
BDF��"TJBO

3
BDF��#MBDL�"GSJDBO�"N

FSJDBO

3
BDF��.

VMUJQMF

3
BDF��/

BUJWF�)
BXBJJBO�1BDJGJD�*TMBOEFS

3
BDF��0

UIFS�%
FDMJOFE

3
BDF��8

IJUF
0.0

0.4

���

1.2
$PFG�

TG4 TG5

TG1 TG2/TG3

0.0 0.25 0.5 0.75 1.0 0.0 0.25 0.5 0.75 1.0

0.0

0.25

0.5

0.75

1.0

0.0

0.25

0.5

0.75

1.0

'13

51
3

Model
clin

ensemble

mcia

.VMUJ¦DMBTT�"630$

TG4 TG5

TG1 TG2/TG3

¦� 0 2 ¦� 0 2

¦�

0

2

¦�

0

2

MPH<1	5(�
���1	5(�
>

MP
H<
1	
5(

�]
5(

� ∩
TG

5

>

5SBKFDUPSZ�(SPVQ
TG1

TG2/TG3

TG4

TG5

Severity

(Spearman Corr)

Mortality

(AUROC)
TG1 vs. TG2/TG3 vs. TG4/TG5 TG4 vs. TG5

M
or

ta
lit

y

Severity
log(P(TG4)+P(TG5))

lo
g(

P
(T

G
5)

)0.788 ± 0.04

0.692 ± 0.05

0.840 ± 0.03

M
C
E

0.642 ± 0.04

0.522 ± 0.05

0.736 ± 0.04

M
C
E

0.802 ± 0.05

0.620 ± 0.06

0.869 ± 0.03

M
C
E

0.839 ± 0.06

0.803 ± 0.06

0.859 ± 0.05

M
C
E

B C D

*
******

******

MCIA
Clinical

Ensemble

MCIA
Clinical

Ensemble

0.0

0.2

0.4

0.6

���

1.0

A
Severity

Mortality

����

2.01

2.04

2.07

5 10
/VNCFS�PG�.VMUJ¦PNJDT�'BDUPST

%
FW

JB
OD

F�
-P

TT

Severity Task
(TG1vsTG2/3vsTG4/5)

Mortality Task
(TG4vsTG5)

0.0

0.2

0.4

0.6
Model

All Assays (MCIA)

Gisby

-JOH

Patterson

.$*"�'BDUPST�WT��-JUFSBUVSF

Severity Task
(TG1vsTG2/3vsTG4/5)

Mortality Task
(TG4vsTG5)

0.0

0.2

0.4

0.6

Model
All Assays (MCIA)

PPT

PPG

SPT

PMG

NGX

PGX

.VMUJ¦PNJDT�WT��4JOHMF¦PNJDT�VTJOH�.$*"

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
'13

51
3

5(��WT��5(��	"630$��������


Baseline All

Train
Test

1 2 3 4 5 6 1 2 3 4 5 6

0

250

500

750

0

250

500

750

/VNCFS�PG�$PNQMFUF�"TTBZT

/
VN

CF
S�P

G�4
BN

QM
FT

Train
Test

4 5 6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

/VNCFS�PG�$PNQMFUF�"TTBZT

4Q
FB

SN
BO

�$
PS
SF
MB
UJP

O

F G

J K

MCIA

MCIA

MCIA

MCIA (Multinom.)

MCIA (Concat.)

