Supplementary material

- 1. **Supplementary Table S1.** qPCR primers for detection of mouse (m) and human (h) genes.
- 2. Supplementary Table S2. Clinical sickness parameters
- 3. **Supplementary Figure 1.** Percentage of body weight change in SARS-CoV-2 K18-hACE2 infected mice
- 4. **Supplementary Figure 2.** Serum cytokines and chemokines levels from SARS-CoV-2-infected mice.
- 5. **Supplementary Figure 3.** Treg related factors (Foxp3 and II-10) and Th17 related factors (Roryt and II17) in infected mice.
- 6. **Supplementary Figure 4.** JAK1/STAT3 signalling on human primary endothelial cells and fibroblasts.
- 7. **Supplementary Figure 5.** sgp130Fc blocks IL-6:sIL-6R complex stimulation in a dose dependent manner.
- 8. **Supplementary Figure 6.** Cell proliferation/viability after sgp130Fc treatment.
- 9. **Supplementary Figure 7.** ICAM-1 and MCP-1 secretion from cultured human endothelial cells and lung fibroblasts.
- 10. Supplementary Figure 8. Western blot densitometric analyses of gp130.

Gene	Sequence (5' – 3')	Gene	Sequence (5' – 3')
mCyclophilin	Fw: GTCTCCTTCGAGCTGTTTGC	mhRplo	Fw: AACATCTCCCCCTTCTCCTT
	Rv: CGTGTAAAGTCACCACCCTG		Rv: GAAGGCCTTGACCTTTTCAG
mIl6r	Fw: ACGAAGGCTGTGCTTTGC	mIl6st	Fw: AAGGATTTGGCTAGCGCAAGC
	Rv: TTCGTTGTGGCTGGACTTGC		Rv: CCACACGATGTAGCTGGCATT
mOsm	Fw: ACGGCTTCTAAGAACACTGC	mOsmr	Fw: TCTTGGAGGAGCCTTTACCAT
	Rv: GATATAGGGCTCCAAGAGTG		Rv: TTTCCAGGAACTCCAGTTGC
mLif	Fw: CGAGACCACGCTCCAGTATAT	mLifr	Fw: CGATGCATGCAAACGGTCTGA
	Rv: TTTCCAGTGCAGAACCAGCAG		Rv: GACTTCGTGATCACCAGGTGA
mIl11	Fw: ACTAGCTGCACAGATGAGAG	mIl11r	Fw: CCTGGAGACATCTGTCCTCA
	Rv: GCTCCAGAGTCTTTAGGGAA		Rv: CCTGAGCAGCTGCTGCTCAT
mSocs3	Fw: AAGGCCGGAGATTTCGCT	mSaa1	Fw: TTGTTCACGAGGCTTTCC
	Rv: AACTTGCTGTGGGGTGACCAT		Rv: TGAGCAGCATCATAGTTCC
mLrg1	Fw: TAGAGGAGCAGCTATGGTCTCT	mTnfα	Fw: AGCCCACGTCGTAGCAAACC
	Rv: TACCCTCAGCCGACTGCAGTAT		Rv: GAGGAGCACGTAGTCGGGGC
mIl1β	Fw: CTTGGGATCCACACTCTCCAG	mIfnγ	Fw: ACAGCAAGGCGAAAAAGGA
	Rv: AAATACCTGTGGCCTTGGGC		Rv: TGGTGGACCACTCGGATGA
mIL10	Fw: GCTCTTACTGACTGGCATG	mRORgt	Fw: AAGGCAAATACGGTGGTGTG
	Rv: CCTGAGGGTCTTCAGCTTC		Rv: GAAAAGGGTGAAGGAGTCGC
mSTAT3	Fw: GGAGCAGCATCTTCAGGATGT	mFOXP3	Fw: GAGAAGACAGACCCATGCTGT
	Rv: TCTGTCTGGTCACAGACTGGT		Rv: AGAGGAGCTGCTGAGATGTGA
mIL17	Fw: TCCAGGGAGAGCTTCATCTG		
	Rv: GAAGTCCTTGGCCTCAGTGT		
hCyclophilin	Fw: AGACAAGGTCCCAAAGACAGC	hIl6	Fw: TGACCCAACCACAAATGC
	Rv: CAGTGCCATTATGGCGTGTGA		Rv: CTGGCTCTGAAACAAAGGAT
hgp130	Fw: TTGACGTTGCAGACTTGGCT	hCcl2	Fw: GCAAGTGTCCCAAAGAAGCT
	Rv: AACTGGAGATTCAGGACTGA		Rv: AGCTTCTTTGGGACACTTGC
hCxcl2	Fw: GCAGAAAGCTTGTCTCAACCC	hIcam	Fw: AGGATGGCACTTTCCCACTG
	Rv: GGCAGAAAGCTTGTCTCAACCC		Rv: GGAGAGCACATTCACGGTCA

Table S1. qPCR primers for detection of mouse (m) and human (h) genes.

 Table S2. Clinical sickness parameters

	Clinical parameters	Degree
Dreathing	Dyspnoea	No
breatning		Yes
	Piloerection	No
		Yes
Annoonon	Hunched posture	No
Appearance		Yes
	Eye closure	Normal
		Squinted/Closed
	Spontaneous	Alert
Dehavior		Slow moving/Lethargy
Dellavior	Provoked	Response to stimuli
		No response to stimuli

Fig. S1

Percentage of body weight change in SARS-CoV-2 K18-hACE2 infected mice. Data are shown as mean and 95% confidence intervals (CI). Data are combined from two independent experiments.

