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Supplementary Material for Smoothed Nested Testing on
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1. A GENERAL THEORY OF POSITIVE REGRESSION DEPENDENCE

We establish a general theory of positive regression dependence that extends the results of
Benjamini & Yekutieli (2001) to a much broader class of statistics. Section 1.1 presents a generic 5

result that connects the concepts of stochastic ordering with positive regression dependence. In
Section 1.2 and 1.3, we prove results which imply Theorem 1 and Theorem 2, respectively.
Finally, the technical lemmas are presented in Section 1.4.

1.1. A Generic Result
We start by two definitions related to stochastic orderings. 10

DEFINITION 1. Given two vectors x, y ∈ Rn, x � y iff xi ≤ yi for all i ∈ {1, . . . , n}. A func-
tion f : Rd 7→ R is non-decreasing iff f(x) ≤ f(y) for any x � y. Further, given two probability
distributions P1, P2 on Rd, P1 � P2 iff for any nondecreasing function f ,∫

Rd

fdP1 ≤
∫
Rd

fdP2.

DEFINITION 2. A random vectorX is said to be stochastically increasing in the random vari-
able Y , denoted by X ↑st Y , if the regular conditional probability P(X ∈ · | Y = y) exists (e.g. 15

the underlying measurable space is a Polish space), and E[g(X) | Y = y] is bounded nonde-
creasing in y for every nondecreasing function g.

Indeed, (X1, . . . , Xn) satisfy positive regression dependence on a subset T ⊂ {1, . . . , n} iff

(X1, . . . , Xn) ↑st Xi, ∀i ∈ T.

The “if” part is straightforward because the function x 7→ I(x ∈ C) for any non-decreasing set is
non-decreasing. The “only if” part can be proved by approximating each non-decreasing function 20

by sums of indicator functions on non-decreasing set; See Theorem 1 of Kamae et al. (1977)
(Proposition 3).

The following theorem provides a broad class of multivariate statistics that satisfy positive
regression dependence. The intuition is quite simple: under the condition (X1, . . . , Xn) ↑st Yj ,
that Yj “increases” would imply that (X1, . . . , Xn) “increases” and thus all other Yi’s because 25

fi’s are non-decreasing.
THEOREM 1.1. LetX1, . . . , Xn be random variables on R and {fj : j ∈ [M ]} be a collection

of (entrywise) non-decreasing functions on Rn. For each j ∈ [M ], define

Yj = fj(X1, . . . , Xn).

Then (Y1, . . . , YM ) is positive regression dependence on the subset {j} if

(X1, . . . , Xn) ↑st Yj .

Proof. It is left to prove that, for any y1 < y2 and a bounded non-decreasing function h on 30

RM ,

E[h(Y1, . . . , YM ) | Yj = y1] ≤ E[h(Y1, . . . , YM ) | Yj = y2]. (1.1)
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Because Rn is a Polish space, the regular conditional probability
P((X1, . . . , Xn) ∈ · | fj(X1, . . . , Xn) = y) exists. Let P1 and P2 denotes two measures with

Pk(·) = P((X1, . . . , Xn) ∈ · | fj(X1, . . . , Xn) = yk), k = 1, 2.

Our condition ensures that P1 � P2. By Proposition 3, there exists X
(1)
1 , . . . , X

(1)
n and

X
(2)
1 , . . . , X

(2)
n such that (X

(1)
1 , . . . , X

(1)
n ) ∼ P1, (X

(2)
1 , . . . , X

(2)
n ) ∼ P2, and35

(X
(1)
1 , . . . , X(1)

n ) � (X
(2)
1 , . . . , X(2)

n ), a.s.,

and for any Borel set A ⊂ Rn,

P
(

(X
(k)
1 , . . . , X(k)

n ) ∈ A
)

= Pk(A) = P((X1, . . . , Xn) ∈ A | Yj = yk).

Let

Y
(k)
i = fi(X

(k)
1 , . . . , X(k)

n ), ∀i ∈ [M ], k = 1, 2.

Since each fi is non-decreasing, we have

Y
(1)
i ≤ Y (2)

i , ∀i ∈ [M ], a.s., (1.2)

and for any Borel set B ⊂ RM and k = 1, 2,

P
(

(Y
(k)

1 , . . . , Y
(k)
M ) ∈ B

)
= P((Y1, . . . , YM ) ∈ B | Yj = yk). (1.3)

Finally, since h is non-decreasing, (1.2) implies that40

h(Y
(1)

1 , . . . , Y
(1)
M ) ≤ h(Y

(2)
1 , . . . , Y

(2)
M ), a.s.,

which further implies that

Eh(Y
(1)

1 , . . . , Y
(1)
M ) ≤ Eh(Y

(2)
1 , . . . , Y

(2)
M ).

