
nature chemical biology

https://doi.org/10.1038/s41589-024-01580-xArticle

Discovery of potent inhibitors of α-synuclein 
aggregation using structure-based iterative 
learning

In the format provided by the 
authors and unedited

https://doi.org/10.1038/s41589-024-01580-x


 

 1 

Table of Contents 
 

 
 
 
 
 

Supplementary Methods ............................................................................................. 2 

Table S1. ..................................................................................................................... 7 

Table S2. ..................................................................................................................... 8 

Figure S1. .................................................................................................................. 12 

Figure S2. .................................................................................................................. 14 

Figure S3. .................................................................................................................. 16 

Figure S4. .................................................................................................................. 17 

Figure S5. .................................................................................................................. 18 

Figure S6. .................................................................................................................. 19 

Figure S7. .................................................................................................................. 20 

Figure S8. .................................................................................................................. 23 

Figure S9. .................................................................................................................. 25 

Figure S10. ................................................................................................................ 26 

Figure S11. ................................................................................................................ 27 

Figure S12. ................................................................................................................ 28 

Figure S13. ................................................................................................................ 29 

Figure S14. ................................................................................................................ 30 

Figure S15. ................................................................................................................ 31 

Figure S16. ................................................................................................................ 32 

Figure S17. ................................................................................................................ 33 

Figure S18. ................................................................................................................ 35 

Supplementary References ....................................................................................... 36 



 

 2 

Supplementary Methods 
 
Docking and machine learning implementation  
 
A full description of the initial docking approaches can be found in the previous work1, 

using AutoDock Vina2 and FRED3 docking software, but is also explained in overview 

here. As described in the main text, the binding site encompassing residues 

His50−Lys58 and Thr72−Val77 on PDB 6CU74 was selected due to its propensity to 

form a pocket according to Fpocket5 software and its simultaneous mid to low solubility 

according to CamSol6 (Figure S3). Additionally, a key histidine residue in this site was 

predicted to protonate below the pH value where αS more readily aggregates (pH 5.8).  

A binding box was selected that had size 12	Å by 12 Å by 9 Å centred at 10.00 Å, 9.89 

Å, 11.52 Å on the 6CU7 PDB, encompassing the site of interest. The target protein 

was left rigid, while the ligand was flexible, able to translate and rotate (including 

rotation of internal bonds). We prepared the target protein (added hydrogens) using 

Autodock tools. To increase the accuracy of the docking energy estimate, the 

exhaustiveness was increased compared to the default value of 8, to 20. 5 poses were 

output, and the best pose binding energy was selected as the binding energy label for 

that ligand. The choice of rigid target was made in order to decrease the computational 

cost of the high throughput screen of the 2 million compounds in phase 1.  

 

Inspired by the increasing usage of consensus scoring, i.e combining multiple docking 

energy estimates by different docking programs, we performed docking of the 100,000 

best binding molecules from AutoDock Vina, using FRED in phase 2. For each of the 

top 100,000 best AutoDock Vina ligands, we combine the ligand with the target into a 

single .pdb file, and from that supply the information of the ligand to Openeye’s Spruce 

module to prepare an .oedu file that contains the grid position of the binding site. Then, 

the compound is bound to the target site and a single best pose and binding energy is 

output, that constitutes the FRED binding energy label for this compound. The top 

10,000 are then clustered to obtain representative centroids for testing. The pipeline 

is modular, and it is possible to incorporate any type of docking software the user might 

choose. In this study we have used AutoDock Vina, which is a publicly available 

software that is efficient at scale, and FRED. AutoDock Vina is relatively 

computationally efficient at scale, and we chose to use FRED since the top scoring 
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pose prediction of FRED has been shown7 to be able predict within 2Å of the native 

pose in 70% of examples tested. However, alternative open-source or free for 

academic use docking software such as rDock, LeDock and others can be used 

instead of FRED, with relatively little difference in performance as shown previously8. 