Serum cytokines and chemokines levels from SARS-CoV-2-infected mice. Serum from untreated and sgp130Fc-treated infected animals were analysed by multiplex analysis. Data are combined from two independent experiments. dpi: day post infection. < 15 dpi: dead/euthanized mice before the end of the experiment. 15 dpi: surviving mice at the end of experiment. All graphs show mean and 95% CI. Statistics were calculated by Kruskal-Wallis test with Mann-Whitney U-test. p values are indicated in the graphs.

Fig. S3

Treg related factors (*Foxp3* and *Il-10*) and **Th17 related factors** (*Roryt* and *Il17*) in infected mice. Roryt/Foxp3 and IL17/IL-10 mRNA ratios measured in lung homogenates by qPCR. Data are combined from two independent experiments. dpi: day post infection. < 15 dpi: dead/euthanized mice before the end of the experiment. 15 dpi: surviving mice at the end of experiment. All graphs show mean and 95% CI. Statistics were calculated by Kruskal-Wallis test with Mann-Whitney U-test. *p* values are indicated in the graphs.

FIG. S4

JAK1/STAT3 signalling on human primary endothelial cells and fibroblasts. a) Representative Western blots P(Tyr705)-STAT3, STAT3, P(Tr1034/1035)-JAK1 and JAK1 from cell lysates after 48 h of treatment. b) Western blot densitometric analyses of P(Tyr705)-STAT3/STAT3 and P(Tyr1034/1035)-JAK1/JAK1 at 15 min, 24 h (presented in Fig 7a) and 48 h. Human lung microvascular cells (HLMVEC), human umbilical vein endothelial cells (HUVEC) and primary lung fibroblast (IMR-90) were treated with vehicle, IL-6 (20 ng/mL), IL-6R (20 ng/mL) or IL-6:sIL-6R complex (20 ng/mL) in the presence or absence of sgp130Fc (300 ng/mL). Data are combined from 4-3 individual experiments. Control is set to 1 for each experiment and data presented as fold-change *vs* control. Complex: IL-6:sIL-6R complex. Complex + sgp130: IL-6:sIL-6R:sgp130Fc complex. All graphs show mean and 95 % CI. Statistics were calculated by Kruskal-Wallis test with Mann-Whitney U-test. *p* values *vs* vehicle-treated control (above) and *vs* complex (bar) are indicated in the graphs.

Fig. S5

sgp130Fc blocks IL-6:sIL-6R complex stimulation in a dose dependent manner. Representative Western blots of P(Tyr705)-STAT3, STAT3, P(Tr1034/1035)-JAK1 and JAK1 in Human lung microvascular endothelial cells (HLMVEC), human umbilical vein endothelial cells (HUVEC) and human lung fibroblast (IMR-90) treated during 24 h with IL-6:sIL-6R complex in the presence or absence of different doses of sgp130Fc (100 ng/mL, 300 ng/mL, 600 ng/mL, 1000 ng/mL).

Cell proliferation/viability after sgp130Fc treatment. Human lung microvascular endothelial cells (HLMVEC), human umbilical vein endothelial cells (HUVEC), human lung fibroblast (IMR-90), aortic thoracic smooth muscle cells (A7r5) and human embryonic kidney cells (HEK293) were seeded in 96-well plates at a density of 5000 or 10,000 cells/well (for cell lines or primary cell culture, respectively) and serum starved for 24 h. Then, cells were treated with vehicle (control) and IL-6:sIL-6R (Complex, 20 ng/mL) in the presence or absence of different doses of sgp130Fc (100 ng/mL, 300 ng/mL, 600 ng/mL, 1000ng/mL) for 24 h. Proliferation/viability was evaluated using AlamarBlue reagent (Biosource International) and determined in a Spectrophotometer (Thermo Scientific Multiskan Go Microplate) up to 72 h. Results were expressed as a percentage referred to vehicle-treated controls. Data are combined from 6-16 independent experiments. Control is set to 1 for each experiment and data presented as fold-change *vs* control. All graphs show mean and 95% CI. Statistics were calculated by one way ANOVA.

Fig S7

ICAM-1 and MCP-1 secretion from cultured human endothelial cells and lung fibroblasts. Human lung microvascular endothelial cells (HLMVEC), human umbilical vein endothelial cells (HUVEC) and human lung fibroblast (IMR-90) were treated with vehicle (control), IL-6 (20 ng/mL), IL-6R (20 ng/mL) or IL-6:sIL-6R (Complex, 20 ng/mL) in the presence or absence of sgp130Fc (100 ng/mL, 300 ng/mL, 600 ng/mL, 1000 ng/mL). ICAM-1/CD54 and CCL2/MCP1 levels by ELISA after 12 h and 24 h of treatment respectively. Data are combined from 3-4 independent experiments. Control is set to 1 for each experiment. All graphs show mean and 95% CI. Statistics were calculated by Kruskal Wallis test and with Mann-Whitney U-test. *p* values are indicated in the graphs.

Western blot densitometric analyses of gp130. Human lung microvascular cells (HLMVEC), human umbilical vein endothelial cells (HUVEC) and primary lung fibroblast (IMR-90) were treated with vehicle, IL-6 (20 ng/mL), IL-6R (20 ng/mL) or IL-6:sIL-6R complex (20 ng/mL) in the presence or absence of sgp130Fc (300 ng/mL) for 24 h. Data are combined from 3 individual experiments. Control is set to 1 for each experiment and data presented as fold-change vs control (mean and 95% CI). Complex: IL-6:sIL-6R. Complex + sgp130: IL-6:sIL-6R:sgp130Fc. Graph shows mean and 95% CI. Statistics were calculated by Kruskal-Wallis test with Mann-Whitney U-test. *p* values *vs* vehicle-treated control (above) and versus complex (bar) are indicated in the graphs.