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METHODS

EXPERIMENTAL DESIGN AND SAMPLE
HANDLING

Animal handling

Animals
Adult male and female Fischer 344 (F344) inbred rats were obtained from the National Institute
on Aging (NIA) rodent colony in three cohorts of 20-30 rats. Rats arrived on site at least 4 weeks
prior to initiation of exercise training and were handled daily to reduce stress. Upon arrival at the
University of Iowa, rats were adapted to a reverse dark-light cycle with lights off at 9:00 AM and
lights on at 9:00 PM so that the treadmill training occurred during the normal active part of the
day for rats. Rats were housed two per cage (146.4 square inches of floor space) in ventilated
racks (Thoren Maxi-Miser IVC Caging System) on Tekland 7093 Shredded Aspen bedding.
Animals were fed ad libitum (not measured) with the pelleted Charles River Rat and Mouse 18%
(Auto) 5L79 LabDiet (Gateway Lab Supply, St. Louis, Missouri), which has the following calorie
composition: 21.196% protein, 14.774% fat (ether extract), 64.030% carbohydrates. These are
the standard bedding and diet used at the NIA rodent colony. The animal housing room was
monitored daily and maintained at a temperature of 68-77°F and relative humidity of 25-55%.
Red lights were used during the rat’s dark cycle to provide adequate lighting for the staff to
perform routine housing tasks and rodent handling and training. All animal procedures were
approved by the Institutional Animal Care and Use Committee at the University of Iowa.

Treadmill familiarization and training
Treadmill exercise was performed on a Panlab 5-lane rat treadmill (Harvard Instruments, Model
LE8710RTS). All animal handling and exercise was performed in the active, dark phase of the
rats. Upon arrival, rats were acclimated to the reverse light cycle for a minimum of 10 days.
Following the initial acclimation period, rats went through a 12-day treadmill familiarization
protocol to expose the rats to the treadmill and to identify potential non-compliant rats. Those
rats that were unable to run on the treadmill for 5 minutes at a speed of 10 m/min and grade of
0° were classified as non-compliant and removed from the study. Rats that successfully
completed the 12-day familiarization protocol were entered in the rat database and randomized
into a control or training group so that mean body weight of the groups were equal. The 8-week
rats were randomly assigned to control or training within sex and tertile of weight. 4-week rats
were assigned to control without randomization. 1- and 2- week rats were randomly assigned to
1- or 2-week training within sex and tertile of weight.
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Exercise training began at 6 months of age in male and female rats and lasted for a duration of
1, 2, 4 or 8 weeks. At 6 months of age, this rat strain has reached a growth plateau with respect
to lean muscle mass. Rats were exercised on the treadmill 5 days per week using a progressive
training protocol designed to exercise the rats at approximately 70% of VO2max. The starting
treadmill speed was based on VO2max measurements obtained following familiarization and
prior to training in the compliant rats. Training occurred during the dark cycle of the rat, started
no earlier than 10:00 AM, and ended no later than 5:00 PM over 5 consecutive days per week.
Training was initiated with the treadmill set at a grade of 5°, speeds of 13m/min for males and
16m/min for females, and a duration of 20 minutes. As outlined in Table 1, the duration of
exercise was increased by one minute each day until day 31 of training (start of week 7), when
a duration of 50 min was reached. The treadmill grade was increased from 5° to 10° at the start
of week 3 and stayed at 10° for the remainder of the training. The treadmill speed increased at
the start of week 2, 4, 5, 6 and 7. At the start of week 7, speed, grade and duration were fixed
and maintained for the final 10 days of the protocol to ensure steady-state had been achieved. If
a rat was unable to perform at least 4 days of training per week, it was removed from the study
and euthanized. Rats assigned to the control group were placed on the treadmill (0 m/min) for
15 min/day, 5 days per week, and followed a schedule similar to the 8-week training group. The
control animals were age-matched to the 8-week training group. Importantly, 6-9 month old rats
are mature and stable with limited physiological differences until 12 months of age47.

Table 1. Progressive training protocol for male and female 6-month-old rats.

Week Day Speed (meters/min)
Male/Female

Grade
(degrees)

Duration (mins)

1 1 13/16 5 20
2 13/16 5 21
3 13/16 5 22
4 13/16 5 23
5 13/16 5 24

2 6 15/18 5 25

7 15/18 5 26
8 15/18 5 27
9 15/18 5 28

10 15/18 5 29

3 11 15/18 10 30
12 15/18 10 31
13 15/18 10 32
14 15/18 10 33
15 15/18 10 34

4 16 18/21 10 35
17 18/21 10 36
18 18/21 10 37
19 18/21 10 38
20 18/21 10 39

5 21 20/23 10 40
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22 20/23 10 41
23 20/23 10 42
24 20/23 10 43
25 20/23 10 44

6 26 23/26 10 45
27 23/26 10 46

28 23/26 10 47
29 23/26 10 48
30 23/26 10 49

7 31 25/28 10 50
32 25/28 10 50
33 25/28 10 50
34 25/28 10 50
35 25/28 10 50

8 36 25/28 10 50
37 25/28 10 50
38 25/28 10 50
39 25/28 10 50
40 25/28 10 50

Body composition
Body composition was determined for all rats 13 days prior to the start of training period using
the minispec LF90II Body Composition Rat and Mice Analyzer (Bruker, 6.2 MHz Time Domain
Nuclear Magnetic Resonance (TD-NMR) system). This analyzer was used for in vivo
measurement of lean tissue, body fat, and body fluid in fully awake animals. Post-training body
composition was determined for rats in the 4- and 8-week training groups, 5 days prior to tissue
harvesting.

Maximum oxygen consumption (VO2max)
VO2max was determined prior to the onset of training in all rats, and during the last week of
training, for the 4- and 8-week exercise groups. Rats were acclimated to a single-lane enclosed
treadmill (Columbus Instruments Metabolic Modular Treadmill) two days prior to testing. On the
day of testing the rat was placed in the treadmill and testing began once oxygen consumption
stabilized. Testing began with a warm up for 15 minutes with the treadmill set at a speed of 9
m/min and 0° incline. Following the warm up period, the incline was increased to 10° and
treadmill speed was increased by 1.8 m/min every 2 minutes48. During the test, shock was used
sparingly. Shock was used only when the rat stopped running and sat on the shock area.
Testing stopped when the rat sat on the shock area 3 consecutive times and did not respond to
increased shock. Upon cessation of the test, the rat was removed from the enclosure and blood
was taken from the tail to measure lactate. Criteria for reaching VO2max was a leveling off of
oxygen uptake despite increased workload, a respiratory exchange ratio above 1.05, and an
unhemolyzed blood lactate concentration ≥6 mM.
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Tissue collection
Tissues were collected from all rats 48 hours following the last exercise bout. On the day of
collection, food was removed at 8:30 AM, three hours prior to the start of dissections, which
occurred between 11:30 AM and 2:30 PM. Rats were sedated with inhaled isoflurane (1-2%).
Under isoflurane anesthesia, blood was drawn via cardiac puncture. Under continued isoflurane
anesthesia, the right triceps surae muscles (soleus, gastrocnemius, and plantaris),
subcutaneous white fat on the right side, right lobe of the liver, heart, and lungs were removed in
that specific order. Removal of the heart resulted in death. Immediately following removal of the
heart, a guillotine was used for decapitation. The brain was removed from the skull, and the
following regions were dissected out in the specified order: hypothalamus, right and left
hippocampus, right and left cerebral cortex. Following decapitation, specific organs were
removed in the following order: right kidney, right & left adrenal glands, spleen, brown adipose
tissue, small intestine (jejunum), colon (transverse and descending) and feces, right testes or
ovaries, right vastus lateralis, and tibia. All tissues were flash-frozen in liquid nitrogen
immediately upon removal, placed in cryovials, and stored at -80°C. All tissues were
subsequently shipped on dry ice to the Biospecimens Repository at the University of Vermont.

Sample distribution

Archiving

Frozen tissue samples received by the Biospecimens Repository at the University of Vermont
were logged in to Freezerworks (Dataworks Development Inc., Mountlake Terrace, Washington)
and stored in -80oC freezers. All samples were labeled with a unique 11-digit barcode.

Selection of animals for molecular assays
Tissue samples were collected for between 12 and 20 animals per sex, per training group (i.e.,
sedentary controls or animals trained for 1, 2, 4, or 8 weeks). To reduce the effects of
inter-animal variation on data integration, the omic assays were performed on tissues from the
same individual animals whenever possible. Therefore, six animals per sex per training group
were randomly selected for molecular profiling; all six replicates were used for proteomic
assays; a subset of five replicates were used for genomic and metabolomic assays. Additional
rats were selected at random if there were insufficient aliquots for specific molecular assays, as
was the case for the adrenal gland, brown adipose tissue, and ovary immunoassays. Exact
sample sizes per assay, tissue, sex, and exercise training time point are provided in Extended
Data Figure 1f.

Cryopulverization

Tissues samples were stored at -80oC until time of processing. Frozen tissue samples were
transferred from storage vials to Covaris tissueTUBEs (Covaris, Inc, Woburn, Massachusetts)
flash-chilled in liquid nitrogen. Larger tissues were first broken into smaller pieces on a chilled,
foil-covered stainless steel block using a foil-covered hammer or pestle. The tissue piece(s)
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were centered in the tissueTUBE pouch (primary impact zone), and a pre-chilled glass transfer
tube was attached. Filled tissueTUBEs were placed on dry ice while the Covaris CryoPREP
CP02 (Covaris Inc, Woburn, Massachusetts) was set to the appropriate setting for the tissue
type. TissueTUBEs were dipped in liquid nitrogen, and the glass transfer tube was loosened ¼
turn to prevent pressure build-up inside the tissueTUBE before being inserted in the Covaris
CP02 to pulverize. Tissues requiring an additional round of pulverization were first inspected to
ensure tissueTUBE integrity and dipped in liquid nitrogen before being put back into the Covaris
CP02. After pulverization, tissueTUBEs were dipped in liquid nitrogen and then inverted to move
the pulverized sample into the glass transfer tube. Pulverized samples were transferred to
cryogenic storage vials for long term storage at -80oC.

Aliquoting

Frozen tissue storage vials were removed from the -80oC freezer and placed on dry ice. Aliquot
vials were set up in a prechilled CoolRack XT CFT24 (Corning, Corning, New York) sitting in dry
ice inside an AirClean 600 Dead Air Workstation (AirClean Systems, Creedmoor, North
Carolina). Working with one storage vial at a time, disposable plastic transfer scoops of
predetermined volumes were chilled in liquid nitrogen and then used to measure and transfer
tissue to aliquot vials. A chilled metal spatula was used to break up any tissue clumps in the
storage tubes before aliquoting. Aliquot vials were capped and stored at -80oC before shipping
to chemical analysis labs. By experimentation we determined that the target weights could be
aliquoted with a reproducibility of +/- 15% of the target. Different sized scoops were needed for
different tissues depending on fat content.