The performance of AutoDock Vina is comparable with other open-source software. 

 
The code for testing the ML models on aggregation or docking data are available at 

https://github.com/rohorne07/Iterate. We initially tested the machine learning strategy 

on docking data (best R2 ~0.6-0.7) before moving to experimental aggregation data 

(best R2 ~0.2-0.3) to get an impression of the feasibility of the project, given the larger 

datasets available for the docking scores (Figure S5 and Figure S6). The docking 

scores were calculated for the ‘evaluation set’, the in silico library that was used for 

iterative experimental screening in the main text. Both AutoDock Vina and FRED 

simulations were carried out on the evaluation set, giving binding scores for each 

molecule against the αS 6CU7 fibril structure pocket. The compound encoder was 

implemented as in Hie et al.9  to obtain representations of all the molecules. The next 

sections briefly summarise the functioning and output of the prediction module. 

 

Prediction module. The prediction module consisted of a shallow model designed to 

be appropriate for small datasets and easily applicable on standard hardware available 

for most laboratory workers over a short timescale. As a first line test Gaussian 

process regression (GPR) was employed alone, following Hie et al.9 with training and 

testing carried out with cross validation on 4000 molecules from within the evaluation 

set. The metric used to evaluate performance in this case was the R2 score, or 

coefficient of determination. This score measures the goodness of fit between a set of 

predictions and the ground truth values. This score ranges from 1, in a perfect fit, to 

arbitrarily negative values as a fit becomes worse, and is 0 when the predictions are 

equivalent to the expectation of the ground truth values of the training set10. This was 

compared with a naïve Bayes, which failed to score above 0 for any training set size 

on both docking and aggregation data. 

 

The GPR kernel was initially the same as that utilised by Hie et al.9 , i.e. a combination 

of a constant kernel and a radial basis function (RBF). Using these initial settings, R2 

scores of ~0.2 were obtained for the docking data. Hyperparameter optimisation 

https://github.com/rohorne07/Iterate
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yielded only marginal improvements in this performance. A selection of other kernels 

was tested, and all models were optimised via hyperparameter tuning before 

implementation, but most did not offer an improvement in performance. The Matérn 

kernel, a generalisation of the RBF with an extra parameter controlling the smoothness 

of the function, did however show a marginal improvement. These flexible functions 

are the most likely to be able to fit shallow energy minima problems such as those 

encountered here. The R2 scores were still low, especially for smaller training sets as 

would be available from experiment, but represented a viable starting point. 

 

At this point a 2-layer model was applied. This reflected the strategy used by Hie et al. 
9 in fitting a Gaussian process regressor (GPR) to the residuals of another model, in 

that case a multi-layer perceptron (MLP). An MLP did not show a dramatic 

improvement over the GPR alone both in that work or when tested with the docking 

scores here, however a random forest regressor (RFR) with stacked GPR did show a 

further improvement both in terms of the R2 (~0.6-0.7) and the quality of the molecule 

sets predicted during the simulation, as can be seen in Figure S6. 

 

This set up gave improved results in both R2 and hit rate, while retaining an easy to 

implement and efficient model. The average Pearson’s coefficient of correlation 

ranged between 0.25 and 0.3 for both the coupled (GPR+RFR) and uncoupled models 

(RFR alone), which while modest matched the values obtained by Hie et al. during 

their testing. RFR was more demanding computationally, but given the small size of 

the experimental training sets in this scenario this was not a hindrance.  

 

A simulation was created to mimic how the experimental cycle of testing might work 

using the docking scores as a surrogate for aggregation data. In the simulation, a 

random subset of 100 molecules was selected and the model trained on these 

molecules and their binding scores. The resultant model was then used to predict 

binding scores for the remaining molecules and rank them using a combination of the 

predicted value and the associated uncertainty value. The top 100 were then selected 

and their binding scores added to the training set as would occur in the experimental 

scenario, and this process was repeated 10 times. The ideal scenario would be that 

molecule sets with improved mean binding energy relative to the mean of the 

evaluation set would be selected, and that selections would improve as the training 
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set expanded, and this is what is shown in Figure S5 (though improvement is not 

drastic as further data is added, possibly due to the relative ease with which strong 

dockers are selected). 