The proof of (1.1) is then completed by (1.3). �

1.2. Weighted averages of independent log-concave random variables
We first present a powerful result proved by Efron (1965).
PROPOSITION 1. [Theorem 1 of Efron (1965); see also Block et al. (1985)] Suppose45

X1, . . . , Xn are independent random variables on R or Z with (potentially distinct) log-concave
densities. Then

(X1, . . . , Xn) ↑st
n∑
i=1

Xi.

Remark 1. Efron (1965) assumes each Xi has a PF2 density, which is equivalent to a log-
concave density; see e.g. Balabdaoui & Wellner (2014).

THEOREM 1.2. Let X1, . . . , Xn be random variables on R or Z, and T ⊂ {1, . . . , n} such50

that

(i) Xi has a log-concave density for each i ∈ T ;
(ii) {Xi : i ∈ T} are mutually independent;

(iii) {Xi : i ∈ T} are independent of {Xi : i 6∈ T}.
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Let 55

Y1 = g

(∑
i∈T

aiXi

)
, (1.4)

where ai ≥ 0 for all i ∈ T and g is non-decreasing. For any j = 2, . . . ,M , let

Yj = fj(X1, . . . , Xn)

for some (entrywise) non-decreasing function fj . Then (Y1, . . . , YM ) are positive regression de-
pendence with respect to {1}.

Proof. By Theorem 1.1, it is left to show that

(X1, . . . , Xn) ↑st Y1.

Since g is non-decreasing, this is equivalent to 60

(X1, . . . , Xn) ↑st
∑
i∈T

aiXi

By condition (iii) and Lemma 1.1, it remains to prove

(Xi)i∈T ↑st
∑
i∈T

aiXi. (1.5)

Let

X̃i = biXi, where bi =

{
ai (ai 6= 0)
1 (ai = 0)

,

and define

f̃j(x1, . . . , xn) = fj

(
x1

b1
, . . . ,

xn
bn

)
Since all ai’s are non-negative and bi’s are positive, each f̃j is non-decreasing. For each i ∈ T ,
by condition (i), X̃i has a log-concave density since Xi 7→ X̃i is a linear mapping. Let T+ = 65

{i ∈ T : ai 6= 0}, then ∑
i∈T

aiXi =
∑
i∈T+

X̃i.

By Proposition 1,

(X̃i)i∈T+ ↑st Y1.

By condition (ii), X̃i’s are independent. Then, by Lemma 1.1,

(X̃i)i∈T+ ↑st Y1 =⇒ (X̃i)i∈T ↑st Y1.

The equation (1.5) is then proved. �
Now we prove Theorem 1 as a special case of Theorem 1.2. 70

Proof (Theorem 1). Fix any null node v. For each node c ∈ Cv, letXc = H−1
v,c (pc). SinceHv,c

is monotone increasing and pc ∼ Uniform([0, 1]), for any x ∈ R,

P(Xc ≤ x) = P(pc ≤ Hv,c(x)) = Hv,c(x).

The density function of pc is then H ′v,c, which is log-concave. Since Gv and H−1
v,c are monotone

increasing for any (v, c), each smoothed p-value and original p-value is a monotone increasing
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transformation of (X1, . . . , Xn). Setting T = |Cb|, g = Gv and ac = 1 for all c ∈ T in Theorem75

1.2, we conclude that the smoothed p-values satisfy positive regression dependence on the subset
{v}. Since this holds for any null node v, th p-values satisfy positive regression dependence on
the subset of nulls. �

1.3. Local order statistics
We first present a powerful result proved by Block et al. (1987).80

PROPOSITION 2 (COROLLARY IN SECTION 3 OF BLOCK ET AL. (1987)). Let X1, . . . , Xn

be independent random variables on R with a common continuous distribution. Let X(1) ≤
X(2) ≤ · · · ≤ X(n) be the ordered statistics. For any given subsets {k1, . . . , kr} of {1, . . . , n},

(X1, . . . , Xn) ↑st (X(k1), . . . , X(kr)).

Theorem 2 is a direct consequence of the following theorem.
THEOREM 1.3. Let X1, . . . , Xn be random variables on R or Z, and T ⊂ {1, . . . , n} such85

that

(i) {Xi : i ∈ T} are i.i.d.;
(ii) {Xi : i ∈ T} are independent of {Xi : i 6∈ T}.