Reference standards

Aliquots of assay- and tissue-specific reference standards were included in molecular assays in
order to evaluate technical differences across batches. The pooled reference standards used for
RNA-Seq, ATAC-seq, RRBS, and immunoassays were from non-compliant animals collected at
the University of Florida for a separate MoTrPAC study. Samples from the same tissue and sex
were pulverized together to create a homogenous pool. One aliquot each of the male and
female reference standards was included on each plate of study samples. Tissue-matched
reference standards were used when possible. Metabolomics and lipidomics reference
standards were from pilot samples collected at the University of Florida, Joslin Diabetes Center,
and the University of Iowa for a separate MoTrPAC study. Samples were split to create pools of
sedentary and immediate-post-exercise reference standards. One aliquot each of the sedentary
and exercised reference standards was included with each batch of study samples. For
proteomics, a universal reference standard was generated within each tissue type by pooling
equal amounts of peptide from each experimental sample. All samples were from Fischer 344
(F344) inbred rats obtained from the NIA rodent colony.
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DATA PRODUCTION AND QUANTIFICATION

DNA methylation by reduced representation bisulfite sequencing

DNA extraction and library preparation
Reduced representation bisulfite sequencing (RRBS)49 was performed at the Icahn School of
Medicine at Mount Sinai. Rat tissues (10-30 mg of white adipose tissue) were disrupted in
GenFind v2 lysis buffer (Beckman Coulter, Indianapolis, IN) using a tissue ruptor (Omni
International, Kennesaw, GA) and the genomic DNA was extracted in a BiomekFx automation
workstation (Beckman Coulter, Chaska, Minnesota), according to the manufacturer’s
instructions. Two tissue-specific consortium reference standards were included to monitor the
sample processing QC. DNA samples were quantified by Qubit assay (dsDNA HR assay,
Thermo Fisher Scientific), and the quality was determined by the Nanodrop A260/280 and
A260/230 ratios.

The Ovation® RRBS Methyl-Seq kit from Tecan Genomics (Baldwin Park, CA) was used to
generate the RRBS libraries according to the manufacturer’s instructions. All library
preparations were carried out in an automated workstation (Biomek Fx, Beckman Coulter).
Briefly, purified genomic DNA (100 ng) was digested by the methylation-insensitive restriction
enzyme MspI to generate short fragments that contain CpG dinucleotides at the ends. After
end-repair, A-tailing, and ligation to methylated Illumina adapters, the CpG-rich DNA fragments
(40-220 base pairs) were size-selected and subjected to bisulfite conversion according to the
manufacturer’s instructions. The single-stranded uracil-containing DNA was purified after
desulfonation using the magnetic beads provided in the kit, and eluted DNA was converted to
double-stranded DNA by PCR with the following cycling parameters: 95°C for 2 minutes,
followed by the optimal number of cycles of 95°C for 15 seconds, 60°C for 1 minute, and 72°C
for 30 seconds, and a final step at 72°C for 10 minutes. The optimal number of cycles for the
enrichment PCR was calculated based on qPCR values. A final clean-up step was performed by
1x AMPure XP beads. The quantity of the libraries was measured by Qubit High Sensitivity
assays (ThermoFisher Scientific), and the quality was evaluated using Bioanalyzer High
Sensitivity DNA Chip (Agilent Technologies, Santa Clara, CA). The libraries were pooled and
sequenced in a MiSeq Nano flow cell to determine the sequencing quality of the libraries.
Unmethylated lambda DNA (Promega, D1521) was spiked (0.05%) in each sample to monitor
bisulfite conversion. Jurkat genomic DNA (ThermoFisher, SD1111) and CpG Methylated Jurkat
genomic DNA (ThermoFisher, SD1121) were used as positive controls with each batch.

DNA sequencing, data processing, and normalization
Sequencing of RRBS libraries was performed on a NovaSeq 6000 platform (Illumina, San
Diego, CA, USA) using a paired-end 100 base-pair run configuration. The pooled libraries were
spiked in with 10% PhiX and sequenced to a minimal depth of 30 million paired-end reads per
library using a custom 1-index primer as per Illumina guidelines. In addition to the 8-base
barcode, the adapter contained 8-base unique molecular identifiers (UMIs) immediately
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following the library index. The UMIs were used for duplicate read determination (see below). To
take advantage of this feature, the libraries were sequenced using 16 cycles for the i7 index
read.

Reads were demultiplexed with bcl2fastq (version 2.20) using options --use-bases-mask
Y*,I8Y*,I*,Y* --mask-short-adapter-reads 0 --minimum-trimmed-read-length 0 (Illumina, San
Diego, CA, USA), and UMIs in the index FASTQ files were attached to the read FASTQ files.
The regular 5’ and 3’ adapters were trimmed with TrimGalore (v1.18), and the diversity adapter
that is about 0 to 3 bases of RDD (R={A or G} and D={A, G, or T}) that is added before YGG
(Y={C or T} depending on the methylation) from the YGG MspI cut signature was trimmed with
the NuGEN script “trimRRBSdiversityAdaptCustomers.py”
(https://github.com/nugentechnologies/NuMetRRBS). FastQC (v0.11.8) was used to generate
pre-alignment QC metrics50. Bismark (v0.20.0) was used to index and align reads to release 96
of the Ensembl Rattus norvegicus (rn6) genome and gene annotation51. As the lambda genome
was spiked into each sample to determine the bisulfite conversion efficiency, the lambda
genome (GenBank: J02459.1) was also indexed. Default parameters were used for Bismark’s
bismark_genome_preparation in the alignment step. Bismark output BAM files were first
formatted using a custom script; Bismark’s deduplicate_bismark with “-p --barcode” options was
used to remove PCR duplicates from the bam files; and Bismark’s
“bismark_methylation_extractor --comprehensive --bedgraph” was used to quantify methylated
and unmethylated coverages for all the CpG sites. Bowtie 2 (v2.3.4.3) was used to index and
align reads to globin, rRNA, and phix sequences in order to quantify the percent of reads that
mapped to these contaminants and spike-ins52. SAMtools (v1.3.1) was used to compute
mapping percentages to different chromosomes53. UMIs were used to accurately quantify PCR
duplicates with NuGEN’s “nodup.py” script (https://github.com/tecangenomics/nudup). QC
metrics from every stage of the quantification pipeline were compiled, in part with multiQC
(v1.6)54. The openWDL-based implementation of the RRBS pipeline on Google Cloud Platform
is available on GitHub43. Only CpG sites with methylation coverage of >=10 in all samples were
included for downstream analysis, and normalization was performed separately in each tissue.
Individual CpG sites were divided into 500 base-pair windows and were clustered using the
Markov Clustering algorithm via the MCL R package55. To apply MCL, for each 500 base-pair
window an undirected graph was constructed, linking individual sites if their correlation was
>=0.7. MCL was chosen for this task as it: (1) determines the number of clusters internally, (2)
identifies homogeneous clusters, and (3) keeps single sites that are not correlated with either
sites as singletons (clusters of size one). The resulting sites/clusters were used as input for
normalization and differential analysis with edgeR56. To generate normalized sample-level data,
the methylation coverages of filtered sites/clusters were first log2-transformed, and normalization
was performed using preprocessCore’s quantile normalization
preprocessCore::normalize.quantiles.robust57. As all samples for a given tissue were processed
in a single batch, batch correction was not possible or necessary.
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Assay for transposase-accessible chromatin using sequencing

Nuclei extraction and library preparation
Assay for transposase-accessible chromatin using sequencing (ATAC-seq)58 was performed at
Stanford University and the Icahn School of Medicine at Mount Sinai. Only Stanford ATAC-seq
data were used in this manuscript. All sample processing steps were performed in batches of
less than 12 samples. Nuclei from aliquoted tissue samples (30 mg for white adipose, 15 mg for
brown adipose, 10 mg for hippocampus, kidney, lung, gastrocnemius, heart, and liver tissues)
were extracted using the Omni-ATAC protocol with modifications59. Two tissue-specific
consortium reference standards were included for sample processing QC. The white adipose,
brown adipose, and hippocampus tissues were processed using no-douncing nuclei extraction
to prevent fat droplets from interfering with the subsequent transposition steps. Tissue powder
was incubated in the homogenization buffer for 10 min at 4°C. The tube was inverted every 2-3
minutes. The heart, liver, kidney, lung, and gastrocnemius tissues were processed using the
Omni-ATAC protocol with modifications. Tissue powder was incubated in the homogenization
buffer for 5 minutes on ice and dounced 10 times using pestle A and 20 times with pestle B. For
both protocols, the homogenate passed through a 40 µm cell strainer to collect nuclei. Nuclei
were stained with DAPI and counted using an automated cell counter. 50,000 nuclei (or max.
500 µl nuclei) were added to 1 ml ATAC-RSB buffer and spun at 1000 g for 10 minutes, and the
supernatant was removed. The nuclei pellet was resuspended in 50 µl of transposition mixture
and incubated at 37°C for 30 minutes with 1000 rpm shaking. The transposed DNA was purified
using Qiagen MinElute Purification kits (Qiagen # 28006). The DNA product was amplified using
NEBnext High-Fidelity 2x PCR Master Mix (NEB, M0541L) and custom indexed primers. 1.8x
SPRIselect beads were used to clean the PCR reaction and obtain the ATAC-seq library for
sequencing.

DNA sequencing, data processing, and normalization
Pooled libraries were sequenced on an Illumina NovaSeq 6000 platform (Illumina, San Diego,
CA, USA) to a target depth of 35 million read pairs (70 million paired-end reads) per sample
using a paired-end 50 base-pair run configuration. Reads were demultiplexed with bcl2fastq2
(v2.20.0) (Illumina, San Diego, CA, USA). Data was processed with the ENCODE ATAC-seq
pipeline (v1.7.0)60. Samples from a single sex and training time point, e.g., males trained for 2
weeks, were analyzed together as biological replicates in a single workflow. Briefly, adapters
were trimmed with cutadapt v2.561 and aligned to release 96 of the Ensembl Rattus norvegicus
(rn6) genome51 with Bowtie 2 v2.3.4.352. Duplicate reads and reads mapping to the
mitochondrial chromosome were removed. Signal files and peak calls were generated using
MACS2 v2.2.462, both from reads from each sample and pooled reads from all biological
replicates. Pooled peaks were compared with the peaks called for each replicate individually
using Irreproducibility Discovery Rate63 and thresholded to generate an optimal set of peaks.
The cloud implementation of the ENCODE ATAC-seq pipeline and source code for the
post-processing steps are available on Github42. Optimal peaks
(overlap.optimal_peak.narrowPeak.bed.gz) from all workflows were concatenated, trimmed to
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200 base pairs around the summit, and sorted and merged with bedtools v2.29.064 to generate a
master peak list. This peak list was intersected with the filtered alignments from each sample
using bedtools coverage with options -nonamecheck and -counts to generate a peak by sample
matrix of raw counts. The remaining steps were applied separately on raw counts from each
tissue. Peaks from non-autosomal chromosomes were removed, as well as peaks that did not
have at least 10 read counts in four samples. Filtered raw counts were then quantile-normalized
with limma-voom65. This version of the normalized data was used for downstream analyses.
Batch correction was performed by including the sample processing batch, coded as a factor, as
a covariate during differential analysis.