 

Different uncertainty penalties were tested during this process. We found that a low 

uncertainty penalty produced better results by removing the most overconfident 

predictions without placing too many limitations on the model. At the early stages most 

predictions with low uncertainty were those with predicted binding scores close to the 

mean of the training set. An excessive uncertainty penalty during these stages would 

cause the model to only predict molecules that it was confident in, which were also 

likely to be mild.  

 

The same process was utilised using different parts of the molecular feature set (the 

latent vector consists of a tree vector representation of clusters within a molecule, plus 

a graph representation of the molecule), and it was found that GPR performance 

metrics were better when using the molecular graph alone compared with using the 

entire representation. In general, it is to be expected that fitting fewer features to a 

predicted value is easier for a regressor to achieve and so higher scores are obtained. 

However, a better average R2 score across the data set does not necessarily lead to 

a better result in terms of the actual molecules picked, and we found using the full 

representation led to more hits being identified (Figure S5).   

 

A snapshot of the results of this testing is shown in Figures S5 and S6. Figure S5 

demonstrates 2 points: the performance was slightly improved using the Matérn kernel 

in place of the RBF kernel both in terms of overall hit selection and performance 

improvement with increasing training set size, and the full-length molecular 

representation gave a significant boost in terms of number of hits selected vs the 

truncated representation, despite lower R2 scores. These results also provided some 

evidence that Gaussian process learning might work reasonably effectively even in 

this data sparse scenario albeit at a modest level. It was expected that fitting 

experimental data would prove more challenging, however, and so a boost in 

performance was sought for that would not compromise the simplicity of the model, 

through use of the coupled RFR-GPR model. Correlation values of 0.6-0.7 were 

obtained using this set up on docking energies and a large portion of the dataset (4000 
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molecules), and this fell to between 0.2 and 0.3 for the aggregation data (Figure S1), 

which while low was encouraging given the much smaller dataset and noisier data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 7 

Table S1. Parameters used in QSAR model optimisation. (A) Models such as LR 

and MLP were trialled with their default parameters either alone or in conjunction with 

a GP, but showed poor performance so were not further investigated. (B) GP and RF 

models were the best performing and so were subjected to hyperparameter 

optimisation via grid search cross validation using the R2 score as the optimisation 

metric. The best performing parameters are shown. The performance of these models 

is shown in Figure S1.  
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Table S2. Clinical and neuropathological characteristics of synucleinopathy and 
non-synucleinopathy brain tissue samples used in the study.  
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Figure S1. MAE, RMSE and R2 for different models trained on the latent features 
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of the variational autoencoder and the aggregation data. The y-axis reports the 

respective scoring metric, and the x-axis the number of molecules included in the 

training set, of a total sample of 360 molecules (central measure=mean, error=SD). In 

each case, the performance of the model in isolation is shown in the left column, while 

the performance of the model when used in tandem with the GPR fitted to the residuals 

of the first model is shown in the right column. The labels are as follows: LR = linear 

regressor, GP = Gaussian process, MLP = multilayer perceptron, RFR = random forest 

regressor. Model parameters were chosen using a grid search of possible parameters 

while cross validating on 5 stratified K folds of the aggregation data, and selecting the 

parameters that gave the best performance in terms of R2 score. The parameters for 

the models shown here are displayed in Table S1.  
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Figure S2. Summary of the molecules described in this work. (A) Number of 

molecules derived from 1 of the 4 docking hits (48, 52, 68, 69) within the evaluation 

set (see Figure 1). There were more structures derived from molecules 69 and 48 

compared with molecules 68 and 52. (B) Normalized half time of aggregation (t1/2) for 

the 25 molecules in the close similarity docking set (25 µM, n=2 replicates, central 

measure=mean, error=SD), i.e. those closely related (Tanimoto similarity > 0.5) to the 

4 molecules in the docking set (labelled as 48.0, 52.0, 68.0 and 69.0 on the x-axis). 