Let

Y1 = g
(
X(k);T

)
, (1.6)

where g is an non-decreasing function, T is a subset of [n] and X(k);T denotes the k-th order90

statistics of (Xi)i∈T . For any j = 2, . . . ,M , let

Yj = fj(X1, . . . , Xn)

for some non-decreasing function fj . Then (Y1, . . . , YM ) are PRDS with respect to {1}.
Proof. Similar to (1.5) in proof of Theorem 1.2, it is left to prove that

(X1, . . . , Xn) ↑st X(k);T .

By condition (ii) and Lemma 1.1, it remains to prove that

(Xi)i∈T ↑st X(k);T .

This is proved by condition (i) and Proposition 2. �95

1.4. Technical lemmas
We first present a coupling property of stochastic orderings.
PROPOSITION 3 (THEOREM 1 OF KAMAE ET AL. (1977)). Let E be a partially ordered

Polish space (i.e. complete separable metrizable topological space). For any two distributions
P1 and P2 on E, P1 � P2 iff there exists a distribution P on E × E equipped with the product100

topology, which is supported on the set {(x, y) ∈ E × E} with first marginal P1 and second
marginal P2. Equivalently, there exists a random vector (X,Y ) on E × E, such that X � Y
almost surely.

Next we prove a useful property of stochastic monotonicity.
LEMMA 1.1. Assume that the sample space of the random element (X,Y, Z) is partially or-105

dered. If X ↑st Y and Z ⊥ (X,Y ), then

(X,Z) ↑st Y, (X,Z) ↑st (Y, Z)
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Proof. Let h be any bounded non-decreasing function on the domain of (X,Z). Since Z ⊥
(X,Y ),

E[h(X,Z) | Y ] = E[EZ [h(X,Z)] | Y ] = E
[∫

h(X, z)dPZ(z) | Y
]
.

Let h̃(x) =
∫
h(x, z)dPZ(z). Since h(x, z) is non-decreasing in x for any z, h̃(x) is also

bounded non-decreasing in x. Since X ↑st Y , E[h̃(X) | Y = y] is non-decreasing in y. This 110

proves the first result.
For the second result, given any y, z,

E[h(X,Z) | Y = y, Z = z] = E[h(X, z) | Y = y, Z = z] = E[h(X, z) | Y = y].

For any y � y′ and z � z′,

E[h(X, z) | Y = y] ≤ E[h(X, z′) | Y = y] ≤ E[h(X, z′) | Y = y′]

where the first inequality uses the fact that h(X, z) is non-decreasing in z, and the second in- 115

equality uses the fact that h(x, z′) is non-decreasing in x and X ↑st Y . Therefore,

E[h(X,Z) | Y = y, Z = z] ≤ E[h(X,Z) | Y = y′, Z = z′].

2. OTHER TECHNICAL DETAILS

We here recall some notation for the benefit of the reader. For each v ∈ {1, · · · , n} = V we

can observe a random variable pv. Let S̄ ⊂ V; we assume {pv}v∈S̄
i.i.d∼ Uniform[0, 1]. G =

(V, E) whose edges encode logical constraints on the hypotheses: v → w =⇒ (v ∈ S̄ =⇒ 120

w ∈ S̄). For each v we have that Cv denotes the union of v with all of its descendants in the
graph G and fv(xCv , xV\Cv) denotes any function. The smoothed p̃-value for node v is then,

Fv(c;xV\Cv) , pr(fv(uCv , xV\Cv) ≤ c), p̃v , Fv(fv(pCv , pV\Cv); pV\Cv),

where {uw}w∈Cv are independent and identically distributed as Uniform[0, 1].

2.1. Smoothed test statistics
The starting point for this work is Lemma 1, which we prove here. 125

Proof. Fix any v ∈ S̄. The meaning of the graph structure indicates that Cv ⊂ S̄

(a) Our assumption that the null p-values are independent and identically distributed as
Uniform[0, 1] and independent of non-null p-values imply that

pCv
d
= uCv | pV\Cv .

As a result,

p̃v
d
= Fv(fv(uCv ; pV\Cv)) | pV\Cv .

By definition, Fv(fv(uCv ; pV\Cv)) is super-uniform. 130

(b) Since null p-values are independent and super-uniform ,

pCv � uCv | pV\Cv ,

where � denotes entrywise stochastic dominance. Since fv is nondecreasing in pCv ,

fv(pCv , pV\Cv) � fv(uCv , pV\Cv) | pV\Cv .
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Further, since Fv is nondecreasing,

p̃v � Fv(fv(uCv , pV\Cv)) | pV\Cv .