RNA sequencing

  Extraction of total RNA
RNA sequencing (RNA-Seq) was performed at Stanford University and the Icahn School of
Medicine at Mount Sinai. Rat tissues (30 mg for white adipose, 15 mg for brown adipose, 10 mg
for other solid tissues, and 0.47 ml blood) were disrupted in Agencourt RNAdvance tissue lysis
buffer (Beckman Coulter, Brea, CA) using a tissue ruptor (Omni International, Kennesaw, GA, #
19-040E). Total RNA was extracted in a BiomekFx automation workstation according to the
manufacturer’s instructions for tissue-specific extraction. Total RNA from blood collected in
PAXgene tubes (BD Biosciences, Franklin Lakes, NJ, # 762165) was extracted using the
Agencourt RNAdvance blood specific kit (Beckman Coulter). Two tissue-specific consortium
reference standards were included to monitor the sample processing QC. The RNA was
quantified by NanoDrop (ThermoFisher Scientific, # ND-ONE-W) and Qubit assay
(ThermoFisher Scientific), and the quality was determined by either Bioanalyzer or Fragment
Analyzer analysis.

mRNA Sequence Library Preparation
Universal Plus mRNA-Seq kit from NuGEN/Tecan (# 9133) were used for generation of
RNA-Seq libraries derived from poly(A)-selected RNA according to the manufacturer’s
instructions. Universal Plus mRNA-Seq libraries contain dual (i7 and i5) 8 bp barcodes and an 8
bp unique molecular identifier (UMI), which enable deep multiplexing of NGS sequencing
samples and accurate quantification of PCR duplication levels. Approximately 500ng of total
RNA were used to generate the libraries. The Universal Plus mRNA-Seq workflow consists of
poly(A) RNA selection, RNA fragmentation and double-stranded cDNA generation using a
mix ture of random and oligo(dT) priming, end repair to generate blunt ends, adaptor ligation,
strand selection, AnyDeplete workflow to remove unwanted ribosomal and globin transcripts,
and PCR amplification to enrich final library species. All library preparations were performed
using a Biomek i7 laboratory automation system (Beckman Coulter). Tissue-specific reference
standards provided by the consortium were included with all RNA isolations to QC the RNA.
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RNA sequencing, quantification, and normalization
Pooled libraries were sequenced on an Illumina NovaSeq 6000 platform (Illumina, San Diego,
CA, USA) to a target depth of 35 million read pairs (70 million paired-end reads) per sample
using a paired-end 100 base pair run configuration. In order to capture the 8-base UMIs,
libraries were sequenced using 16 cycles for the i7 index read and 8 cycles for the i5 index
read. Reads were demultiplexed with bcl2fastq2 (v2.20.0) using options --use-bases-mask
Y*,I8Y*,I*,Y* --mask-short-adapter-reads 0 --minimum-trimmed-read-length 0 (Illumina, San
Diego, CA, USA), and UMIs in the index FASTQ files were attached to the read FASTQ files.
Adapters were trimmed with cutadapt (v1.18), and trimmed reads shorter than 20 base pairs
were removed61. FastQC (v0.11.8) was used to generate pre-alignment QC metrics50. STAR
(v2.7.0d) was used to index and align reads to release 96 of the Ensembl Rattus norvegicus
(rn6) genome and gene annotation51. Default parameters were used for STAR’s
genomeGenerate run mode; in STAR’s alignReads run mode, SAM attributes were specified as
NH HI AS NM MD nM, and reads were removed if they did not contain high-confidence
collapsed splice junctions (--outFilterType BySJout). RSEM (v1.3.1) was used to quantify
transcriptome-coordinate-sorted alignments using a forward probability of 0.5 to indicate a
non-strand-specific protocol66. Bowtie 2 (v2.3.4.3) was used to index and align reads to globin,
rRNA, and phix sequences in order to quantify the percent of reads that mapped to these
contaminants and spike-ins52. UCSC’s gtfToGenePred was used to convert the rn6 gene
annotation (GTF) to a refFlat file in order to run Picard CollectRnaSeqMetrics (v2.18.16) with
options MINIMUM_LENGTH=50 and RRNA_FRAGMENT_PERCENTAGE=0.367. UMIs were
used to accurately quantify PCR duplicates with NuGEN’s “nodup.py” script
(https://github.com/tecangenomics/nudup). QC metrics from every stage of the quantification
pipeline were compiled, in part with multiQC (v1.6)54. The openWDL-based implementation of
the RNA-Seq pipeline on Google Cloud Platform is available on Github41. Filtering of lowly
expressed genes and normalization were performed separately in each tissue. RSEM gene
counts were used to remove lowly expressed genes, defined as having 0.5 or fewer counts per
million in all but one sample. These filtered raw counts were used as input for differential
analysis with DESeq268, as described below. To generate normalized sample-level data, filtered
gene counts were TMM-normalized using edgeR::calcNormFactors, followed by conversion to
log counts per million with edgeR::cpm56. As all samples for a given tissue were processed in a
single batch, batch correction was not possible or necessary.

Liquid chromatography tandem mass spectrometry (LC-MS/MS)
proteomics

Tissue lysis and protein extraction
LC-MS/MS analyses of 60 samples per tissue representing full time course samples for 6
female and 6 male rats were performed at the Broad Institute of MIT and Harvard (heart and
liver) and the Pacific Northwest National Laboratory (gastrocnemius, white adipose tissue,
cerebellum, lung, and kidney). Sample processing for proteomic analysis was based on a
protocol previously described69, with modifications detailed below. Cryopulverized tissue
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samples were suspended in cold, freshly-prepared lysis buffer (8 M urea (Sigma-Aldrich, St.
Louis, Missouri), 50 mM Tris pH 8.0, 75 mM sodium chloride, 1 mM EDTA, 2 μg/ml Aprotinin
(Sigma-Aldrich, St. Louis, Missouri), 10 μg/ml Leupeptin (Roche CustomBiotech, Indianapolis,
Indiana), 1 mM PMSF in EtOH, 10 mM sodium fluoride, 1% phosphatase inhibitor cocktail 2 and
3 (Sigma-Aldrich, St. Louis, Missouri)), vortexed for 10 seconds, and incubated for 15 min on a
thermomixer set to 4°C and 800 rpm. The lysis buffer for heart and liver tissues was
supplemented with deacetylase inhibitors for acetylome analysis (10 mM Sodium Butyrate, 2 μM
SAHA, and 10 mM nicotinamide). Samples were vortexed for an additional 10 seconds and
incubated for 15 more minutes with the same settings, then centrifuged for 10 minutes at 4°C
and 18000 rcf to remove debris. Supernatant was removed, and protein concentrations were
determined by BCA assay (ThermoFisher, Waltham, Massachusetts).

Protein digestion
Protein lysate concentrations were normalized within samples of the same tissue type, and
protein was reduced with 5 mM dithiothreitol (DTT, Sigma-Aldrich) for 1 hour in a thermomixer
set to 37°C and 1000 rpm. Protein was then alkylated with iodoacetamide (IAA, Sigma-Aldrich)
for 45 minutes in the dark in a thermomixer set to 25°C and 1000 rpm. Samples were then
diluted 1:4 with 50 mM Tris-HCl, pH 8.0 to lower the urea concentration below 2 M. LysC
endopeptidase (1mAU/uL, Wako Chemicals, Richmond, Virginia) was added at a 1:50
enzyme:substrate ratio, and samples were then digested for 2 hours in a thermomixer set to
25°C and 850 rpm. Sequencing grade modified trypsin (Promega, MAdison, Wisconsin) was
then added at an enzyme:substrate ratio of 1:50 (or 1:10 for white adipose tissue), and samples
were digested for 14 hours in a thermomixer set to 25°C and 850 rpm. Digestions were
quenched by adding formic acid (FA) to a final concentration of 1%, and samples were
centrifuged at 1500 rcf for 15 minutes at 4°C. Supernatants were collected into new tubes,
diluted to 3 ml total volume with 0.1% FA, and desalted using Sep-Pac C18 SPE cartridges
(Waters, Milford, MA). Clean peptides were concentrated in a speedvac, and peptide
concentrations were determined by BCA assay.

Tandem mass tag (TMT) labeling of peptides
400 μg aliquots of every sample were prepared and dried down to be used for TMT labeling.
Additionally, a common reference sample was generated within each tissue type by pooling
equal amounts of peptide from each experimental sample; one 400 μg aliquot of this reference
was included in each multiplex. Within each tissue type male and female rat time course
samples were randomized into 6 TMT11 plexes making sure single time course samples were in
the same plex and keeping 1 male and 1 female in each plex. Samples were resuspended in
200 mM HEPES pH 8.5 to a final concentration of 5 μg/uL for labeling and a reduced TMT
reagent labeling approach was used70. Experimental samples were randomized across the first
ten TMT channels (126C to 131N) and common reference aliquots were assigned to the last
TMT channel (131C). TMT reagents were resuspended in anhydrous acetonitrile to a
concentration of 20 μg/uL, and 400 μg of reagent was added to appropriate peptide aliquots
(resulting in a 1:1 peptide:tag ratio). Labeling was allowed to proceed for 1 hour in a
thermomixer set to 25°C and 400 rpm. After 1 hour, samples were diluted to 2.5 μg/uL with 20%
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acetonitrile, a small aliquot was removed from each sample for labeling efficiency and mixing
tests, and the remaining sample was snap-frozen in liquid N2 and stored at -80°C. Following QC
checks, reactions were quenched with hydroxylamine and samples from each multiplex were
combined, concentrated in a speedvac, and desalted using Sep-Pac C18 SPE cartridges
(Waters). Heart and liver samples were subjected to phosphotyrosine enrichment, while this
step was skipped for the remaining tissues to perform offline bRP fractionation.