E

H

I



FIGURE S1: Additional computational results for prediction models, severity and 
mortality task, and MOFA imputation, related to Figure 2. A) Dotplot of coefficients 
returned from the composite classifier, separated by MCIA factors and clinical features. 
B) Barplots of the severity and mortality tasks reporting Spearman correlation and 
AUROC values, respectively, on the training cohort. Results are shown for the MCIA, 
clinical, and ensemble models. C) Multi-class AUROC analysis predicting TG1, 
TG2/TG3, TG4, and TG5 separately for each model on the test cohort. D) Embedding of 
MCIA model predicted probabilities for both the mortality and severity tasks on the test 
cohort, faceted by each participant’s TG. E) Severity and mortality task results on the 
training cohort for concatenated models. F) Connected scatter plot showing deviance 
loss of prediction models constructed using increasing numbers of multi-omics factors 
from MCIA. G) AUROC plot of MCIA model separating TG2 from TG3 on the training 
cohort. H, I) Severity and mortality task results on the training cohort for single-omic 
MCIA models and literature models. J) Histogram of participants grouped by the number 
of complete assays from PPT, PPG, SPT, PMG, NGX, and PGX, split by training/test (y-
axis) and baseline/all visits (x-axis). K) Severity task results using only participants with 
4, 5, and 6 complete assays on the training cohort.  
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FIGURE S2: Enrichment term clustering and selected pathway trajectories for the 
severity factor, related to Figure 3. A) Visualization of functional enrichment using 
EnrichmentMap. The enriched terms are grouped based on biological functions as 
indicated using four colors and labels. The nodes correspond to enriched terms and 
each node is divided into six slices; each corresponds to one assay. The slices are 
colored based on the direction of enrichment: red if positive, blue if negative, and gray if 
the term is not tested or significantly enriched. The edge thickness corresponds to the 
number of shared leading-edge features between the terms. B) Pathway enrichment of 
severity factor for additional top enriched terms in each group in A apart from the ones 
in Fig 3C. The filled circles represent pathways with significant enrichment and the open 
circles without. Joint = aggregated p-value across omics. C) Trajectories for significant 
pathways in Fig 3C for different clinical trajectory groups. The p-values indicating 
whether the shape (shp) or average (avg) are significantly different between TG4 and 
TG5 are mentioned. TG1-TG3 are grouped together for better visualization.   
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FIGURE S3: Additional characterization of immune pathway associated with 
COVID-19 severity, related to Figures 3 and 4. For the severity factor, A) Boxplots 
comparing levels of identified pathways (from Fig 3F) with moderate separating power 
between TG4 and TG5 at baseline (p.val < 0.05). B) Cell type enrichment of the PBMC 
(PGX) and nasal (NGX) transcriptomics based on their contribution to the severity 
factor. C) Trajectory plots depicting differences in PBMC transcriptomic signature of T 
cell pathways (sum of levels of all pathway features corrected for T cell frequencies) 
between trajectory groups. The Th1 and Th2 cell differentiation and Th17 cell 
differentiation pathways show significant decrease in TG5 compared to TG4 (4|5). T cell 
receptor signaling pathway is not significant, but the trend is preserved.  D) Correlation 
between high-contribution cytokines and the apoptosis pathway activity constructed 
using PBMC transcriptomics (PGX). The cytokines are ranked based on the adj.p on X-
axis and the cytokines with significant associations (adj.p < 0.05) are labeled. E) mHG 
Enrichment of the target genes of Transcription Factors and miRNAs (C3), and the 
downstream targets of receptor signaling (Omnipath) in the highly contributing PGX and 
NGX features of the severity factor. The filled circles represent pathways with significant 
enrichment and the open circles without. Joint = aggregated p-value across omics. F) 
The left panel displays the correlation between metabolites in the phenylalanine 
pathway and genes identified to play a role in actively converting phenylpyruvate from 
phenylalanine. The right panel features a simplified diagram of the tryptophan, 
phenylalanine, and tyrosine pathways. IDO1 can also degrade phenylalanine to 
phenylpyruvate, which can lead to a decrease in phenylalanine hydroxylase activity and 
an accumulation of phenylalanine in the body. The tyrosine metabolites (HVA, VMA, 
and VLA) are major terminal urinary metabolites that result from the conversion of L-
Dopa, dopamine, and norepinephrine during catecholamine biosynthesis and 
degradation.   
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FIGURE S5: Additional characterization of immune pathway associated with 
COVID-19 mortality, related to Figure 5.ௗFor the mortality factor, A) Boxplots 
comparing TG4 and TG5 at baseline across assays for enriched mortality factor 
pathway (adj.pval < 0.1) that separated by at least one measured omics (p.val < 0.05). 
B)�Scatter plot between PPG (plasma proteomics global) immunoglobulin levels and�
total B cells/B cell subpopulation normalized frequencies. 6LJQLILFDQFH�ZDV�FDOFXODWHG�
XVLQJ�D�OLQHDU�PL[HG�HIIHFW�PRGHO��VHH�6XSSOHPHQWDO�0HWKRGV��,QWHU�RPLFV�DVVRFLDWLRQ�
DQDO\VLV���C) Cell type enrichment of the�PBMC and nasal transcriptomics based on 
their contribution to the mortality factor. D)�Boxplots of total B cell normalized frequency 
and top associated B-cell subpopulations�across TG groups at baseline. E) Boxplot of 
log10 Serum Anti-Spike IgG titers across�TG groups at baseline.
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FIGURE S6: Additional characterization of interferon signaling, anti-IFN auto-
antibodies, and inter-omics analysis of top-contribution cytokines and significant 
pathways for the severity factor, related to Figures 5 and 6. $� mHG Enrichment of 
Transcription Factors and miRNA (C3), IFN inhibitors, and downstream receptor 
signaling (Omnipath) for PBMC and Nasal Transcriptomics associated with the Mortality 
Factor. Joint = aggregated p-value across omics. B) Top: Spearman Correlation of top 
metabolic pathways and SPT soluble proteins against significant mortality associated 
pathways in the PMG, PPG, NGX, and PGX. Middle: Spearman Correlation of top 
metabolic pathways and SPT soluble proteins against whole blood CyTOF parent 
population frequencies. Bottom: Spearman Correlation of top metabolic pathways and 
SPT soluble proteins against their receptors’ expression in the PGX (CelltalkDB for SPT 
and RaMP for PMG). C) Spearman Correlation of Trans-omic Severity and Mortality 
associated biological pathways/features with additional omics including whole blood 
CyTOF cell type frequency, nasal viral load (inverted RT-qPCR CT), Anti-Spike and 
Anti-RPB Antibody Titers, and Baseline Clinical laboratory tests. Non-significant 
correlations are white. D) Nasal and PBMC Hallmark Interferon alpha response at visit 1 
between clinical trajectory groups unadjusted and adjusted for nasal viral load. E) Nasal 
Hallmark Interferon alpha response over 30 days unadjusted and adjusted for nasal 
viral load. F) Presence of Anti-IFN antibodies per clinical trajectory group. G) Hallmark 
IFN alpha response and expression of IFN inhibitors in Nasal and PBMC 
transcriptomics at visit 1 for participants with and without detectable anti-IFN antibodies. 
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Supplemental Table 11: Key resources  

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
Maxpar® Direct™ Immune Profiling Assay (MDIPA) Kit Fluidigm Cat#201325 
CD8a-146Nd Fluidigm Cat#3146001B; 