As in case (a), we conclude that p̃v is super-uniform. �

2.2. Familywise error rate control135

We apply the method of Meijer & Goeman (2015) for familywise error rate control based on
the Sequential Rejection Principle developed in Goeman & Solari (2010). For the benefit of the
reader, we sketch the main ideas below.

The starting-place for this analysis is an application of the Sequential Rejection Principle of
Goeman and Solari.140

DEFINITION 3. Fix n ∈ N, let P denote the power set {1 · · ·n}, let π : {1 · · ·n} × P → R.
Let Ŝ0 , ∅ and recursively define

Ŝi(p, π) , Ŝi−1(p, π) ∪ {v : pv ≤ π(v, Ŝi−1(p, π))} (2.1)

The limit of this process, Ŝ(p, π) , ∪ni Ŝi(p, π), is said to be the final result of sequential rejec-
tion on p via π.145

Intuitively, π is an object which uses the current set of rejections to produce a weight for each hy-
pothesis. These weights are then used to decide whether further rejections may be made. Goeman
and Solari provide conditions on π such that this algorithm conserves familywise error.

THEOREM 2.1 (GOEMAN AND SOLARI). Let M ⊂ P . For each S ∈M let PS denote a prob-
ability distribution for the variables p1, p2, · · · , pn ∈ R. Let π : {1 · · ·n} × P → R satisfy150

PS({v : pv ≤ π(v,S)} ⊂ S) ≥ 1− α for every S ∈M (this will be referred to as the “single-
step condition”). Let us further assume that π(v, Ŝi(p, π)) ≤ π(v,S) for any i, p and any S ∈M
such that S ⊇ Ŝi(p, π) and any v /∈ S (this will be referred to as the “monotonicity condition”).
It follows that

PM (Ŝ(p, π) ⊂ S) ≥ 1− α

for any S ∈M.155

Proof. Consider the event that {v : pv ≤ π(v,S)} ⊂ S, i.e.

pv > π(v,S) ∀v ∈ S̄.

Here we adopt the notation S̄ = {1 · · ·n}\S. The single-step condition guarantees that this event
occurs with probability at least 1− α. Thus to prove our point it suffices to show that Ŝ ⊂ S
whenever this event occurs.

We argue by induction. Clearly Ŝ0 ⊂M . Now suppose that Ŝi−1 ⊂ S; the monotonicity as-160

sumption then yields that π(v, Ŝi−1) ≤ π(v,S). On the other hand, we have already assumed
that pv > π(v,S) for every v ∈ S̄. Together, these facts imply that pv ≥ π(v, Ŝi−1) for every
v ∈ S̄. It follows that

Ŝi = Ŝi−1 ∪ {v : pv ≤ π(v, Ŝi−1)} ⊂ S

By induction, it follows that Ŝ ⊂ S . �
Meijer & Goeman (2015) provide several weight functions that satisfy the single-step and165

monotonicity conditions of the Theorem above. For simplicity, in this work we focus on their
“all-parents” weight function. This function produces weights by using a particular “water-
filling” procedure, described below.
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Algorithm 1. All-parents water-filling procedure

input : a graph G = (V, E), a subset Ŝ ⊆ V
Z(Ŝ)← |{v /∈ Ŝ : v is a leaf}|;
foreach v ∈ V do

if v is a leaf and v /∈ Ŝ then
gv ← 1/|Z(Ŝ)|;

else
gv ← 0;

while there exists a node v such that gv ≥ 0 and parents(v)\Ŝ 6= ∅ do
foreach w ∈ parents(v)\Ŝ do

gw ← gw + gv
|parents(v)\Ŝ|

;

gv ← 0;
return g

This algorithm can be equivalently defined via the following recursive relations: 170

g̃v(G, Ŝ) =


0 if v ∈ Ŝ
1/|{v /∈ Ŝ : v is a leaf of G}| if v /∈ Ŝ is a leaf of G∑

w∈children(w)
g̃w(G,Ŝ)

|parents(w)\Ŝ|
otherwise

gv(G, Ŝ) =

{
g̃v(G, Ŝ) if parents(v) ⊂ Ŝ
0 otherwise

Both points of view are helpful in the proofs below.
For any directed acyclic graph G and any given target error level, α, this weight-filling func-

tion can be used to produce a satisfactory weight function by taking π(v, Ŝ) = αgv(G, Ŝ). This 175

weight function is guaranteed to satisfy the conditions of Goeman and Solari.
THEOREM 2.2 (MEIJER AND GOEMAN). Fix a directed graph G and let M ⊂ P denote the

set of all collections of hypotheses consistent with that graph (i.e. if S ∈M and v ∈ S then
all ancestors of v are also in S). Fix any S ⊂M and assume PS(pv ≤ c) ≤ c,∀v /∈ S. Then
the weight function π(v, Ŝ) = αgv(G, Ŝ) satisfies the single-step and monotonicity conditions of 180