Phosphotyrosine peptide enrichment
Phosphotyrosine (pY) enrichment was performed on liver and heart tissues for improved
characterization of tyrosine kinase signaling pathways, as described previously71. TMT-labeled
and combined peptides were resuspended in 1.5 ml of IAP buffer (50 mM MOPS, 10 mM
sodium phosphate dibasic, 50 mM NaCl) and cleared by centrifugation (5 min, 5000 rcf). The
pellet was dissolved in 1% FA and combined with the pY enrichment flowthrough for
downstream bRP fractionation, while the supernatant was used for pY enrichment. PTMScan
Phospho-Tyrosine Rabbit mAb beads (Cell Signaling Technologies #8803, Danvers,
Massachusetts) were washed three times with 1.5 ml IAP buffer (30 s, 2000 rcf) and incubated
with the solubilized peptides (1 hour, 4°C, end-over-end rotation). Beads with pY peptides
bound were centrifuged (1 minute, 1500 rcf), and the flowthrough was collected, desalted using
Sep-Pac C18 SPE cartridges, and used for downstream bRP offline fractionation. The beads
were washed four times using 1.5 ml PBS (30 seconds, 2000 rcf) and pY peptides were eluted
by two consecutive 5-minute incubations with 0.15% trifluoroacetic acid (TFA). Eluted pY
peptides were desalted using stage tips containing 2x C18 discs (Empore, CDS Analytical,
Oxford, Pennsylvania). The stage tip column was conditioned with 1x 100 μL methanol, 1x 100
μL 50% acetonitrile (ACN) / 1% FA, and 2x 100 μL 0.1% FA washes. Acidified peptides were
bound to the column, washed with 2x 100 μL 0.1% FA, and eluted with 50 μL 50% ACN / 0.1%
FA. Eluted peptides were dried using a vacuum concentrator. Phosphotyrosine peptides were
suspended in 9 μl of 0.1% FA and 3% ACN, and 2 x 4 μl were injected in an LC-MS/MS
instrument.

Offline bRP fractionation
Each combined multiplex sample was fractionated by high pH reversed phase separation using
a 3.5 μm Agilent Zorbax 300 Extend-C18 column (4.6 mm ID x 250 mm length). Samples were
resuspended in mobile phase A (5 mM ammonium formate, pH 10, in 2% acetonitrile),
centrifuged to remove debris, loaded onto the column and eluted off the column for 96 minutes
at a flow rate of 1 ml/minute using mobile phase B (5 mM ammonium formate, pH 10, in 90%
acetonitrile) with the following gradient (time(min): %B): 0:0; 7:0; 13:16; 73:40; 77:44; 82:60;
96:60. A total of 96 fractions were collected, immediately acidified to 0.1% formic acid, and
concatenated down to 24 fractions by combining non-sequential fractions. For heart and liver
tissues, the complete gradient was collected and only fractions 15-91 showing robust peptide
signals were concatenated. Fractions 3-14 were collected and used as an extra fraction “A” for
phosphopeptide enrichment. For the remaining tissues, 96 fractions were collected between
elution time of 2.4 to 91 minutes and all fractions were used for concatenation. Five percent was
removed for global proteome analysis. For phosphopeptide enrichment, the remaining 95% was
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further concatenated to 12 fractions plus an additional fraction “A” for heart and liver only. These
fractions were frozen in liquid nitrogen, vacuum-centrifuged to dryness, and stored at -80°C until
ready for phosphopeptide enrichment.

Phosphopeptide enrichment
Phosphopeptide enrichment was performed through immobilized metal affinity chromatography
(IMAC) using Fe3+-NTA-agarose beads, freshly prepared from Ni-NTA-agarose beads (Qiagen,
Hilden, Germany) by sequential incubation in 100 mM EDTA to strip nickel, washing with HPLC
water, and incubation in 10 mM iron (III) chloride). Peptide fractions were resuspended to 0.5
μg/uL in 80% ACN + 0.1% TFA and incubated with beads for 30 minutes in a thermomixer set to
1000 rpm at room temperature. After 30 minutes, beads were spun down (1 minute, 1000 rcf)
and supernatant was removed and saved as flow-through for subsequent enrichments.
Phosphopeptides were eluted off IMAC beads in 3x 70 μl of agarose bead elution buffer (500
mM K2HPO4, pH 7.0), desalted using C18 stage tips, eluted with 50% ACN, and lyophilized.
Samples were then reconstituted in 3% ACN / 0.1% FA for LC-MS/MS analysis (12 μl
reconstitution / 5 μl injection for gastrocnemius, white adipose, lung, kidney, and cortex
samples; 9 μl reconstitution / 4 μl injection for heart and liver samples). Flow-through from the
12 IMAC fractions were further concatenated into 4 fractions to be used for acetylpeptide
enrichment only for heart and liver tissues.

Acetylpeptide enrichment
Acetylated lysine peptides were enriched using an antibody against the acetyl-lysine motif (Cell
Signaling Technologies #13416, Danvers, Massachusetts). Peptide fractions were reconstituted
with 1.4 ml of IAP buffer per fraction and incubated for 2 h at 4°C with pre-washed (3 times with
IAP buffer) agarose beads bound to acetyl-lysine motif antibody. Peptide-bound beads were
washed 4 times with ice-cold PBS followed by elution with 2 × 100 μl of 0.15% TFA. Eluents
were desalted using C18 stage tips, eluted with 50% ACN, lyophilized, and reconstituted in 9 μl
3% ACN / 0.1% FA. Four μl of each fraction were injected for LC-MS/MS analysis.

K-ε-GG enrichment for ubiquitylome analysis
Ubiquitin enrichment was performed based on the UbiFast protocol72. Anti-K-ε-GG bead-bound
antibodies from the PTM-Scan ubiquitin remnant motif kit (Cell Signaling Technologies #5562)
were cross-linked using the following procedure. Beads were washed 3 times with 100 mM
sodium borate (pH 9.0) and incubated with 20 mM DMP for 30 minutes at room temperature.
Beads were then washed 2 times with 200 mM ethanolamine and incubated overnight at 4°C in
200 mM ethanolamine with end-over-end rotation. Following incubation, beads were washed
three times with an IAP buffer and stored at 4°C at a concentration of 0.5 μg/μL. For each
11-plex experiment, 31.25 μg of cross-linked anti-K-ε-GG bead-bound antibody at 0.5 μg/μL in
IAP per channel was aliquoted into 1.5 ml Eppendorf tubes on ice. Eight hundred and one
thousand micrograms of total peptides were used for liver and heart tissue samples,
respectively. Each sample was reconstituted to 0.5 mg/ml concentration in IAP buffer and
vortexed for 10 minutes. Peptides were then centrifuged for 5 minutes at 5000 g. Each peptide
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solution was added to a tube of antibody and gently rotated end-over-end at 4°C for 1 hour.
Following enrichment, samples were centrifuged (1 minute, 2000 rcf) and the supernatant was
removed. Beads were washed with 1.5 ml ice cold IAP followed by 1.5 ml ice cold PBS (30
seconds, 2000 rcf) and reconstituted in 200 μl 100 mM HEPES buffer. For each sample, 400 μg
of TMT labeling reagent in 10 μl acetonitrile was added. For heart samples, 800 μg of TMT
labeling reagent was added to improve labeling efficiency. Peptides were TMT labeled on-beads
while shaking vigorously (1400 rpm) at 20°C for 10 minutes, then quenched with 8 μl 5%
hydroxylamine and shaken vigorously for another 5 minutes, washed once with 1.3 ml cold IAP,
and again with 1.5 ml cold IAP. Samples for each channel were resuspended and transferred to
a combination tube with 130 μl cold IAP. Following combination, each now-empty tube was
serially washed with 1.5 ml cold IAP to remove remaining beads. This 1.5 ml IAP fraction was
added to the combination tube and used to wash the combined beads. Combined beads were
then washed one final time with 1.5 ml ice cold PBS. Once the channels were combined and
washed, peptides were eluted twice from the beads by resuspending with 150 μL
room-temperature 0.15% TFA and incubating for 5 minutes at room temperature. Each round of
acid-eluted K-ε-GG-modified peptides was desalted on an equilibrated two-punch C18 stage tip.
Both elutions of K-ε-GG peptides were loaded sequentially, washed 2 times with 100 μl 0.1%
FA, and eluted into an LC-MS vial with 50 μl 50% ACN / 0.1% FA. The eluted peptides were
frozen, lyophilized, and reconstituted in 9 μl 3% ACN / 0.1% FA, with 4 μl injected twice for two
consecutive LC-MS/MS runs.

LC-MS/MS analysis of heart and liver tissue samples
Online separation was conducted with a nanoflow Proxeon EASY-nLC 1200 UHPLC system
(Thermo Fisher Scientific). In this setup, the LC system, column, and platinum wire used to
deliver the electrospray source voltage were connected via a stainless steel cross (360 mm,
IDEX Health & Science, UH-906x). An in-house packed 22 cm x 75 μm internal diameter C18
silica picofrit capillary column (1.9 mm ReproSil-Pur C18-AQ beads, Dr. Maisch GmbH,
r119.AQ; Picofrit 10 μm tip opening, New Objective, PF360-75-10-N-5) heated at 50°C using a
column heater sleeve (Phoenix-ST) was used for chromatographic separation. For global
proteome analysis, ∼1 μg was loaded on-column in a 2-μL volume (based on peptide-level BCA
with uniformly-distributed fractionation presumed). For phosphoproteome, acetylome, and
ubiquitylome analysis, 50% of each fraction sample was injected in a 4-μl volume. Mobile phase
flow rate was 200 nL/min, composed of 3% acetonitrile / 0.1% formic acid (Solvent A) and 90%
acetonitrile / 0.1% formic acid (Solvent B). The 110-minute LC-MS/MS method used for global
proteome and IMAC phosphoproteome analysis consisted of a 10-minute column-equilibration
procedure; a 20-minute sample-loading procedure; and the following gradient profile: (time
(minutes):%B) 0:1; 1:6; 63:20, 85:30; 94:60; 95;90; 100:90; 101:50; 110:50. For acetylproteome,
ubiquitylome, and phosphotyrosine enrichment analysis, the same LC and column setup was
used, but the gradient was extended to 154 minutes with the following gradient profile: (time
(minutes):%B) 0:2; 2:6; 122:30; 130:60; 133;90; 143:90; 144:50; 154:50.

For proteome analysis, samples were analyzed with a Q-Exactive Plus mass spectrometer
(Thermo Fisher Scientific). Data-dependent MS/MS acquisition was performed using the
following relevant parameters: positive ion mode at a spray voltage of 1.8 kV, MS1 resolution of
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60,000, an AGC target of 3e6, a mass range from 300 to 1800 m/z, MS2 resolution of 45,000,
MS2 AGC target of 5e4, isolation window of 0.7 m/z, MS2 maximum injection time of 105 ms,
HCD collision energy of 29%, dynamic exclusion for 20 seconds, peptide match was set to
preferred for monoisotopic peak determination, charge states 2-6.