RRID:AB_2687641 
Granzyme B Antibody, anti-human/mouse/rat, REAfinity Miltenyi Cat#130-116-486 
Goat Anti-Human IgA-UNLB Southern Biotech Cat#2050-01 
Purified anti-human IgM Antibody Biolegend Cat#314502 
Mouse Anti-Human IgG1 Fc-UNLB Souther Biotech Cat#9054-01 
Purified anti-mouse/human CD11b Antibody Biolegend Cat#101202 
Purified anti-human/mouse/rat CD278 (ICOS) Antibody Biolegend Cat#313502 
Purified anti-human CD39 Antibody Biolegend Cat#328202 
Purified anti-human CD169 (Sialoadhesin, Siglec-1) 
Antibody 

Biolegend Cat#346002 

Purified anti-human CD64 (Maxpar® Ready) Antibody Biolegend Cat#305029 
Purified anti-human CD71 Antibody Biolegend Cat#334102 
Anti-Human CD279/PD-1 (EH12.2H7)-175Lu Fluidigm Cat#3175008B 
Anti-Human CD61 (VI-PL2)-209Bi Fluidigm Cat#3209001B 
Anti-Human CD3 (UCHT1)-141Pr antibody Fluidigm Cat#3141019B 
Anti-Human HLA-DR (L243)-143Nd antibody Fluidigm Cat#3143013B 
Anti-Human CD69 (FN50)-144Nd antibody Fluidigm Cat#3144018B 
Anti-Human CD4 (RPA-T4)-145Nd antibody Fluidigm Cat#3145001B 
Anti-Human CD8a (RPA-T8)-146Nd antibody Fluidigm Cat#3146001B 
Anti-Human CD20 (2H7)-147Sm antibody Fluidigm Cat#3147001B 
Anti-Human CD127 (A019D5)-149Sm antibody Fluidigm Cat#3149011B 
Anti-Human MIP-1β (D21-1351)-150Nd antibody Fluidigm Cat#3150004B 
Anti-Human CD123 (6H6)-151Eu antibody Fluidigm Cat#3151001B 
Anti-Human TNFα (Mab11)-152Sm antibody Fluidigm Cat#3152002B 
Anti-Human CD62L (DREG-56)-153Eu antibody Fluidigm Cat#3153004B 
Anti-Human CD45 (HI30)-154Sm antibody Fluidigm Cat#3154001B 
Anti-Human IL-6 (MQ2-13A5)-156Gd antibody Fluidigm Cat#3156011B 
Anti-Human IFN-γ (B27)-158Gd antibody Fluidigm Cat#3158017B 
Anti-Human CD11c (Bu15)-159Tb antibody Fluidigm Cat#3159001B 
Anti-Human CD14 (M5E2)-160Gd antibody Fluidigm Cat#3160001B 
Anti-Human CD80/B7.1 (2D10.4)-161Dy antibody Fluidigm Cat#3161023B 
Anti-Human CD66b (80H3)-162Dy antibody Fluidigm Cat#3162023B 
Anti-Human CD56 (NCAM16.2)-163Dy antibody Fluidigm Cat#3163007B 
Anti-Human CD15 (W6D3)-164Dy antibody Fluidigm Cat#3164001B 
Anti-Human CD61 (VI-PL2)-165Ho antibody Fluidigm Cat#3165010B 
Anti-Human CD11b (ICRF44)-167Er antibody Fluidigm Cat#3167011B 
Anti-Human CD206 (15-2)-168Er antibody Fluidigm Cat#3168008B 
Anti-Human CD54 (HA58)-170Er antibody Fluidigm Cat#3170014B 
Anti-Human CD68 (Y1/82A)-171Yb antibody Fluidigm Cat#3171011B 
Anti-Human CD16 (3G8)-209Bi antibody Fluidigm Cat#3209002B 
Anti- CoV Nucleocapsid protein (6H3) antibody Abcam Cat#ab273434 
Anti-Human Eotaxin (43915) antibody R&D Cat#MAB3201 
Anti-Human ACE-2 (535919) antibody NOVUS Cat#MAB9332-100 



 

Anti-Human Cytokeratin (C-11) antibody Biolegend Cat#628602 
Anti- CoV Spike protein (1A9) antibody GeneTex Cat#GTX632604 

Anti-Human EPX (MM82.2.1) antibody MAYO CLINIC 
https://www.mayocli
nic.org 

Anti-Human IL-8 (E8N1) antibody Biolegend Cat#511402 
Anti-Human IL-1β (H1b-27) antibody Biolegend Cat#511602 
Anti-Human IFN-β (IFNb/A1 ) antibody Biolegend Cat#514002 
Anti-Human Siglec-8 (837535) antibody R&D Cat#MAB7975 
Anti-human IgG (Fc specific)-Peroxidase antibody 
produced in goat 

Sigma-Aldrich Cat#A0170; 
RRID: AB_257868 

Goat anti-human IgM-HRP SouthernBiotech Cat#2020-05;  
RRID: AB_2795603 

Anti-human IgA (α-chain specific)-Peroxidase antibody 
produced in goat 

Sigma-Aldrich Cat#A0295; 
RRID: AB_257876 

Anti-Glial Fibrillary Associated Protein Agilent Cat#Z033429-2 
Anti-human IgG (PE) ThermoScientific Cat#12-4998-8 
Anti-human pSTAT1 (AF647) BD Cat#612597 
Anti-human CD14 (FITC) BD Cat#555397 
Bacterial and virus strains  
BLT5403, T7 Select Kit Novagen Cat#70550-3 
T7 Bacteriophage, T7 Select Kit Novagen Cat#70550-3 
Biological samples   
Plasma samples from IMPACC cohort Multiple clinical sites N/A 
Whole blood from hospitalized COVID19 patients-
collected in EDTA tubes 