Theorem 2.1.
Proof. Let us begin with the monotonicity condition. This monotonicity condition follows

from the corresponding monotonicity property on the water-filling function g, defined above.
Let us fix any i, p and assume Ŝi(p, π) ⊂ S.r If v /∈ S is a leaf, then g̃v(G, Ŝi), g̃v(G,S) denote the reciprocal of the number of unrejected 185

leaves in each of their respective cases. Since S ⊂ S′ it follows that g̃v(G, Ŝi) ≤ g̃v(G,S) for
all v /∈ S.r Now consider the case that w /∈ S isn’t a leaf. Let us apply the inductive hypothesis that
g̃v(G, Ŝi) ≤ g̃v(G,S) for every child v /∈ S. Now note that S ∈M and w /∈ S; it follows that
all of the children of w also lie outside of S. Thus, in fact, since all children of w lie outside 190

S, we have that g̃v(G, Ŝi) ≤ g̃v(G,S) for every child v. We obtain that

g̃w(G, Ŝi) =
∑

v∈children(w)

g̃v(G, Ŝi)∣∣∣parents(v)\Ŝi
∣∣∣ ≤

∑
v∈children(w)

g̃v(G, Ŝi)
|parents(v)\S|

≤ g̃w(G,S)
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Putting these two facts together and applying an induction argument on the nodes in topological
order from the bottom of the tree, it follows that g̃v(G, Ŝi) ≤ g̃v(G,S) for every v /∈ S. Finally,
observe that195

parents(v) ⊂ Ŝi =⇒ parents(v) ⊂ S

In combination with the inequality on g̃, this yields that gv(G, Ŝi) ≤ gv(G,S) for all v /∈ S, as
desired.

Now let us turn to the single-step condition. First observe that the water-filling function g
always satisfies

∑
v gv = 1. Indeed, observe that Algorithm 1 initializes the values of gv to satisfy

this property, and the total value of
∑

v gv is unchanged at each iteration of the while loop. The200

single-step condition then follows from a union bound:

pr ({v : pv ≤ π(v,S)} ⊆ S) = pr(pv > αgv(G,S) ∀v ∈ S̄)

≥ 1−
∑
v∈S̄

pr(pv ≤ αgv(G,S))

≥ 1−
∑
v∈S̄

αgv(G,S) ≥ 1− α.

2.3. False exceedance control205

We combine the method of Meijer & Goeman (2015) and the generic procedure of Genovese
& Wasserman (2006), which turns any familywise error rate controlling method into a false ex-
ceedance controlling method. The procedure is outlined in Alg. 2. Here topological sort
refers to a topological ordering of the vertices of the graph such that any node appears later than
its parents (Cormen et al., 2009, Section 22.4).210

Algorithm 2. Hybrid method to control false exceedance rate

input : Smoothed p-values p̃ = (p̃1, . . . , p̃n), directed acyclic graph G, exceedance level
γ, α

Ŝ0 ← Algorithm 1 with inputs p̃,G, α;
Ŝ ′ ← first b|Ŝ|γ/(1− γ)c elements of topological sort(G \ Ŝ0);
return Ŝ0 ∪ Ŝ ′

2.4. False discovery rate control
For false discovery rate control, we use the unreshaped version of the Ramdas et al. (2019)

method on our p̃-values. It is a recursive step-up procedure with graph-specific thresholds. In
particular, for a directed acyclic graph, the depth of each node dv is defined as the length of the215

longest path from v to any root, the node without parents. Let Vd = {v : dv = d}. For each node
v ∈ Vd, let {αd,v(r) : r = 1, 2, . . .} be a sequence of thresholds which will be specified later. The
procedure starts by applying a generalized step-up procedure on V1 to obtain an initial rejection
set:

Ŝ1 = {v ∈ V1 : p̃v ≤ α1,v(R1)} ,

where220

R1 = max

1 ≤ r ≤ |V1| :
∑
v∈V1

I(p̃v ≤ α1,v(r)) ≥ r

 .
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Once Ŝ1, . . . , Ŝd−1 are decided, let V ′d be the set of nodes with depth d and all parents rejected,
i.e.

V ′d =

v ∈ Vd : parents(v) ⊂
d−1⋂
j=1

Ŝj

 .