For analysis of IMAC-enriched peptides (phosphoproteome), samples were analyzed with a
Q-Exactive HFX mass spectrometer (Thermo Fisher Scientific). Data-dependent MS/MS
acquisition was performed using the following relevant parameters: positive ion mode at a spray
voltage of 1.5 kV, MS1 resolution of 60,000, an AGC target of 3e6, a mass range from 350 to
1800 m/z, MS2 resolution of 45,000, MS2 AGC target of 5e4, isolation window of 0.7 m/z, MS2
maximum injection time of 105 ms, HCD collision energy of 31%, dynamic exclusion for 15
seconds, peptide match was set to preferred for monoisotopic peak determination, charge
states 2-6. The advanced precursor determination feature (APD)73 was turned off in the tune file
using a software patch provided by Thermo Fisher Scientific (Tune version 2.11). For analysis of
phosphotyrosine enriched peptides (phosphoproteome), the same settings were used with the
following modifications: MS2 AGC target of 2e5 and MS2 maximum injection time of 150 ms.
For analysis of acetyl-lysine enriched peptides (acetylome), the same settings were used with
the following modifications: MS2 AGC target of 5e5 and MS2 maximum injection time of 150 ms.
For analysis of K-ε-GG enriched peptides (ubiquitylome), the same settings were used with the
following modifications: MS2 AGC target of 5e4 and MS2 maximum injection time of 150 ms.

LS-MS/MS analysis of the gastrocnemius, white adipose tissue, cortex,
kidney, and lung

For global proteome analysis, online separation was performed with a nanoAcquity M-Class
UHPLC system (Waters) equipped with a 250 mm x 4.6 mm internal diameter Jupiter 5 μm C18
trapping column (Phenomenex). An in-house packed, 25 cm x 75 μm internal diameter C18
silica picofrit column (1.7 μm UPLC BEH particles, Waters Acquity) heated to 50°C was used for
chromatographic separation. 0.25-0.5 μg per fraction (based on peptide-level BCA) was loaded
on-column in a 5uL volume. Mobile phase flow rate was 200 nL/min, composed of 0.1% formic
acid in H2O (Solvent A) and 0.1% formic acid in acetonitrile (Solvent B). Following a 6-minute
trap time and 27-minute sample load time in 100% solvent A, the following 120-minute gradient
profile was applied: (minutes:%B) 0:8; 83:20; 96:35; 101:75; 104:95; 110:95; 111:50; 113:95.
Samples were analyzed with a Q Exactive HF mass spectrometer (Thermo Fisher Scientific).
Data-dependent MS/MS acquisition was performed with the following parameters: positive ion
mode at a spray voltage of 1.8 kV, MS1 resolution of 60,000, an AGC target of 3e6, a mass
range from 300 to 1800 m/z, MS2 resolution of 30,000, MS2 AGC target of 1e5, isolation
window of 0.7 m/z, MS2 maximum injection time of 100 ms, HCD collision energy of 30%,
dynamic exclusion for 45 seconds, peptide match was set to preferred for monoisotopic peak
determination, charge states 2-6.

For IMAC-enriched phosphopeptide analysis, online separation was performed with a Dionex
Ultimate 3000 UHPLC direct-inject system (Thermo). An in-house packed, 30 cm x 75 μm
internal diameter C18 silica picofrit column (1.7 μm UPLC BEH particles, Waters Acquity) at
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room temperature was used for chromatographic separation. Samples were resuspended in 12
μl Solvent A, and 5 μl was loaded on-column. Mobile phase flow rate was 200 nL/min,
composed of 0.1% formic acid in H2O (Solvent A) and 0.1% formic acid in acetonitrile (Solvent
B). Following a 60-minute sample load time in 100% solvent A, the following 120-minute
gradient profile was applied: (time (minutes):%B) 0:8; 85:25; 95:35; 100:75; 105:5; 110:95;
115:1. Samples were analyzed with a Q-Exactive HF-X mass spectrometer (Thermo Fisher
Scientific). Data-dependent MS/MS acquisition was performed with the following parameters:
positive ion mode at a spray voltage of 1.8 kV, MS1 resolution of 60,000, an AGC target of 3e6,
a mass range from 300 to 1800 m/z, MS2 resolution of 45,000, MS2 AGC target of 2e5,
isolation window of 0.7 m/z, MS2 maximum injection time of 100 ms, HCD collision energy of
30%, dynamic exclusion for 45 seconds, peptide match was set to preferred for monoisotopic
peak determination, charge states 2-6.

Raw MS/MS data processing
Raw MS/MS data from gastrocnemius, white adipose, lung, kidney, and cortex were processed
using a cloud-based proteomics pipeline developed for this project and executed in the Google
Cloud Platform. Briefly, we used the Workflow Description Language (WDL) to define the
workflow and parallelize the execution using Cromwell as the workflow management system.
The pipeline includes the following steps and open source methods:

1. MASIC: Extract reporter ion peaks from MS2 spectra and create Selected Ion
Chromatograms for each MS/MS parent ion.

2. MSConverted: Convert Thermo .raw files to .mzML files.
3. MS-GF+: Identify peptides using a fully tryptic search (for speed).
4. MZrefiner filter in MSConvert: Use mass error histograms to in-silico re-calibrate the m/z

values in the .mzML file.
5. PPMErrorCharter: Plot the mass error histograms before and after in-silico recalibration.
6. MS-GF+: Identify peptides using a partially tryptic search.
7. MzidToTSVConverter: Create a tab-separated value file listing peptide IDs.
8. PeptideHitResultsProcessor: Create tab-delimited files required for step 7; files contain

peptide IDs, unique sequence info, and residue modification details.
9. Ascore (PTM only): Localize the position of Phosphorylation on S, T, and Y residues in

phosphopeptides.

For a more extensive description, please visit the pipeline source code available on Github44.

MS2 spectra were processed and searched against the rat RefSeq protein database
(downloaded in November 2018) and common contaminants by the MS-GF+ tool74 for peptide
sequence identification. Fixed modifications were cysteine carbamidomethylation and TMT11 on
N-terminal and lysine residues; variable modifications were methionine oxidation for global
proteomics datasets, and S,T,Y phosphorylation for phosphoproteomics datasets. Localization
of phosphorylation modifications was performed using the Ascore algorithm75. A target-decoy
approach was used to control false discovery rate to <1% first at the peptide level and then at
the protein level. For global proteomics datasets, parsimonious inference was then performed
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as described by76, with peptides being preferentially mapped to the protein with the greatest
total number of peptides. For the phosphoproteomics datasets, phosphopeptides were mapped
to the proteins justified through proteomics inference. Parsimonious inference was applied to
the remaining set of phosphopeptides that mapped to proteins not observed in the proteomics
data. This approach allows phosphopeptides to map to multiple previously justified proteins;
however, it produces redundancies in the final phosphosite-level quantitation data when two or
more proteins previously detected in the global results (typically isoforms) shared the same
phosphosites/phosphopeptides. The degree of this redundancy is dependent on the redundancy
in the database used for the MS/MS searches. TMT reporter ion intensities were extracted using
MASIC77 with the following thresholds: signal-to-noise ratio = 0; interference score = 0.5. Data
from all fractions of the same multiplex were aggregated to peptide-centric, site-centric, or
protein-centric levels, ratioed to the common reference, and summarized in results tables using
the R package “PlexedPiper” (https://github.com/PNNL-Comp-Mass-Spec/PlexedPiper).

As a sensitivity analysis, we repeated the median MAD normalization and DEA analysis after
eliminating site redundancies in the gastrocnemius, white adipose, lung, kidney, and cortex. We
then compared the resulting datasets without redundancies to their matching sites in the dataset
that contained the redundancies. The comparison showed that the new results were minimally
impacted: correlation (⍴) of t-scores was > 0.999 in each tissue, with no site exhibiting a t-score
absolute difference > 0.5 or a log-fold change absolute difference > 0.1. IHW analysis on the full
phosphoproteomics dataset (i.e., including all tissues) revealed that 96% of initially significant
sites at 5% remained significant, and the remaining sites tended to have a low IHW FDR
(q-value < 0.11). Additionally, the PTM-SEA results were highly consistent: correlation of
enrichment scores was > 0.99 for all tissue, sex, and time combinations. In summary, we
observed no practical impact of removing the redundancies on the statistical and biological
results.

Raw MS/MS data from heart and liver samples were processed using Spectrum Mill v.7.09.215
(Broad Institute). MS2 spectra were extracted from RAW files and merged if originating from the
same precursor, or within a retention time window of +/- 60 s and m/z range of +/- 1.4, followed
by filtering for precursor mass range of 750–6000 Da and sequence tag length > 0. MS/MS
search was performed against the rat RefSeq protein database (downloaded on November
2018) and common contaminants, with digestion enzyme conditions set to “Trypsin allow P”, <5
missed cleavages, fixed modifications (cysteine carbamidomethylation and TMT11 on N-term
and lysine), and variable modifications (oxidized methionine, acetylation of the protein
N-terminus, pyroglutamic acid on N-term Q, and pyro carbamidomethyl on N-term C). Additional
variable modifications were added for analysis of phosphoproteome (S,T, and Y
phosphorylation), acetylome (K acetylation), and ubiquitylome (di-glycine residual in K).
Matching criteria included a 30% minimum matched peak intensity and a precursor and product
mass tolerance of ± 20 ppm. Peptide-level matches were validated if found to be below the
1.0% false discovery rate (FDR) threshold and within a precursor charge range of 2–6. A
second round of validation was then performed for protein-level matches for proteome datasets,
requiring a minimum protein score of 13 and protein level FDR of 0%. For detailed description of
peptide–spectrum matching (PSM), peptide scoring and protein grouping refer to78,79. For Post
Translational Modifications (PTMs) PSMs were combined into a single row for all non-conflicting
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observations of a particular variable modification (VM) site (e.g., different missed cleavage
forms, different precursor charges, confident and ambiguous localizations, and different
sample-handling modifications). All protein accession numbers which contain one of the
combined peptides are reported in the row for each site.

Using the SM Autovalidation and Protein/Peptide summary modules, results were filtered and
reported at the protein level. Proteins were grouped if they shared a peptide with sequence
length > 8. A protein group was expanded into subgroups (isoforms or family members) if
distinct peptides uniquely represented a subset of the proteins in that group. For proteomics
datasets, the protein grouping method ‘‘expand subgroups, top uses shared’’ (SGT) was
employed which allocates peptides shared by protein subgroups only to the highest scoring
subgroup. For the PTM datasets, the protein grouping method ‘‘unexpand subgroups’’ was
employed which reports a VM-site once per protein group allocated to the highest scoring
subgroup containing the representative peptide. A distinct peptide is the single highest scoring
instance of a peptide detected through an MS/MS spectrum. Post-translational modification
(PTM) site-centric tables for PTM datasets and protein-centric tables for proteome datasets,
including TMT intensity values and ratio to the common reference, were exported using
Spectrum Mill and used for further normalization and statistical analysis.

Proteomics data normalization
Log2 TMT ratios to the common reference were used as quantitative values for all proteomics
features (proteins, phosphosites, acetylsite, and ubiquitylsites). Proteomics datasets were
examined for sample outliers by looking at the top principal components and by examining
median protein abundance across samples. Outlier samples were identified for acetylome
samples labeled with channel 130C, and these were suspected to originate from contaminated
130C-TMT reagent. All acetylome samples labeled with TMT channel 130C were excluded from
downstream analysis. Proteomics features not fully quantified in at least two plexes within a
tissue and non-rat contaminants were removed. Log2 TMT ratios were sample-normalized by
median-centering and mean absolute deviation scaling. Plex batch effects were removed using
linear models implemented by the limma::removeBatchEffect function in R (v 3.48.0).