Multiple clinical sites N/A 

Veri-Cells™ Heavy Metal (Ta) PBMC Biolegend Cat#427203 
Serum samples from IMPACC cohort Multiple clinical sites N/A 
Stimulated Plasma from Healthy Controls  Stanford University N/A 
Plasma from Healthy Controls Stanford University N/A 
Serum from Healthy Controls Stanford University N/A 
Chemicals, peptides, and recombinant proteins 
DNA/RNA Shield Collection Tube w/ Swab - DX Zymo Research Cat#R1107-E 
Quick-DNA/RNA MagBead Zymo Research Cat#R2131 
Stranded Total RNA Prep, Ligation with Ribo-Zero Plus Illumina Cat#20040529 
HS NGS Fragment Kit Agilent Cat#DNF-474-0500 
K-562 Total RNA Thermo Fisher Cat#AM7832 
qScript XLT 1-Step RT-qPCR ToughMix Quantabio Cat#95133-02K 
2-propanolol (LC-MS) MilliporeSigma 

 
Cat#1027814000 
 

Acetonitrile (LC-MS) MilliporeSigma Cat# 1000294000 
Water, Baker Analyzed LC/MS Reagent Grade J.T. Baker Cat#9831-02 
Ammonium Formate (LC-MS) J.T. Baker Cat#M530-08 
Perfluoropentanoic acid Sigma Cat#396575 
Ammonium Bicarbonate Fisher Cat#A643 
Ammonium Hydroxide Sigma Cat#338818 
Cell-ID™ 20-Plex Pd Barcoding Kit Fluidigm Cat#201060 
Saponin Sigma Cat#47036 
Human TruStain FcX™ (Fc Receptor Blocking Solution) Biolegend Cat#422302; 

RRID:AB_2818986 
Heparin sodium salt Sigma Cat#H3393 



 

SmartTube PROT1 stabilizer PROT1-250ML SmartTube Fisher Cat# 
501351692 

SmartTube ThawLyse - THAWLYSE1 SmartTube Fisher Cat# 
501351696 

Paraformaldehyde (PFA), 16% w/v aqueous, methanol-
free 

Alfa Aesar Fisher Cat# 
AA433689L 

Fetal bovine serum, characterized, heat-inactivated HyClone Fisher 
Cat#SH30396.03 

Dimethyl sulfoxide Fisher Cat#BP231-100 
Maxpar MCP9 Antibody Labeling Kit, 111Cd Fluidigm Cat#201111A 
Maxpar MCP9 Antibody Labeling Kit, 112Cd Fluidigm Cat#201112A 
Maxpar MCP9 Antibody Labeling Kit, 114Cd Fluidigm Cat#201114A 
Maxpar MCP9 Antibody Labeling Kit, 116Cd Fluidigm Cat#201116A 
Maxpar® X8 Antibody Labeling Kit, 142Nd Fluidigm Cat#201142B 
Maxpar® X8 Antibody Labeling Kit, 159Tb Fluidigm Cat#201159B 
Maxpar® X8 Antibody Labeling Kit, 162Dy Fluidigm Cat#201162B 
Maxpar® X8 Antibody Labeling Kit, 165Ho Fluidigm Cat#201165B 
Maxpar® X8 Antibody Labeling Kit, 169Tm Fluidigm Cat#201169B 
Maxpar® X8 Antibody Labeling Kit, 142Nd—4 Rxn Fluidigm Cat#201142A 
Maxpar® X8 Antibody Labeling Kit, 148Nd—4 Rxn Fluidigm Cat#201148A 
Maxpar® X8 Antibody Labeling Kit, 155Gd—4 Rxn Fluidigm Cat#201155A 
Maxpar® X8 Antibody Labeling Kit, 166Er—4 Rxn Fluidigm Cat#201166A 
Maxpar® X8 Antibody Labeling Kit, 169Tm—4 Rxn Fluidigm Cat#201169A 
Maxpar® X8 Antibody Labeling Kit, 172Er—4 Rxn Fluidigm Cat#201172A 
Maxpar® X8 Antibody Labeling Kit, 173Yb—4 Rxn Fluidigm Cat#201173A 
Maxpar® X8 Antibody Labeling Kit, 174Yb—4 Rxn Fluidigm Cat#201174A 
Maxpar® X8 Antibody Labeling Kit, 175Lu—4 Rxn Fluidigm Cat#201175A 
Maxpar® X8 Antibody Labeling Kit, 176Yb—4 Rxn Fluidigm Cat#201176A 
Cell-ID™ Cisplatin Fluidigm Cat#201064 
Cell-ID™ Intercalator Fluidigm Cat#201192A 
Cell-ID™ 20-Plex Pd Barcoding Kit Fluidigm Cat#201060 
Maxpar® Water—500 mL Fluidigm Cat#201069 
Maxpar® Cell Staining Buffer Fluidigm Cat#201068 
Maxpar® PBS Fluidigm Cat#201058 
EQ Four Element Calibration Beads Fluidigm Cat#201078 
Bond-Breaker TCEP Solution, Neutral pH Thermo Fisher Cat#77720 
PFA EMC 50-980-487 
Osmium tetroxide ACROS ORGANICS 319010050 
Recombinant SARS-CoV-2 receptor binding domain 
(RBD) 