Then the procedure computes Ŝd as

Ŝd =
{
v ∈ V ′d : p̃v ≤ αd,v(Rd)

}
,

where

Rd = max

1 ≤ r ≤ |V ′d| :
∑
v∈V ′

d

I(p̃v ≤ αd,v(r)) ≥ r

 .

The final rejection set of the Ramdas et al. (2019) method is then 225

Ŝ =
D⋃
d=1

Ŝd,

where D is the maximal depth. By definition, every node in Ŝd has all their parents rejected in
Ŝ1 ∪ . . . ∪ Ŝd−1. Therefore, Ŝ obeys the logical constraint.

To define the threshold αd,v(r), Ramdas et al. (2019) define the effective number of leaves
`v and the effective number of nodes mv for each node v. Similar to the weight in Meijer-
Goeman algorithm, `v and mv are computed via a “water-filling” algorithm in a bottom-up fash- 230

ion. Specifically, they set `v = mv = 1 for each leaf node and then proceed up the tree, from
leaves to roots, recursively calculating

`v =
∑

w∈children(v)

`w
|parents(w)|

, mv = 1 +
∑

w∈children(v)

mw

|parents(w)|
.

Let L is the total number of leaves. Then

αd,v(r) = α
`v
L

mv + r +
∑d−1

j=1 Rj − 1

mv
.

2.5. Dependency
Let Φ−1 denote the quantile function of the standard normal. We here consider the case that 235

Zv = Φ−1(pv) satisfies ZS̄ ∼ N (0, R) for some correlation matrix R. In this case some of the
methods presented in the main text may fail due to the correlation between the p-values. How-
ever, we can account for this dependency, even if we do not know R. Throughout this section we
consider this case, and apply what we call conservative Stouffer smoothing.

p̃v ←

{
1 if

∑
w∈Cv πvwZw ≥ 0

Φ
(∑

w∈Cv πvwZw
)

otherwise,

where Φ denotes the standard normal CDF and π satisfies πvw ≥ 0,
∑

w∈Cv πvw = 1. As in the 240

independent case, the existing techniques of Meijer & Goeman (2015) and Ramdas et al. (2019)
can be now be applied to these smoothed values. The target error rate will still be controlled,
even though the null p-values are no longer independent.

Proof of Lemma 2.
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Fig. 1: Power and empirical error rate for three different multiple hypothesis testing methods on
two different simulations. Gray lines indicate a Fisher smoothing version of DAGGER, dashed
lines indicate a conservative Stouffer smoothing version of DAGGER, dotted lines indicate DAG-
GER, and the solid black line indicates the maximum allowable error.

Proof. Fix any v ∈ S̄. Let Yv =
∑

w∈Cv πvwZw. The assumption of Gaussian copula tells us245

that Yv ∼ N (0, σ2). We can get an upper bound for σ2 using the observation thatRw,w′ ∈ [−1, 1]
and π lies on the simplex:

var(Yv) =
∑
w

πw

(∑
w′

Rw,w′πw′

)
≤
∑
w

πw(1) = 1.

Thus σ ≤ 1. We can now prove the Lemma, considering three different cases. First, let α ≤ 1/2.
Then250

pr(p̃v ≤ α) = pr(Yv ≤ Φ−1(α)) = Φ(Ψ−1(α)/σ)

≤ Φ(Φ−1(α)) = α.

This only works because we can assume Φ−1(α) ≤ 0; otherwise the inequality goes the other
way. Second, let 1/2 < α < 1. Then

pr(p̃v ≤ α) = pr(p̃v ≤ 1/2) + pr(p̃v ∈ (1/2, α))255

= pr(p̃v ≤ 1/2) + 0 ≤ 1/2 ≤ α.

Finally, let α = 1. Then pr(p̃v ≤ 1) = 1 = α. �
Proof of Lemma 3.
Proof. As in the previous proof, let Yv =

∑
w∈Cv πvwZw. Note that YS̄ is jointly Gaussian.

Since R has no negative entries and π is also non-negative, the covariance of YS̄ is positive. It260

follows that Y are positive regression dependent (Benjamini & Yekutieli, 2001). Moreover, p̃
is an elementwise monotone nondecreasing transformation of Y ; each p̃v can be expressed as a
monotone nondecreasing function of Yv; it follows that p̃ are also positive regression dependent.