The PTM datasets were corrected for changes in protein abundances by fitting a global linear
model between the PTM-site and the cognate protein and extracting the residuals. However,
protein-corrected PTM values were not used for most analyses due to the lack of complete
overlap between PTM and total proteome features (80.5%-89.7% for phosphosites, 95.6-96.9%
for acetylsites, and 94.8-95.7% for ubiquitylsites). The exception was ubiquitylome differential
analysis because of the more direct effect that ubiquitination may have on protein abundance
due to ubiquitin-mediated proteasomal degradation80. Protein-corrected values for all PTMs are
included in the MotrpacRatTraining6moData R package for exploration39.

Non-targeted metabolomics

HILIC LC-MS positive ion mode non-targeted metabolomics
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Hydrophilic interaction liquid chromatography (HILIC) analyses of polar metabolites in the
positive ionization mode were conducted at the Broad Institute of MIT and Harvard.

Sample preparation
Plasma samples: Samples were stored at -80°C until extraction and were thawed and
maintained on wet ice throughout processing steps. Plasma samples (10 µL) were extracted
using 90 µL of 74.9/24.9/0.2 v/v/v acetonitrile/methanol/formic acid containing valine-d8 (0.2
ng/µL, Sigma-Aldrich) and phenylalanine-d8 (0.2 ng/µL, Cambridge Isotope Laboratories)
internal standards. Samples were centrifuged (10 minutes, 9,000 x g, 4°C) and supernatants
were transferred to autosampler vials with deactivated glass inserts (Waters).

Tissue samples: Samples were stored at -80°C until extraction and were thawed and
maintained on wet ice throughout processing steps. Powdered tissue samples (10 mg) were
homogenized at 4°C in 300 µL of 10/67.4/22.4/0.018 v/v/v/v water/acetonitrile/methanol/formic
acid containing valine-d8 (0.2 ng/µL, Sigma-Aldrich) and phenylalanine-d8 (0.2 ng/µL,
Cambridge Isotope Laboratories) internal standards using a TissueLyser II (QIAGEN) bead mill
set to two 2 min intervals at 20 Hz. Samples were centrifuged (10 minutes, 9,000 x g, 4°C) and
supernatants were transferred to autosampler vials with deactivated glass inserts (Waters).

LC-MS analysis
Data were acquired using an LC-MS system comprised of a Nexera X2 UHPLC (Shimadzu)
coupled to a Q-Exactive hybrid quadrupole Orbitrap mass spectrometer (Thermo Fisher
Scientific). Metabolite extracts were injected onto a 150 x 2 mm, 3 µm Atlantis HILIC column
(Waters). The column was eluted using the gradient program in Table 2. MS analyses were
carried out using electrospray ionization in the positive ion mode using full scan analysis over
70-800 m/z at 70,000 resolution and 3 Hz data acquisition rate. Other MS settings were: sheath
gas 40, auxiliary gas 10, sweep gas 2, spray voltage 3.5 kV, capillary temperature 350°C, S-lens
RF 40, heater temperature 300°C, microscans 1, automatic gain control target 1e6, and
maximum ion time 250 ms.

Table 2. HILIC-pos gradient program

Time (minutes) %A %B Flow (mL/min)
0 5 95 0.25

0.5 5 95 0.25
10.5 60 40 0.25
15 60 40 0.25
17 5 95 0.25

17.5 5 95 0.25
18 5 95 0.4

30.5 5 95 0.4
31.5 5 95 0.25
32 5 95 0.25
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Data processing and quality control
Feature detection and alignment: Raw data from each tissue type were processed
independently using TraceFinder software (version 3.3; Thermo Fisher Scientific) for targeted
peak integration and manual review of a subset of identified metabolites and Progenesis QI
(Nonlinear Dynamics, Waters) for peak detection and integration of both metabolites of known
identity, confirmed using reference standards, and unknowns. Data for each sample type were
acquired in a single batch and unknowns were aligned using Progenesis QI.

Data cleaning and degeneracy removal: Unknown features detected and integrated using
Progenesis QI were de-isotoped by the software and tacked by measured mass-to-charge ratios
(m/z) and retention times (RT). In order to filter redundant ion features, Spearman correlation
coefficients were calculated among all LC-MS features that eluted within a sliding retention time
window of 0.025 minutes. Cliques of highly correlated, co-eluting features (Spearman
correlation coefficients >0.8) were then identified. When possible, mass differences among
features within each clique were used to determine ion adduct types. If an [M+H]+ ion could be
identified, that feature was retained; otherwise the most abundant feature was retained. All other
redundant features were flagged and removed.

Drift correction and quality control: Data quality was assured by i) initially confirming LC-MS
system performance by analyzing a mixture of >140 well-characterized synthetic reference
compounds as well as repeated analyses of extracts from human pooled plasma (BioIVT); ii)
daily evaluation of internal standard signals to ensure that each sample injected properly and to
monitor MS sensitivity; and iii) analysis of four pairs of pooled extract samples per sample type
that were inserted in the analysis queue at regular intervals. One sample from each pair was
used to correct for instrument drift using “nearest neighbor” scaling while the second reference
sample served as a passive QC for determination of the analytical coefficient of variation of
every identified metabolite and unknown.

Compound identification: Except for lipids, metabolite identities were confirmed using
authentic reference standards to match measured MS and RT data in the method. Lipids were
identified using representative standards and identified by RT patterns and high resolution and
accurate mass MS data.

Reverse phase and ion pairing LC-MS non-targeted metabolomics
Reverse-phase and ion pairing profiling of polar metabolites was conducted at the University of
Michigan.

Sample preparation
Plasma samples: Samples were stored at -80°C until extraction and were thawed and
maintained on wet ice throughout processing steps. Plasma (50 μl aliquot) was extracted by
adding 200 µL of extraction solvent (1:1:1 v:v methanol:acetonitrile:acetone containing internal
standards listed in Table 3; chemical standards were purchased from Sigma Aldrich or
Cambridge Isotope Labs). Samples were vortexed 10 seconds, incubated in ice for 10 minutes,
then centrifuged for 10 minutes at 15,000 rcf at 4°C to pellet precipitated proteins. 150 µL
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supernatant was transferred to a glass autosampler vial with a low-volume insert and brought to
dryness using a nitrogen blower at ambient temperature. Dried samples were reconstituted in
37.5 µL water:methanol (8:2 v:v) for LC-MS analysis. A QC sample was generated by pooling
residual supernatant from multiple samples, then drying and reconstituting as above.

Table 3. Internal standard concentrations in extraction solvent

Internal standard compound Concentration in
extraction solvent for
plasma
(µM, except as noted)

Concentration in
extraction solvent for
tissues
(µM, except as noted)

13C3 lactic acid 50 10
13C5 alpha-ketoglutaric acid 0.5 0.5
13C6 citric acid 5 0.5
13C4 succinic acid 0.5 0.5
13C4 malic acid 0.5 0.5
13C6 fructose 6-phosphate - 1
13C6 fructose 1,6-bisphosphate - 0.5
13C10

15N5 adenosine monophosphate - 0.5
13C10

15N5 adenosine triphosphate - 1
U-13C amino acid mix (Sigma 426199) 10 µg/ml 5 µg/ml
13C5 glutamine 25 5
13C6 cystine 5 1
15N2 asparagine 5 1
15N2 tryptophan 5 1
13C6 glucose 250 2
D9 L-carnitine 0.38 0.38
D4 thymine 1 1
15N anthranilic acid 1 1
Gibberelic acid 1 1
Epibrassinolide 1 1
D3 acetylcarnitine (Cambridge NSK-B) 0.095 0.095
D3 propionylcarnitine (Cambridge NSK-B) 0.019 0.019
D3 butyrylcarnitine (Cambridge NSK-B) 0.019 0.019
D9 isovalerylcarnitine (Cambridge NSK-B) 0.019 0.019
D3 octanoylcarnitine (Cambridge NSK-B) 0.019 0.019
D9 myristoylcarnitine (Cambridge NSK-B) 0.019 0.019
D3 palmitoylcarnitine (Cambridge NSK-B) 0.038 0.038

Tissue samples: Frozen tissue samples were rapidly weighed into pre-tared, pre-chilled
Eppendorf tubes and tissue mass was recorded to the nearest 0.1 mg. Extraction solvent was
1:1:1:1 methanol:acetonitrile:acetone:water containing internal standards. To extract samples,
chilled extraction solvent was added to a tissue sample at the ratio of 1 ml solvent to 50 mg wet
tissue mass. Immediately following solvent addition, the sample was homogenized using a
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Branson 450 probe sonicator set to output level 4, 40% duty cycle, for 30 seconds. Tubes were
subsequently mixed several times by inversion and then incubated on ice for 10 minutes.
Samples were centrifuged at 15,000 rcf for 10 minutes. 300 µL of supernatant was transferred
to two autosampler vials with flat-bottom inserts, dried using the nitrogen blower, and stored at
-80C until the day of analysis. Samples were reconstituted in 60 µL of 8:2 water:methanol and
submitted for LC-MS analysis. A QC sample was generated by pooling residual supernatant
from multiple samples, then drying and reconstituting as above.

LC-MS analysis
Non-targeted reverse phase LC-MS: Samples were analyzed on an Agilent 1290 Infinity II /
6545 qTOF MS system with a JetStream electrospray ionization (ESI) source (Agilent
Technologies, Santa Clara, California) using a Waters Acquity HSS T3 column, 1.8 µm 2.1 x 100
mm equipped with a matched Vanguard precolumn (Waters Corporation). Mobile phase A was
100% water with 0.1% formic acid and mobile phase B was 100% methanol with 0.025% formic
acid. The gradient was as follows: Linear ramp from 0% to 100% B from 0-10 minutes, hold
100% B until 17 minutes, linear return to 0% B from 17 to 17.1 minutes, hold 0% B until 20
minutes. The flow rate was 0.45 ml/min, the column temperature was 55°C, and the injection
volume was 5 µL. All solvents and mobile phase additives were LC-MS grade and purchased
from Sigma-Aldrich. Each sample was analyzed twice, once in positive and once in negative ion
mode MS, scan rate 2 spectra/sec, mass range 50-1200 m/z. Source parameters were: drying
gas temperature 350°C, drying gas flow rate 10 L/min, nebulizer pressure 30 psig, sheath gas
temperature 350°C and flow 11 L/minute, capillary voltage 3500 V, internal reference mass
correction enabled. A QC sample run was performed at minimum every tenth injection.