Leads were defined as molecules that more than double t1/2, as indicated by the 

horizontal line that marks 2 times the half time in the absence of the molecules. Some 

derivatives of molecules 48, 52 and 69 showed good potency, in particular 48.3, 52.1 
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and 69.2, but these effects were outstripped by future leads such as I4.05 which 

yielded the same effects at 10-fold lower concentration. (C) Flow chart of molecule 

leads (+) and negatives (-) in the project starting from the close search (CS), moving 

to the loose search (LS) then iterations 1, 2, 3 and 4 (I1, I2, I3, I4). Each branch is 

labelled with the molecule source (e.g. parent 48 = p48) whether it was a lead or a 

negative, and the number of molecules in the branch. Attrition reached its highest point 

at the loose search before gradually improving with each subsequent iteration. 

Iteration 4 is included but not directly comparable as a model was trained on the lower 

dose inhibitory data for this step. (D) Structures of the most potent hits/leads at each 

stage, which flatlined aggregation at 25 µM, all of which were derived from p69. The 

structures gradually converged as the core pyrazolidine-3,5-dione structure and RHS 

aromatic ring were largely retained (with some exceptions for ring expanded 

derivatives in iteration 3) with addition of electron withdrawing groups to the benzene 

ring. The LHS was altered more significantly, replacing the parent bicyclic system with 

substituted furans, which were further elaborated in iteration 4 with an additional 

benzoic acid group.  
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Figure S3. Volume and solubility based binding site prediction on polymorph 
6CU74. (A) Cavity based binding site prediction using Fpocket5. (B) Solubility based 

binding site prediction using CamSol6. The black box outlines the region 

encompassing key residues His50 and Glu57 where both cavity propensity is high and 

solubility is medium-low. 
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Figure S4. Distributions of the datasets used. (A) AutoDock Vina binding energies 

(kcal mol-1) for the evaluation set (n=8978 molecules, central measure=median, lower 

bound=25% of the distribution or Q1, upper bound=75% of the distribution or Q3, lower 

whisker=Q1-1.5 times interquartile range, upper whisker = Q3+1.5 times interquartile 

range, furthest points are the lowest and highest values in the distribution). The values 

are relatively narrowly distributed between -6 and -10 kcal mol-1 as the dataset consists 

of 4 key structures predicted to have good binding. Normalised half times of 

aggregation at (B) 3.12 µM and (C) 25 µM for the whole training set (n=447 molecules, 

all other definitions match A), including docking molecules and initial similarity 

searches and after all iterations had been added. The high dose was used for training 

in iterations 1-3 and the low dose for iteration 4. 
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Figure S5. A simulation of the experimental scenario using docking energies as 
a proxy for aggregation metrics. (A) Starting from a single random sample (n=100 

molecules, central measure=median, lower bound=25% of the distribution or Q1, 

upper bound=75% of the distribution or Q3, lower whisker=Q1-1.5 times interquartile 

range, upper whisker=Q3+1.5 times interquartile range, points are data that fall 

outside this range), the GP with RBF kernel was trained and then used to predict the 

next 100 top molecules from the remaining data (n=8978 molecules). AutoDock Vina 

binding energies in kcal mol-1 are plotted against iteration number, which are shaded 

from low (purple) to high (yellow). Each boxplot visualises the distribution of binding 

scores for the top 100 molecules predicted by the algorithm at each iteration. The 

dotted line indicates the mean binding energy of the evaluation set. (B) Same process 

as in panel A with matching definitions and n, but employing the GP with a Matérn 

Kernel. (C) Aggregated average number of hits out of the top 100 predicted molecules 