3. ADDITIONAL EXPERIMENTAL RESULTS

3.1. Dependent null statistics265

Here we perform numerical experiments to investigate the performance of various methods
in the presence of dependent null statistics with Gaussian copulas. Several extant methods can
provably control error in this scenario:
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Fig. 2: Power and empirical error rate for three different multiple hypothesis testing methods on
two different simulations. Gray lines indicate a Fisher smoothing version of the FDX extension
of Meijer and Goeman, dashed lines indicate a conservative Stouffer smoothing version of the
FDX extension of Meijer and Goeman, dotted lines indicate the FDX extension of Meijer and
Goeman, and the solid black line indicates the maximum allowable error.

r The estimators of Meijer and Goeman are still guaranteed to control familywise error.r It follows that the FDX extension of Meijer & Goeman (2015) (proposed in Algorithm 3) still 270

guarantees false discovery exceedance.r The DAGGER estimator is still guaranteed to control false discovery rate – as long as the null
statistics have nonnegative correlations.

Algorithm 3. Meijer-Goeman procedure
input : smoothed p-values p̃ = (p̃1, . . . , p̃n), directed acyclic graph G, target level α
Ŝ ← ∅;
repeat

(πv)v 6∈Ŝ ← Algorithm 1;

Ŝ ← Ŝ ∪ {v 6∈ Ŝ : parents(v) ⊂ Ŝ and pv ≤ απv}
until Ŝ does not change;
return Ŝ
Smoothing techniques can be used with each of these methods, yielding improved power in 275

some cases. We will consider two smoothing methods.

1. The conservative Stouffer smoothing method:

p̃v ←

{
1 if

∑
w∈Cv πvwΦ−1(pw) ≥ 0

Φ
(∑

w∈Cv πvwΦ−1(pw)
)

otherwise.

where Φ indicates the cumulative distribution function for a standard normal distribution.
In the experiments here, we focus on a specific choice for π, namely one which averages
each node with its direct children: 280

πvw ∝


1 if v = w

1 if v → w

0 otherwise∑
w

πvw = 1
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2. Fisher smoothing:

p̃v ← 1− Fχ2
|2Cv |

(
−2

∑
w∈Cv

log pw

)

where Fχ2
d

indicates the cumulative distribution function for a χ2 distribution with d de-
grees of freedom.285

Hypothesis testing can be performed by applying existing methods directly to the smoothed
values. As described in the main text and proved in 1.1, the conservative Stouffer smoothing
versions of several methods provably control type I errors:r The estimators of Meijer and Goeman applied to conservative Stouffer smoothed statistics are

still guaranteed to control familywise error.290 r The FDX extension of Meijer of Goeman applied to conservative Stouffer smoothed statistics
still guarantees false discovery exceedance.r The DAGGER estimator applied to conservative Stouffer smoothed statistics is still guaran-
teed to control false discovery rate – as long as the null statistics have nonnegative correlations.

To quantify the performance of these smoothing-based algorithms, we created simulated295

datasets in which the ground truth was known. The simulated data was created in three stages:

1. We first designed a five-layer directed acyclic graph structure with 50 nodes at each layer.
Each node has three randomly-selected parents from the layer above it.

2. We then selected which nodes would be considered nonnull and sampled a value for each
of the nonnull nodes. We performed this selection and sampling using two different meth-300

ods:
– Global alternative. The value at each nonnull node is Beta(exp(−4), 0.5). directed

acyclic graphs are populated starting at the leaves and null nodes are flipped to non-
null with probability 0.2.

– Incremental alternative. The value at each nonnull node is Beta(exp(−4− 0.3× (D −305

d)), 0.5), where d is the depth of the node and D is the maximum depth of the directed
acyclic graph. The graph is populated starting at the leaves with nonnull probability 0.2
and internal nodes are intersection hypotheses that are null if and only if all their child
nodes are null.

3. Finally, we sampled values for the null nodes. We constructed a Gaussian process on the310

graph structure:

Zv|ZAv ∼ N

 1

|Pv ∩ S̄|
∑

w∈Pv∩S̄

Zw, 1,


Here Pv denotes the direct parents of the node v and Av denotes all ancestors of v in
the graph. We then computed marginally uniform values for each node; letting Fv(c) =
pr(Zv ≤ c), we took pv = Fv(Zv).

For each type of alternative (global and incremental) we constructed 100 trials (yielding 200315

trials in all). We applied six different hypothesis testing methods to each trial and calculated the
power and empirical error rates of each method. The six methods are listed below.r DAGGER (which provably controls the false discovery rate in this setting).
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ery rate). 320r A conservative Stouffer version of DAGGER (which provably controls the false discovery
rate).r The FDX extension of Meijer and Goeman (which provably controls the false discovery ex-
ceedance), tuned to limit the false discovery proportion below 10%.r A Fisher smoothing version of the FDX extension of Meijer and Goeman (which is not guar- 325

anteed to control false discovery exceedance), tuned to limit the false discovery proportion
below 10%.r A conservative Stouffer version of the FDX extension of Meijer and Goeman (which provably
controls the false discovery exceedance).