Krammer Laboratory 
at the Icahn School of 
Medicine at Mount 
Sinai 

https://labs.icahn.ms
sm.edu/krammerlab/
reagents/ 

Recombinant SARS-CoV-2 spike protein (S) Krammer Laboratory 
at the Icahn School of 
Medicine at Mount 
Sinai 

https://labs.icahn.ms
sm.edu/krammerlab/
reagents/ 

SIGMAFAST™ OPD (o-Phenylenediamine 
dihydrochloride) 

Sigma-Aldrich Cat#P9187 

3-molar hydrochloric acid Thermo Fisher 
Scientific 

Cat#S25856 

Tween-20 Fisher Bioreagents Cat#BP337-100 



 

Non-fat dry milk Omniblok AmericanBio Cat#AB10109-01000 
Bovine Serum Albumin Fraction V Roche Cat#10735078001 
Protein A conjugated magnetic beads Invitrogen Cat#10008D 
Protein G conjugated magnetic beads Invitrogen Cat#10009D 
T4 ligase New England Biolabs Cat#M0202S 
Phusion DNA Polymerase New England Biolabs Cat# M0530L 
Urea Sigma-Aldrich  
Ammonium Bicarbonate Sigma-Aldrich 09830-1KG 
Iodoacetamide Sigma-Aldrich I1149-25G 
Dithiothreitol Sigma-Aldrich D9779-10G 
LC/MS grade Formic Acid Thermo Scientific A117-50 
Perchloric Acid Sigma-Aldrich 311421-50ML 
1-Propanol Sigma-Aldrich 34871-1L 
Sera-Mag Speed Beads 65 Sigma-Aldrich 65152105050250 
Sera-Mag Speed Beads 45 Sigma-Aldrich 45152105050250 
HPLC grade Water Fisher chemical  W5-4 
LC/MS grade Water Fisher chemical  W6-1 
LC/MS grade Acetonitrile Fisher chemical  A955-1 
HPLC grade Methanol Fisher chemical  A452-4 
LC/MS grade Methanol Fisher chemical  A456-4 
LC/MS grade Isopropanol Fisher chemical  A461-1 
Sequence grade Porcine Trypsin  Promega V5117 
K562 Cell Line Tryptic Peptide Mixture Standard 100 µg Promega V6951 
Trifluoroacetic acid Sigma-Aldrich T6508-100ML 
Ambion Nuclease-Free Water Invitrogen Cat#AM9937 
Recombinant human IFNa R&D Cat#11101-2 
Recombinant human IFNb Peprotech Cat#300-02BC 
Recombinant human IFNw Peprotech Cat#300-02J 
Sulfo-NHS ThermoScientific Cat#A39269 
EDC ThermoScientific Cat#77149 
Critical commercial assays 
Quick-DNA/RNA Pathogen MagBead  Zymo Research R2146 
RNase-Free DNase Set Qiagen 79254 
NEBNext Ultra II Directional RNA Library Prep Kit for 
Illumina 

New England Biolabs E7760 

AMPure XP Beads Beckman-Coulter A63882 
Quick-RNA MagBead Kit Zymo Research R2133 
SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing Takara Bio 634894 
Nextera XT DNA Library Preparation Kit Illumina FC-131-1096 
DNA Prep, Tagmentation Illumina 20018705 
Chemagic Blood 400 (96) kit Perkin Elmer CMG-1091 
Global Diversity Array (GDA) Illumina 20031810 
Covaris E210 Covaris, LLC. 10521 
T7 Select 10-3b Cloning kit EMD Millipore EMD Millipore 
AMPure XP Beads Beckman Coulter Cat#A63881 
Olink Target 96 Inflammation Reagent Kit Olink Proteomics Cat#95302, 

Lot#B02101 
Deposited data 
Experimental models: Cell lines 



 

Expi293F cells  Thermo Fisher Cat#A14528 
Experimental models: Organisms/strains 
Oligonucleotides 
2019-nCOV_N1-F GAC CCC AAA ATC AGC GAA AT Integrated DNA 

technologies 
Cat#10006713 

2019-nCOV_N1-R TCT GGT TAC TGC CAG TTG AAT 
CTG 

Integrated DNA 
technologies 

Cat#10006713 

2019-nCOV_N1-P ACC CCG CAT TAC GTT TGG TGG 
ACC 

Integrated DNA 
technologies 

Cat#10006713 

2019-nCOV_N2-F TTA CAA ACA TTG GCC GCA AA Integrated DNA 
technologies 

Cat#10006713 

2019-nCOV_N2-R GCG CGA CAT TCC GAA GAA Integrated DNA 
technologies 

Cat#10006713 

2019-nCOV_N2-P ACA ATT TGC CCC CAG CGC TTC 
AG 

Integrated DNA 
technologies 

Cat#10006713 

RP-F AGA TTT GGA CCT GCG AGC G Integrated DNA 
technologies 

Cat#10006713 

RP-R GAG CGG CTG TCT CCA CAA GT Integrated DNA 
technologies 

Cat#10006713 

RP-P TTC TGA CCT GAA GGC TCT GCG CG Integrated DNA 
technologies 

Cat#10006713 

SARS-CoV-2 tilling oligonucleotides for whole genome 
amplification 

Gonzalez-Reiche, et 
al. 2020 

https://doi.org/10.11
26/science.abc1917 

Recombinant DNA 
Vector pCAGGS Containing the SARS-Related 
Coronavirus 2, Wuhan-Hu-1 Spike Glycoprotein Gene 
(soluble, stabilized) 

BEI Resources Cat#NR-52394 

Vector pCAGGS Containing the SARS-Related 
Coronavirus 2, Wuhan-Hu-1 Spike Glycoprotein 
Receptor Binding Domain (RBD) 