Non-targeted ion pairing LC-MS: Samples were analyzed on an identically-configured LC-MS
system using an Agilent Zorbax Extend C18 1.8 µm RRHD column, 2.1 x 150 mm ID, equipped
with a matched guard column. Mobile phase A was 97% water, 3% methanol. Mobile phase B
was 100% methanol. Both mobile phases contained 15 mM tributylamine and 10 mM acetic
acid. Mobile phase C was 100% acetonitrile. Elution was carried out using a linear gradient
followed by a multi-step column wash including automated (valve-controlled) backflushing (see
Table 4). Column temperature was 35°C and the injection volume was 5 µL. MS acquisition was
performed in negative ion mode, scan rate 2 spectra/sec, mass range 50-1200 m/z. Source
parameters were: drying gas temperature 250°C, drying gas flow rate 13 L/min, nebulizer
pressure 35 psig, sheath gas temp 325°C and flow 12 L/min, capillary voltage 3500V, internal
reference mass correction enabled. A QC sample run was performed at minimum every tenth
injection.

Table 4. IPC-MS gradient program

Time (minutes) %A %B %C Flow (ml/min) Flow direction
0 100 0 0 0.25 Normal
2 100 0 0 0.25 Normal

12 1 99 0 0.25 Normal
18 1 99 0 0.25 Normal

18.05 5 0 95 0.25 Backflush

24



21 5 0 95 0.25 Backflush
21.50 5 0 95 0.80 Backflush

23 5 0 95 0.80 Backflush
23.2 5 0 95 0.60 Backflush

24.00 100 0 0 0.40 Backflush
27.99 100 0 0 0.40 Backflush
28.0 100 0 0 0.40 Normal
29.9 100 0 0 0.40 Normal
30 100 0 0 0.25 Normal

Iterative Data Dependent MS/MS data acquisition (iDDA): To aid in compound identification,
iterative MS/MS data was acquired for both reverse phase and ion pairing methods using the
pooled sample material. Eight repeated LC-MS/MS runs of the QC sample were performed at
three different collision energies (10, 20, and 40) with iterative acquisition enabled. The software
excluded precursor ions from MS/MS acquisition within 0.5 minute of their MS/MS acquisition
time in prior runs, resulting in deeper MS/MS coverage of lower-abundance precursor ions81,82.

Data analysis
Feature detection and alignment: Data analysis was performed using a hybrid
targeted/untargeted approach. Targeted compound detection and relative quantitation was
performed by automatic integration followed by manual review and correction using Profinder
v8.0 (Agilent Technologies, Santa Clara, CA.) Non-targeted feature detection was performed
using custom scripts that automate operation of the “find by molecular feature” workflow of the
Agilent Masshunter Qualitative Analysis (v7) software package. Feature alignment and
recursive feature detection were performed using Agilent Mass Profiler Pro (v8.0) and
Masshunter Qualitative Analysis (“find by formula” workflow), yielding an aligned table including
m/z, RT, and peak areas for all features.

Data Cleaning and Degeneracy Removal: A combined feature set was generated by merging
untargeted features and named metabolites into a single feature list. Features missing from over
50% of all samples in a batch or over 30% of QC samples were removed prior to subsequent
normalization steps. Next, the combined feature set underwent data reduction using Binner83.
Briefly, Binner first performs RT-based binning, followed by clustering of features by Pearson’s
correlation coefficient, and then assigns annotations for isotopes, adducts or in-source
fragments by searching for known mass differences between highly correlated features.

Normalization and Quality Control: Data were normalized using a Systematic Error Removal
Using Random Forest (SERRF) approach84, which helps correct for drift in peak intensity over
the batch using data from the QC sample runs. When necessary to correct for residual drift,
peak area normalization to closest-matching internal standard was also applied to selected
compounds. Both SERRF correction and internal standard normalization were implemented in
R. Parameters were set to minimize batch effects and other observable drift, as visualized using
principal component analysis score plots of the full dataset. Normalization performance was
also validated by examining relative standard deviation values for additional QC samples not
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included in the drift correction calculations. Quality control reports containing these data were
generated for all datasets and uploaded to the MoTrPAC data repository along with raw and
processed data.

Compound identification: Metabolites from the targeted analysis workflow were identified with
high confidence (MSI level 1)85 by matching retention time (+/- 0.1 minute), mass (+/- 10 ppm)
and isotope profile (peak height and spacing) to authentic standards. MS/MS data
corresponding to unidentified features of interest from the untargeted analysis were searched
against a spectral library (NIST 2020 MS/MS spectral database or other public spectral
databases) to generate putative identifications (MSI level 2) or compound-class level
annotations (MSI level 3) as described previously82.

Reversed phase LC-MS and LC-MS/MS non-targeted lipidomics
Non-targeted profiling of lipid metabolites was conducted at the Georgia Institute of Technology.

Sample preparation
All solvents were LC-MS grade and were purchased from ThermoFisher Scientific. All stable
isotope-labeled internal standards (IS) were purchased from Avanti Polar Lipids (Alabaster,
Alabama): of PC (15:0-18:1(d7)); PE (15:0-18:1(d7)); PS (15:0-18:1(d7)); PG (15:0-18:1(d7)); PI
(15:0-18:1(d7)); LPC (18:1(d7)); LPE (18:1(d7)); Chol Ester (18:1(d7)); DG(15:0-18:1(d7)); TG
(15:0-18:1(d7)-15:0); SM (18:1(d9)); and cholesterol (d7). IS were added to the extraction
solvent at a final concentration in the 0.1-8 μg/ml range.

Plasma samples: Samples were stored at -80 ⁰C until extraction. An ice bath was used to thaw
and maintain temperature throughout preparation. Plasma samples (25 µL) were vortex mixed
with 75 µL of the extraction solvent (isopropanol containing the IS mix listed above) followed by
centrifugation for 5 min at 21,100 x G to pellet insoluble material. Supernatant was transferred
to autosampler vial and stored at 4 ⁰C until analysis. An aliquot from each supernatant was
combined to create a pooled sample used as a quality control (QC).

Tissue samples: Samples were stored at -80 ⁰C until extraction. An ice bath was used to thaw
the samples. Powdered tissue samples (10 mg) with 400 µl of the extraction solvent
(isopropanol containing IS mix listed above) were extracted by freeze-thawing in liquid nitrogen
for 1 min followed by sonication in an ice bath for 3 min, repeated three times. Sample were
vortex mixed for 5 min in pulsed mode followed by centrifugation for 5 min at 21,100 X G.
Supernatant was transferred to autosampler vial and stored at 4 ⁰C until analysis. An aliquot
from each supernatant was combined to create a pooled sample.

Sample blanks and consortium reference samples were prepared for analysis using the same
methods.

LC-MS and LC-MS/MS analysis
Lipid LC-MS data were acquired using a Vanquish (ThermoFisher Scientific) chromatograph
fitted with a ThermoFisher Scientific AccucoreTM C30 column (2.1 × 150 mm, 2.6 µm particle
size), coupled to a high-resolution accurate mass Q-Exactive HF Orbitrap mass spectrometer
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(ThermoFisher Scientific) for both positive and negative ionization modes. The mobile phases
were 40:60 water:acetonitrile with 10 mM ammonium formate and 0.1% formic acid (mobile
phase A) and 10:90 acetonitrile:isopropyl alcohol, with 10 mM ammonium formate and 0.1%
formic acid (mobile phase B). The column temperature was set to 50°C, the injection volume
was 2 µL, and the gradient program is shown in Table 5.

Table 5. LC-MS gradient program

Time (min) %A %B Flow (ml/min) Curve
0 80 20 0.4 5
1 40 60 0.4 6
5 30 70 0.4 6
8 10 90 0.4 6

8.2 0 100 0.4 6
10.5 0 100 0.4 6
10.7 80 20 0.4 6
12 80 20 0.4 6

For analysis the electrospray ionization source was operated at a vaporizer temperature of
425°C, a spray voltage of 3.0 kV for positive ionization mode and 2.8 kV for negative ionization
mode, sheath, auxiliary, and sweep gas flows of 60, 18, and 4 (arbitrary units), respectively, and
capillary temperature of 275°C. The instrument acquired full MS data with 240,000 resolution
over the 150-2000 m/z range. Samples were analyzed in random order with pooled QC
injections collected at minimum every tenth injection.

LC-MS/MS experiments were acquired using a data dependent acquisition (DDA) strategy to aid
in compound identification. MS2 spectra were collected with a resolution of 120,000 and the
dd-MS2 were collected at a resolution of 30,000 and an isolation window of 0.4 m/z with a loop
count of top 7. Stepped normalized collision energies of 10%, 30%, and 50% fragmented
selected precursors in the collision cell. Dynamic exclusion was set at 7 seconds and ions with
charges greater than 2 were omitted.

Data processing and quality control
Feature detection and alignment: Data processing steps included peak detection, spectral
alignment, and gap filling and were performed with Compound Discoverer V3.0 (ThermoFisher
Scientific) to yield an aligned feature table containing m/z, RT, and relative peak areas.

Data cleaning and degeneracy removal: Compound Discoverer was used to group isotopic
peaks as well as adduct ions to simplify the feature table. Detected features were filtered with
background and QC filters. Features with abundance lower than 5x the background signal in the
sample blanks and that were not present in at least 50% of the QC pooled injections with a
coefficient of variance (CV) lower than 30% were removed from the dataset.

Drift correction: Drift correction was performed on each individual feature, where a linear curve
was fitted to the pooled QC sample peak areas across the batch and was then used to correct
the peak area for that specific feature in the samples.
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Quality control: System suitability was assessed prior to the analysis of each batch. A
performance baseline for a clean instrument was established before any experiments were
conducted. The mass spectrometers were mass calibrated, mass accuracy and mass resolution
were checked to be within manufacturer specifications, and signal-to-noise ratios for the suite of
IS checked to be at least 75% of the clean baseline values. For LC-MS assays, an IS mix
consisting of 12 standards was injected to establish baseline separation parameters for each
new column. The performance of the LC gradient was assessed by inspection of the column
back pressure trace, which had to be stable within an acceptable range (less than 30% change).
Each IS mix component was visually evaluated for chromatographic peak shape, retention time
(lower than 0.2 min drift from baseline values) and FWHM lower than 125% of the baseline
measurements. The CV of the average signal intensity and CV of the IS (<=15%) in pooled
samples were also checked. These pooled QC samples were used to correct for instrument
sensitivity drift over the various batches using a procedure similar to that described by the
Human Serum Metabolome (HUSERMET) Consortium86. To evaluate the quality of the data for
the samples themselves, the IS signals across the batch were monitored, PCA modeling for all
samples and features before and after drift correction was conducted, and Pearson correlations
calculated between each sample and the median of the QC samples.

Compound identification/annotation: Lipid annotations were accomplished based on
accurate mass and relative isotopic abundances (to assign elemental formula), retention time
(to assign lipid class), and MS2 fragmentation pattern matching to local spectral databases built
from curated experimental data. Lipid nomenclature followed that described by Fahy et al.87,88.
When possible, features were matched to authentic compounds were identified with MSI level 1.
Features that were matched to local databases were annotated with MSI level 2 or
compound-class annotations with MSI level 3. Unknown features were assigned MSI level 4.
Lipid annotations are highly subject to the available structural information to assign alkyl chain
lengths, alkyl chain position, double bond position, and double bond stereochemistry.
Annotations reflect the available structural information, which results in a feature with multiple
possible lipid structures.