(central measure=mean, error=SD) from 10 different random starts of the process 

shown in panels A and B for the RBF kernel (Kernel 1, in blue) and the Matérn kernel 

(Kernel 2, in green). A hit was taken as a molecule falling in the lower quartile of the 

evaluation set distribution (<-9 kcal/mol). Results were obtained using the half-length 

representation of the molecules. (D) Same process as described in panel C, but 

employing the full-length molecule representation (central measure=mean, error=SD).  
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Figure S6. Performance of the RFR method coupled to the Matérn kernel 
compared to the Matérn kernel alone. (A) R2 score with increasing training set size 

(n=up to 4000, central measure=mean, error=SD) for both models, using the full-

length representation. On the left is the GP with Matérn kernel alone, and on the right 

is the GP with Matérn kernel + RFR. Cross validation with 10 random shuffle splits and 

20% of the data randomly selected as a validation set. (B) Aggregated average hit 

data from 10 different random starts of the experimental simulation for the iterative 

approach, starting from 100 randomly selected molecules (central measure=mean, 

error=SD) and successively adding the actual docking data of the predicted top 100 

hits to the training set with each iteration. GP with Matérn kernel alone (Kernel 2 = 

Matérn, blue) vs GP with Matérn kernel + RFR (green). (C) Average Pearson’s 

correlation coefficient (pcorr) between the predicted binding score values and the real 

scores at each iteration (central measure=mean, error=SD).  
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Figure S7. Amplification rate and half time of aggregation of αS in the presence 
of the 4 molecules in the docking set. (A) Relative rate of fibril amplification of αS 

in the presence of the 4 docking molecules (labeled as 48, 52, 68 and 69) in the 

docking set; the kinetic traces are normalised to the DMSO control (n=3 replicates, 

central measure=mean, error=SEM). (B) Half times of aggregation derived from the 

same experiment (n=3 replicates, central measure=mean, error=SEM). (C) Relative 

rate of fibril elongation normalised to the DMSO control (n=3 replicates, central 

measure=mean, error=SEM). The amplification rate A and half time of aggregation B 

were tested in the machine learning method as parameters to describe the potency of 

a molecule. The amplification rate tends to be more affected by perturbations to the 

early slope of the exponential phase that can have large effects on the derived rate 

value. The half time, although a simpler measure, is more robust and so was chosen 

for the machine learning approach. Data obtained from reference1.  
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Figure S8. Aggregation curves (top) and oligomer flux simulations (bottom) for 
the most potent compounds from all of the iterations. The kinetic traces show a 

10 µM solution of αS (n=3 replicates, central measure=mean, error=SD) in the 

presence of 25 nM seeds at pH 4.8, 37 oC in the presence of molecules at 3.12 µM 

(blue), 6.25 µM (teal), 12.5 µM (orange) and 25 µM (red) versus 1% DMSO alone (dark 

purple), with endpoints normalised to the αS monomer concentration detected via the 

Pierce™ BCA Protein Assay at the end of the experiment. Oligomer simulations were 

carried out only for the lower 2 concentrations, as full aggregation curves were only 

consistently obtained for all molecules in the secondary nucleation assay at these 

concentrations.  
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Figure S9. Concentration dependence of the reaction rate (derived from Figure 
S8) and corresponding 50% kinetic inhibitory concentration (KIC50) values for 
the most potent compounds (n=3 replicates, central measure=mean, error=95% 
confidence limits). The approximate normalised rate of reaction (taken as 1/t1/2) is 

shown on the left for each molecule at each concentration for which a half time could 

be obtained. For molecules that completely inhibited the aggregation process on the 

timescale of the experiment, the t1/2 in the presence of the highest concentration of 

molecule (25 µM) was taken to be the length of the experiment. The approximate rates 

are fitted using an [Inhibitor] vs. normalized response Hill slope. The KIC50 values are 

shown on the right with the 95% confidence interval.  
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Figure S10. Average t1/2 of aggregation and CNS MPO scores for the top 20 
molecules at each stage. (A) The stages are the initial docking simulation (68 

molecules tested), loose search (69 molecules tested), close search (25 molecules 

tested), iteration 1 (64 molecules tested), iteration 2 (64 molecules tested) and iteration 