BEI Resources Cat#NR-52309 

Human Coronavirus Synthetic DNA Twist Bioscience https://www.twistbios
cience.com 

Software and algorithms 
CZID Pipeline Chan Zuckerberg 

Initiative 
www.czid.org 

bcl2fastq v2.20.0.422 Illumina https://support.illumi
na.com/sequencing/
sequencing_softwar
e/bcl2fastq-
conversion-
software.html 

FastQC_v0.11.5 Andrew S N/A 
STARv2.4.3a Dobin et al, 2013 https://github.com/al

exdobin/STAR 
Qualimap Okonechnikov et al, 

2015 
http://qualimap.cone
salab.org 

Cutadapt_v3.7 DOI:10.14806/ej.17.1.
200  
 

https://cutadapt.read
thedocs.io/en/stable/ 

Preseq_v3.1.1 Timothy D and 
Andrew Smith et al, 
2013 

https://github.com/s
mithlabcode/preseq 

Samtools_v1.12 Heng Li et al, 2009 http://samtools.sourc
eforge.net 



 

MultiQC Philip Ewels https://multiqc.info 
WGCNA R package (version 1.69-81 )  Langfelder, Peter, and 

Steve Horvath. 
"WGCNA: an R 
package for weighted 
correlation network 
analysis." BMC 
bioinformatics 9, no. 1 
(2008): 1-13.  

https://cran.r-
project.org/web/pack
ages/WGCNA/index.
html  

lme4 R package (version 1.1-27.1)  Bates, Douglas, 
Deepayan Sarkar, 
Maintainer Douglas 
Bates, and L. Matrix. 
"The lme4 package." 
R package version 2, 
no. 1 (2007): 74  

https://cran.r-
project.org/web/pack
ages/lme4/index.htm
l  

ordinal R package (version 2019.12-10)  Christensen, Rune 
Haubo B. "Cumulative 
link models for ordinal 
regression with the R 
package ordinal." 
Submitted in J. Stat. 
Software 35 (2018).  

https://cran.r-
project.org/web/pack
ages/ordinal/index.ht
ml  

gamm4 R package (version 0.2-6)  Wood, Simon, Fabian 
Scheipl, and 
Maintainer Simon 
Wood. "Package 
‘gamm4’." Am Stat 45, 
no. 339 (2017): 0-2.   

https://cran.r-
project.org/web/pack
ages/gamm4/index.h
tml 

ComplexHeatmap R package (version 2.6.2)     Gu Z, Eils R, 
Schlesner M (2016). 
“Complex heatmaps 
reveal patterns and 
correlations in 
multidimensional 
genomic data.” 
Bioinformatics.  

https://www.biocond
uctor.org/packages/r
elease/bioc/html/Co
mplexHeatmap.html 

circlize R package (version 0.4.16) Gu, Z. circlize 
implements and 
enhances circular 
visualization in R. 
Bioinformatics 2014. 

https://cran.r-
project.org/web/pack
ages/circlize/index.ht
ml 

pvca R package (version 1.30.0)  Bushel P (2021). pvca: 
Principal Variance 
Component Analysis 
(PVCA). R package 
version 1.34.0.  

https://www.biocond
uctor.org/packages/r
elease/bioc/html/pvc
a.html  



 

clusterProfiler R package (version 3.18.0) Guangchuang Yu, Li-
Gen Wang, Yanyan 
Han and Qing-Yu He. 
clusterProfiler: an R 
package for 
comparing biological 
themes among gene 
clusters. OMICS: A 
Journal of Integrative 
Biology 2012, 
16(5):284-287 

https://bioconductor.
org/packages/releas
e/bioc/html/clusterPr
ofiler.html 

Msigdbr R package (version 7.5.1) Igor Dolgalev (2022). 
msigdbr: MSigDB 
Gene Sets for Multiple 
Organisms in a Tidy 
Data Format. R 
package version 7.5.1. 

https://igordot.github.
io/msigdbr/ 

ggbeeswarm R package (version 0.6.0) Erik Clarke and Scott 
Sherrill-Mix (2017). 
ggbeeswarm: 
Categorical Scatter 
(Violin Point) Plots. R 
package version 0.6.0. 

https://github.com/ec
larke/ggbeeswarm 

ggpubr R package (version 0.4.0) Alboukadel 
Kassambara (2020). 
ggpubr: 'ggplot2' 
Based Publication 
Ready Plots. R 
package version 0.4.0. 

https://rpkgs.datanov
ia.com/ggpubr/ 

ggeffects R package (version 1.1.1) Lüdecke D (2018). 
“ggeffects: Tidy Data 
Frames of Marginal 
Effects from 
Regression Models.” 
_Journal of Open 
Source 
Software_,*3*(26), 
772. doi: 
10.21105/joss.00772 
(URL: 
https://doi.org/10.2110
5/joss.00772). 

https://cran.r-
project.org/web/pack
ages/ggeffects/index
.html 



 

Tidyverse R package (version 1.3.2) Wickham H, Averick 
M, Bryan J, Chang W, 
McGowan LD, 
François R, 
Grolemund G, Hayes 
A, Henry L, Hester J, 
Kuhn M, Pedersen TL, 
Miller, E, Bache SM, 
Müller K, Ooms J, 
Robinson D, Seidel 
DP, Spinu V, 
Takahashi K, Vaughan 
D, Wilke C, Woo K, 
Yutani H (2019). 
“Welcome to the 
tidyverse.” _Journal of 
Open Source 
Software_, *4*(43), 
1686. doi: 
10.21105/joss.01686 
(URL: 
https://doi.org/10.2110
5/joss.01686). 