The results are shown in Figure 1 and Figure 2. In each simulation we find that that the 330

smoothed versions of algorithms have higher power than the original unsmoothed versions. How-
ever, as expected, the Fisher smoothing versions occasionally violate their target error rates. For
example, the Fisher smoothing version of the FDX extension of Meijer and Goeman has an em-
pirical false discovery exceedance which is roughly double its target error rate when applied to
simulations based on the global alternative scheme. 335

3.2. Intuitions for achieving the greatest power with smoothing techniques
There are some cases in which some smoothed versions of extant algorithms have less power

than the corresponding unsmoothed versions. Trouble will arise if the smoothed value for a
nonnull hypothesis is heavily influenced by null p-values. However, there are many kinds of
smoothing, and in most cases we found that there is some form of smoothing which yields higher 340

power. Ideally the user may use a-priori knowledge to choose a smoothing method wisely. For
example, if user suspects many of the null hypotheses to be correct, it may be unwise to include
smoothing functions which are heavily influenced by the p-values for those hypotheses.

We designed a numerical experiment to demonstrate the power of different smoothing methods
in different contexts. We hope this may help guide users in their thinking about what smoothing 345

techniques may be appropriate for different kinds of data. We created four simulated datasets.
Each was created in three stages:

1. We first designed a five-layer directed acyclic graph structure with 50 nodes at each layer.
Each node has three randomly-selected parents from the layer above it.

2. We then selected which nodes would be considered nonnull: for the first simulation only 350

the nodes in the first layer were considered nonnull, for the the second simulation only the
nodes in the first two layers were considered nonnull, and so-on.

3. We then sampled a value for each node. Values at nonnull nodes were sampled according
to Beta(0.1, 0.5) and values at null nodes were sampled uniformly between 0 and 1.

We then ran several different hypothesis selection algorithms on each of the four simulations. 355

We investigated three types of smoothing:

1. No smoothing, i.e. with smoothing function fv(p) = pv
2. Fisher smoothing using only direct children, i.e. with smoothing function

fv(p) = −2 log pv −
∑

w: v∈Pw

2 log pw,

where Pw indicates the parents of node w.
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3. Fisher smoothing using all children, i.e. with smoothing function360

fv(p) =
∑
c∈Cv

2 log pc.

We investigated two classes of hypothesis selection algorithms: the DAGGER method and the
FDX extension of Meijer and Goeman. In total, this yielded six hypothesis selection algorithms:

1. the DAGGER method,
2. the FDX extension of Meijer and Goeman,
3. a Fisher smoothing version of the DAGGER method which only uses the direct children365

of each node,
4. a Fisher smoothing version of the FDX extension of Meijer and Goeman which only uses

the direct children of each node,
5. a Fisher smoothing version of the DAGGER method which uses all descendants of each

node, and370

6. a Fisher smoothing version of the FDX extension of Meijer and Goeman which uses all
descendants of each node.

The DAGGER-based algorithms were tuned to limit the false discovery rate to at most 5%. The
Meijer and Goeman algorithms were tuned to limit the false discovery proportion below 10%
with probability at least 95%.375

The results are shown in Figure 3. To get the highest possible power, the hypothesis selection
algorithm must be chosen differently for different simulation types. When the hypotheses in
layers 2-5 are all correct, the best choices would be methods 1 and 2 from the list above (i.e.
algorithms without any smoothing). When only the hypotheses in layers 3-5 are correct, methods
3 and 4 are best (i.e. algorithms which involve only a local smoothing over the direct children of380

each node). When only the hypotheses in layers 4-5 are correct, methods 5 and 6 are best (i.e.
algorithms which smooth over all descendants of each node).

In summary, smoothing methods can help most when the smoothed values for nonnull hy-
potheses are most heavily influenced by p-values from other nonnull hypothesis. It follows that
the user should select smoothing functions such that this property holds as often as possible. Un-385

fortunately, this may be difficult to do because the user does not know a-priori which hypotheses
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are correct and which are not. We caution that some users may feel tempted to choose smoothing
techniques based on the data itself; we emphasize such an approach is completely unacceptable
unless the user has sufficient data to create a clean split between data used to choose the hypothe-
sis selection algorithm and data used to conduct the final hypothesis tests. A deeper investigation 390

of how users should make these decisions is merited, but beyond the scope of the present work.
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