3 (56 molecules tested). Molecules were tested at a concentration of 25 µM during 

screening (n=2 replicates, central measure=mean, error=SD). Molecules that 

completely prevented aggregation were assigned a t1/2 value equal to the length of the 

experiment. (B) Calculated CNS MPO scores for the top 20 structures at each stage 

(central measure=mean, error=SD). A common cut off for CNS MPO score is 4, as 

indicated by the horizontal dotted line. 
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Figure S11. Lipid induced aggregation curves in the presence of the early leads 
from the project. The kinetic traces show a 20 µM solution (n=3 replicates, central 

measure=mean, error=SD) of αS plus 100 µM DMPS vesicles (monomer equivalent) 

at pH 6.5, 30 oC in the presence of lead molecules at 6.25 µM (blue), 12.5 µM (teal), 

25 µM (orange) and Anle-138b at 25 µM (red circles) versus 1% DMSO alone (dark 

purple), with endpoints normalised to the αS monomer concentration detected via the 

Pierce™ BCA Protein Assay at the end of the experiment.  
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Figure S12. PCA, t-SNE and UMAP visualisations of the compound feature space 
using uncertainty. (A) From top to bottom: PCA, t-SNE and UMAP visualisations of 

the compound space indicating which areas of the chemical space have been explored 

(orange crosses) and which have not (blue circles). (B) GPR assigned lower 

uncertainty (blue) to regions of the chemical space near to the observed data and high 

uncertainty (red) to areas which were further away. (C) The lower uncertainty 

compounds were prioritised (dark blue) during acquirement ranking. 
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Figure S13. UMAP visualisation of the compound feature space using 
uncertainty. (A) The visualisation indicates the molecules in the chemical space 

(grey) that have been tested over the course of the project (blue circles) starting from 

the 4 initial docking molecules (red circles) in the docking set, and the relative 

positioning of the parent structures in this space. (B) GPR assigned lower uncertainty 

(blue) to regions of the chemical space near to the observed data and high uncertainty 

(red) to areas which were further away. (C) Acquirement ranking with a low uncertainty 

penalty. The lower uncertainty compounds were prioritised (dark blue) during 

acquirement ranking. (D) Acquirement ranking with a high uncertainty penalty.  
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Figure S14. Analysis of the structural changes in the compound optimisation. 
(A) UMAP visualisation of the compound space indicating how the positioning of each 

new molecule subset (orange crosses) changed at each stage of the project as well 

as how the chemical landscape was split between the parent molecules (different 

colours). The locations of the parent molecules are also indicated in the ‘Docking’ pane 

(red circles). (B) Average Tanimoto similarity of the more active molecules to their 

respective parents at each stage of the project (central measure=mean, error=SD). At 

iterations 1, 2 and 3 all of the leads were derived from molecule 69, albeit with lower 

similarity than any of the previous stages. Molecule 68 failed to produce any leads 

outside of the parent molecule. 
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Figure S15. Clustering molecules based on SHAP dimensions and latent 
vectors. Three SHAP clusters were selected based on clear separation shown by 

UMAP. The colouring on the UMAP plot is based on the latent space clusters (a-g) 

and the shape of the marker is based on the SHAP value clustering (α, β, γ). 