https://doi.org/10.21
105/joss.01686 

mHG R package (version 1.1) Eden, E. (2007). 
Discovering Motifs in 
Ranked Lists of DNA 
Sequences. Haifa. 
Retrieved from 
http://bioinfo.cs.techni
on.ac.il/people/zohar/t
hesis/eran.pdf 

https://cran.r-
project.org/web/pack
ages/mHG/index.ht
ml 

R6 R package (version 2.5.0) https://github.com/r-
lib/R6/ 

https://cran.r-
project.org/web/pack
ages/R6/index.html 

impute R package (version 1.64.0) Hastie T, Tibshirani R, 
Narasimhan B, Chu G 
(2023). impute: 
impute: Imputation for 
microarray data. 

https://bioconductor.
org/packages/releas
e/bioc/html/impute.ht
ml 

limma R package (version 3.46.0) Ritchie ME, Phipson 
B, Wu D, Hu Y, Law 
CW, Shi W, Smyth GK 
(2015). “limma powers 
differential expression 
analyses for RNA-
sequencing and 
microarray studies.” 
Nucleic Acids 
Research, 43(7), e47 

http://bioconductor.o
rg/packages/release/
bioc/html/limma.html 

boot R package (version1.3.28.1) Canty A, Ripley BD 
(2022). boot: 
Bootstrap R (S-Plus) 
Functions. R package 
version 1.3-28.1. 

https://cran.r-
project.org/web/pack
ages/boot/index.html 



 

ordinal R package (version 2022.11.16) Christensen, R. H. B. 
(2022). ordinal - 
Regression Models for 
Ordinal Data. R 
package version 
2022.11-16. 
  https://CRAN.R-
project.org/package=o
rdinal. 

https://cran.r-
project.org/web/pack
ages/ordinal/index.ht
ml 

ggalluvial R package (version 0.12.5) Jason Cory Brunson 
and Quentin D. Read 
(2023). ggalluvial: 
Alluvial Plots in 
'ggplot2'. R package 
version 
  0.12.5. 
http://corybrunson.gith
ub.io/ggalluvial/ 

https://cran.r-
project.org/web/pack
ages/ggalluvial/index
.html 
 

Cytoscape (version 3.8.2) Shannon P (2003) 
Cytoscape: a software 
environment for 
integrated models of 
biomolecular 
interaction networks 
Genome Research 
13(11):2498-504 

 

cytoscape.org 

BioRender Biorender biorender.com 
SamTools bam2fq (v1.4, v1.2) Danecek et al, 2021 RRID:SCR_002105 
Trimmomatic-toolkit (v0.36.5) Bolger, A. M., Lohse, 

M., & Usadel, B. 
(2014). Trimmomatic: 
A flexible trimmer for 
Illumina Sequence 
Data. Bioinformatics, 
btu170. 

RRID:SCR_011848 

STAR aligner (v2.4.2a) Dobin et al, 
Bioinformatics 2012 

RRID:SCR_004463 

HTSeq-count (v0.4.1) Putri et al, 2021 RRID:SCR_011867 
Picard (v1.134) Broad Institute RRID:SCR_006525 
FASTQC (v0.11.3) Babraham Institute RRID:SCR_014583 
Data.table R package 1.14.2 Dowle, M, et al 

Data.table R package 
version 1.14.2 
 

https://cran.r-
project.org/web/pack
ages/data.table/inde
x.html 

DT R package 0.21 Xue, Yihui, et al. DT: A 
Wrapper of the 
JavaScript Library 
DataTables R 
package version 0.21 

https://cran.r-
project.org/web/pack
ages/DT/index.html 



 

E1071 R package Meyer, D, et al. e1071: 
Misc Functions of the 
Dept of Statistics, 
Probability Theory 
Group. R package 
version 1.7-9. 

https://cran.r-
project.org/web/pack
ages/e1071/index.ht
ml 

Metabolon Laboratory Information Management System 
(LIMS) 

Metabolon Metabolon 

MassFragment Application Manager Waters  Waters MassLynx 
v.4.1 Waters Corp 
Milford, USA 

MetaboAnalyst 5.0 MetaboAnalyst https://www.metaboa
nalyst.ca/ 

Cytutils R package v0.1.0 Amir et al, 2017 https://github.com/is
mms-himc/cytutils 

Fluidigm software-acquisition, normalization, 
concatenation v7.0.8493 

Fluidigm https://www.fluidigm.
com/products-
services/software 

Cytobank Beckman Coulter https://premium.cyto
bank.org 

Prism 9 GraphPad https://www.graphpa
d.com/ 

R v4.0.2 The Comprehensive R 
Archive Network 

https://cran.r-
project.org/ 

FLASH v1.2.11 Magoc and Salzberg, 
2011 

https://ccb.jhu.edu/s
oftware/FLASH/ 

Bowtie2 v2.2.7 Langmead and 
Salzberg, 2012 

http://bowtie-
bio.sourceforge.net/
bowtie2/index.shtml 

Samtools v1.11 Li et al., 2009 http://samtools.sourc
eforge.net/ 

NCBI BLAST v2.11.0 Altschul et al., 1990 https://blast.ncbi.nlm
.nih.gov/Blast.cgi 