Examining the plot shows that there is no separation between latent clusters c and g, 

which are grouped together in SHAP cluster γ. Molecules which belonged to latent 

clusters a, b, and f were mostly grouped together by SHAP clustering, latent cluster e 

was grouped together with latent cluster d, while latent cluster c was grouped with 

cluster g. Examination of the top dimensions of each SHAP cluster revealed that 

dimension 24 at least partly encodes for the key sub-structure of clusters a, b, e and f 

(3,5-pyrazolidinedione, highlighted in dark red), while dimension 26 at least partly 

encodes for the key sub-structure of cluster d (the oxygen-rich chromenone fused ring 

system, highlighted in dark green), and dimensions 15, 17, 12 at least partly encode 

for the key sub-structure of clusters c and g (carboxylic acid bearing aromatic group). 
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Figure S16. Fibril structures, potential binding pockets and simulated binding 
poses of I4.05. (A) Folds of the prevalent fibril polymorph in diseased brain material 

identified via cryo-EM in Parkinson’s disease and dementia with Lewy bodies (8A9L), 

vs multiple system atrophy type I (6XYO) and type II (6XYP) polymorphs. A common 

motif of 4 lysines enclosing an aromatic side chain (tyrosine in the Lewy fold and 

histidine in the MSA fold and 6CU7 fold) is observed in the polymorphs, with 

unidentified electron density in the pocket in each case (adapted from Yang, Y. et 

al.11). (B) Comparison of the cryo-EM structures of the 6CU7 (recombinant, initially 

targeted) and 8A9L (brain derived) with the homologous binding site indicated. (C) 
Structural overlap of the 6CU7 and 8A9L fibril structures, with the binding site in 6CU7 

aligned with the similar binding site in 8A9L at the top of the diagram. The structures 

are coloured according to the CamSol residue solubility score6. (D) Schematics of the 

molecules bound in their lowest energy state within the 8A9L predicted binding site.  
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Figure S17. RT-QuIC brain seeding assay. (A) Schematic representation of the RT-

QuIC assay, aggregates derived from the brain tissue of patients suffering with 

multiple system atrophy (MSA) or dementia with Lewy bodies (DLB) were used to 

induce αS aggregation. (B) Kinetic traces of a 7 µM solution of αS in the absence of 

seeds (pH 8, 42°C, shaking at 400 rpm with 1 min intervals, n=3 replicates, central 

measure=mean, error=SD). Unseeded samples were 1% DMSO (grey), 7 µM Anle-

138b (teal), parent (blue), I1.01 (red), I3.02 (lilac), I3.08 (turquoise) and I4.05 (light 

blue). Anle-138b, in teal, induced aggregation under this condition. (C) Kinetic traces 

of a 7 µM solution of αS in the presence of MSA seeds (n=3 replicates, all other 
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conditions match B, central measure=mean, error=SD). The MSA samples were 1% 

DMSO (light orange), 7 µM Anle-138b (teal), parent (blue), I1.01 (red), I3.02 (lilac), 

I3.08 (turquoise) and I4.05 (light blue). Anle-138b had no effect in samples 1 and 2 

but appeared to accelerate aggregation in sample 3. (D) Kinetic traces of a 7 µM 

solution of αS in the presence of DLB seeds (n=3 replicates, all other conditions match 

B, central measure=mean, error=SD). The DLB samples were 1% DMSO (purple), 7 

µM Anle-138b (teal), parent (blue), I1.01 (red), I3.02 (lilac), I3.08 (turquoise) and I4.05 

(light blue). Data have been separated for clarity. The DMSO and Anle-138b traces 

are shown on each graph, with 2 molecules from the docking or ML shown for 

comparison: Parent and I1.01 (top), I1.02 and I3.02 (middle), I3.08 and I4.05 (bottom). 

Anle-138b exerts a consistent mild inhibition for these two brain samples. (E) Kinetic 

traces of a 7 µM solution of αS in the presence of CBD seeds (n=3 replicates, all other 

conditions match B, central measure=mean, error=SD) and 1% DMSO over a longer 

time course. No significant aggregation was observed over 80 h.  
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Figure S18. Transmission electron microscopy images of the fibrils at the end 
of the secondary nucleation assay. Two representative images are shown, the scale 

bar is 100 nm. 
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