CD-HIT Li and Godzik, 2006 
Fu et al., 2012 

http://weizhong-
lab.ucsd.edu/cd-
hit/download.php 

COVID_pipe (https://github.com/mjsull/COVID_pipe) mjsull, Gonzalez-
Reiche, et al. 2020 
 

https://doi.org/10.52
81/zenodo.3775031  

Minimap2 v2.17-r941 Li, 2018 https://doi.org/10.10
93/bioinformatics/bty
191 

Shovill v1.1.0 Kwong, Gladman and 
Goncalves da Silva 

https://github.com/ts
eemann/shovill  

Pilon v1.24 Walker et al. 2014 http://doi.org/10.137
1/journal.pone.0112
963  

Canu v2.2 Koren, et al. 2017 http://doi.org/10.110
1/gr.215087.116  

Prokka v1.14.6 Seeman, 2014 http://doi.org/10.109
3/bioinformatics/btu1
53  

Seqkit v2.1.0 Shen, et al. 2016 http://doi.org/10.137
1/journal.pone.0163
962  



 

Kraken2 v2.1.2 Wood, et al. 2019 https://doi.org/10.11
86/s13059-019-
1891-0  

Skyline v.21.2.1.377 MacCossLab http://skyline.ms 
LabSolutions v.5.97 Shimadzu Scientific 

Instruments 
https://www.ssi.shim
adzu.com/products/i
nformatics/labsolutio
ns.html 

Perseus Tyanova, et al. 2016 https://maxquant.org
/perseus// 

Fluidigm Real-Time PCR Analysis v4.7.1 Fluidigm https://www.fluidigm.
com/products-
services/software 

Olink NPX Manager v3.3.2.434 Olink Proteomics https://www.olink.co
m/products-
services/data-
analysis-
products/npx-
manager/ 

Nextstrain v. 3.2.0 Hadfield, et al. 2018 https://github.com/ne
xtstrain/ncov  

Nextclade v. 1.11.0 Aksamentov, et al. 
2021 

https://doi.org/10.21
105/joss.03773 

Pangolin v. 1.11.0 O’Toole, et al. 2021 https://doi.org/10.10
93/ve/veab064 

Baltic v.0.1.6 Dudas, 2016 https://github.com/ev
ogytis/baltic 

IQ-TREE2 v.1.6.12  Minh et al, 2020, 
Hoang et al 2018 

https://doi.org/10.10
93/molbev/msaa015, 
https://doi.org/10.10
93/molbev/msx281 

Other 
Turbovap Evaporator Biotage Zymark TurboVap 

Cat#Z-TLVE 
Waters Acquity UPLC Waters Waters Acquity 
BEH C18 columns Waters Waters Acquity 2.1 

x100 mm, 1.7 um 
columns 

Q-Exactive with Orbitrap mass analyzer Thermo Scientific Cat#IQLAAEGAAPF
ALGMBDK 

HILIC columns Waters UPLC Waters UPLC BEH 
Amide 2.1 x 150 
mm, 1.7 um 

Hamilton MicroLab Star Liquid Handling Robotic System Hamilton Company https://www.hamilton
company.com/autom
ated-liquid-
handling/platforms/m
icrolab-star 

Geno/Grinder 2000 SPEX Sample Prep Geno/Grinder 2000 
NovaSeq 6000 Illumina N/A 
0.45μm filter plates Arctic White AWFP-F20022 
1000 ul Pipette Tips Opentrons 991-00005 
300 ul Pipette Tips Opentrons 991-00008 
20 ul Pipette Tips Opentrons 999-00014 



 

10 ul Pipette Tips Opentrons 999-00014 
20 ul Pipette Tips Axygen T-20-R-S 
200 ul Pipette Tips Axygen T-200-C-L-R-S 
Sealing tape 96-well Plates 4titude 4ti-0581 
25ml Reservoir Argos B3125-100 
4-well Reservoir Axygen RES-MW4-HP 
12-well Reservoir Axygen RES16MC-12-N 
0.5 ml 96-well Plates VWR 76210-520 
0.8 ml 96-well Plates VWR 76210-524 
MACROSpin C18 plates The Nest Group Inc. SNS SS18VL 
EvoTip  Evosep EV2008 
PepSep LC 8cm column Pepsep PSC-8-150-15-UHP-

nC - 8 cm 
nanoConnect 
column 

Shimadzu LC column Shimadzu 227-32100-02 
Captive Spray Emitter (ZDV) 20 µm Bruker 1865710 
Combitips® advanced, Eppendorf Quality™, 0.5 mL Eppendorf 0030089421 
Combitips® advanced, Eppendorf Quality™, 2.5 mL Eppendorf 0030089448 
Combitips® advanced, Eppendorf Quality™, 5 mL Eppendorf 0030089448 
Combitips® advanced, Eppendorf Quality™, 10 mL Eppendorf 0030089464 
EvoSep One Evosep EV-1000 
Thermomixer Eppendorf N/A 
timsTOF Pro Bruker Daltonik GmBH N/A 
Column Oven Sonation PRSO-V2 Sonication lab 

solutions 
PRSO-V2 

Nexera Mikros Shimadzu Scientific 
Instruments 

N/A 

LCMS 8060  Shimadzu Scientific 
Instruments 

N/A 

Fluidigm Dynamic Array 96.96 GE IFC Fluidigm Cat#BMK-M-96.96 
Fluidigm Ctril Line Fluid,150ul Fluidigm Cat#89000021 
Magnetic COOH Beads Region 34 BioRad Cat#MC10034-01 
Magnetic COOH Beads Region 43 BioRad Cat#MC10043-01 
Magnetic COOH Beads Region 63 BioRad Cat#MC10063-01 
Amine coupling kit BioRad Cat#171406001 
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