Targeted metabolomics

LC-MS/MS analysis of branched-chain keto acids
Targeted profiling of branched-chain keto acid metabolites was conducted at Duke University.
Ten µl of plasma containing isotopically labeled ketoleucine (KIC)-d3, ketoisovalerate (KIV)-13C5

(Cambridge Isotope Laboratories), and 3-methyl-2-oxovalerate (KMV)-d8 (Toronto Research
Chemicals, Canada) internal standards were deproteinated with 150 µl of 3M perchloric acid.
Two hundred µl of tissue homogenate prepared at 100 mg/ml in 3M perchloric acid were
centrifuged at 14,000 x g for 5 minutes. Two hundred µl of 25 M o-phenylenediamine (OPD) in
3M HCl were added to the plasma and tissue supernatants, and the samples were incubated at
80°C for 20 minutes. Keto acids were extracted with ethyl acetate as previously described89,90.
The extracts were dried under nitrogen, reconstituted in 200 mM ammonium acetate, and
analyzed on a Xevo TQ-S triple quadrupole mass spectrometer coupled to an Acquity UPLC
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(Waters) controlled by the MassLynx 4.1 operating system. The analytical column (Waters
Acquity UPLC BEH C18 Column, 1.7 μm, 2.1 × 50 mm) was used at 30°C. 10 μl of the sample
were injected onto the column and eluted at a flow rate of 0.4 ml/min. The gradient consisted of
45% mobile phase A (5 mM ammonium acetate in water) and 55% mobile phase B (methanol)
for 2 minutes, followed by a linear gradient to 95% B from 2 to 2.5 minutes, held at 95% B for
0.7 minutes, returned to 45% A, and finally the column was re-equilibrated at initial conditions
for 1 minute. The total run time was 4.7 minutes. Mass transitions of m/z 203 → 161 (KIC), 206
→ 161 (KIC-d3), 189 → 174 (KIV), 194 → 178 (KIV-5C13), 203 → 174 (KMV), and 211 → 177
(KMV-d8) were monitored in positive ion mode. The endogenous keto acids were quantified
using calibrators prepared by spiking dialyzed fetal bovine serum with authentic keto acids
(Sigma-Aldrich).

Flow injection MS/MS analysis of acyl CoAs
Targeted profiling of acyl CoAs was conducted at Duke University. 500 µl of tissue homogenate
prepared at 50 mg/ml in isopropanol/0.1 M KH2PO4 (1:1) was extracted with an equal volume of
acetonitrile and centrifuged at 14,000 x g for 10 min as previously described91,92. The
supernatants were acidified with 0.25 ml of glacial acetic acid, and acyl CoAs were further
purified by solid phase extraction (SPE) using 2-(2-pyridyl) ethyl functionalized silica gel
(Sigma-Aldrich) as described93. The SPE columns were conditioned with 1 ml of
acetonitrile/isopropanol/water/glacial acetic acid (9/3/4/4 : v/v/v/v). Following application and
flow through of the supernatant, the SPE columns were washed with 2 ml of acetonitrile/
isopropanol/water/glacial acetic acid (9/3/4/4 : v/v/v/v). Acyl CoAs were then eluted with 2 ml of
methanol/250 mM ammonium formate (4/1 : v/v) and analyzed by flow injection MS/MS analysis
using positive ion mode on a Xevo TQ-S, triple quadrupole mass spectrometer (Waters),
employing methanol/water (80/20, v/v) containing 30 mM ammonium hydroxide as the mobile
phase94. Spectra were acquired in the multichannel acquisition mode monitoring the neutral loss
of 507 amu (phosphoadenosine diphosphate) and scanning from m/z 750 to 1100.
Heptadecanoyl CoA was employed as an internal standard. The endogenous Acyl CoAs were
quantified using calibrators prepared by spiking tissue homogenates with authentic Acyl CoAs
(Sigma-Aldrich) having saturated acyl chain lengths C0 - C18. Corrections for the heavy isotope
effects, mainly 13C, to the adjacent m+2 spectral peaks in a particular chain length cluster were
made empirically by referring to the observed spectra for the analytical standards.

LC-MS/MS analysis of nucleotides
Targeted profiling of nucleotide metabolites was conducted at Duke University. 300 µl of tissue
homogenates prepared at 50 mg/ml in 70% methanol were spiked with nine internal standards:
13C10,15N5-adenosine monophosphate, 13C10,15N5-guanosine monophosphate, 13C10,15N2-uridine
monophosphate, 13C9,15N3-cytidine monophosphate, 13C10-guanosine triphosphate, 13C10-uridine
triphosphate, 13C9-cytidine triphosphate, 13C10-adenosine triphosphate, and nicotinamide-1,
N6-ethenoadenine dinucleotide (eNAD) (Sigma-Aldrich). Nucleotides were extracted using an
equal volume of hexane as described by Cordell et al. and Gooding et al.95,96. The samples were
vortexed and centrifuged at 14,000 x g for 5 minutes. The bottom layer was collected and
centrifuged again. Chromatographic separations and MS analysis of the supernatants were
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performed using an Acquity UPLC system (Waters) coupled to a Xevo TQ-XS quadrupole mass
spectrometer and (Waters). The analytical column (Chromolith FastGradient RP-18e 50-2mm
column, EMD Millipore, Billerica, MA, USA) was maintained at 40°C. The injection volume was 2
µL. Nucleotides were separated using a mobile phase A consisting of 95% water, 5% methanol,
and 5 mM dimethylhexylamine adjusted to pH 7.5 with acetic acid and a mobile phase B
consisting of 20% water, 80% methanol, and 10 mM dimethylhexylamine. Flow rate was set to
0.3 ml/min. The 22-minute gradient (t=0, %B=0; t=1.2, %B=0; t=22, %B=40) was followed by a
3-minute wash and 7-minute equilibration. Nucleotides were detected in the negative ion MRM
mode based on characteristic fragmentation reactions. The endogenous nucleotides were
quantified using calibrators prepared by spiking tissue homogenates with authentic nucleotides
(Sigma-Aldrich).

LC-MS/MS analysis of amino acids and amino metabolites
Targeted profiling of amino acids and amino metabolites was conducted at the Mayo Clinic by
LC-MS as previously described97,98. Briefly, either 20 µL of plasma samples or 5 mg of tissue
homogenates were spiked with an internal standard solution consisting of isotopically labeled
amino acids (U-13C4 L-aspartic acid,U-13C3 alanine, U-13C4 L-threonine, U-13C L-proline, U-13C6

tyrosine, U-13C5 valine, U-13C6 leucine, U-13C6 phenylalanine, U-13C3 serine, U-13C5 glutamine,
U-13C2glycine, U-13C5 glutamate, U-13C6,15N2 lysine, U-13C5,15N methionine, 1,1U-13C2

homocysteine, U-13C6 arginine, U-13C5 ornithine, 13C4 asparagine, 13C2 ethanolamine, d3
sarcosine, d6 4-aminobutyric acid) . The supernatant was immediately derivatized with
6-aminoquinolyl-N-hydroxysuccinimidyl carbamate using a MassTrak kit (Waters). A 10-point
calibration standard curve underwent a similar derivatization procedure after the addition of
internal standards. Both derivatized standards and samples were analyzed on a Quantum Ultra
triple quadrupole mass spectrometer (ThermoFischer) coupled with an Acquity liquid
chromatography system (Waters). The LC gradient is shown in Table 6. Buffer A was 0.1%
formic acid, 1% Acetonitrile, 99% Water and Buffer B was 1% water, 99% Acetonitrile. Data
acquisition was conducted by using selected ion monitoring (SRM) in positive ion mode using
transitions shown in Table 7. Concentrations of 42 analytes of each unknown were calculated
against their respective calibration curves.

Table 6. LC-MS gradient program

Time %A %B Flow (mL/min)
initial 99.9 0.1 0.400
1.00 99.9 0.1 0.400
2.00 99.9 0.1 0.400
5.50 98.1 1.9 0.400
6.50 98.0 2.0 0.400

10.00 97.5 2.4 0.400
12.00 96.0 4.0 0.400
20.00 88.0 12.0 0.400
27.00 86.5 13.5 0.400
31.00 80.0 20.0 0.400
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32.00 2.0 98.0 0.500
35.00 2.0 98.0 0.500
35.50 99.9 0.1 0.400
39.00 99.9 0.1 0.400

Table 7. SRM transitions

Compound Abbrev.

Prec ion
scan
8-8-13 Prod Ion I.S.

Ammonia_188 ammon 188 171 u-arg
Histidine_163 his 164 171 u-arg
Hydroxyproline_302 hyPro 302 171 u-arg
1-Methylhistidine_340 1MH 340 171 u-arg
3-Methylhistidine_340 3MH 340 171 u-arg
Asparagine_303 Asn 303 171 u-asn
U-13C4-Asparagine_307 u-Asn 307 171
Phosphoethanolamine_312 PEA 312 171 u-arg
Arginine_345 arg 345 171 u-arg
U-13C6-Arginine_351 u-arg 351 171
Carnosine_199 carn 199 171 u-gly
Taurine_296 tau 296 171 u-gly
Anserine_206 ans 206 171 U-13C3-ser
Serine_276 ser 276 171 U-13C3-ser
U-13C3-Serine_279 u-ser 279 171 -
Glutamine_317 gln 317 171 u-gln
U-13C5-Glutamine_322 u-gln 322 171 -
Ethanolamine_232 EA 232 171 u-EA
U-13C2-Ethanolamine_234 u-EA 234 171
Glycine_246 gly 246 171 u-gly
U-13C2-Glycine_249 u-gly 249 171 -
Aspartic Acid_304 asp 304 171 u-asp
U-13C4-Aspartic acid_308 u-asp 308 171 -
Sarcosine_260 sar 260 171 d3-sar
d3-Sarcosine_263 d3-sar 263 171
Citrulline_346 cit 346 171 u-glu
Glutamic Acid_318 glu 318 171 u-glu
U-13C5-glutamic acid_323 u-glu 323 171 -
beta-Alanine_260 b-ala 260 171 u-glu
Threonine_290 thr 290 171 u-thr
U-13C4-threonine_294 u-thr 294 171 -
Alanine_260 ala 260 171 u-ala
U-13C3-alanine_263 u-ala 263 171 -
gamma-Amino-N-butyric-acid_274 gaba 274 171 d6-gaba
d6-gamma-Amino-N-butyric-acid_280 d6-gaba 280 171
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alpha-Aminoadipic-acid_332 aada 332 171 u-ala
beta-Aminoisobutyric-acid_274 baib 274 171 u-ala
Proline_286 pro 286 171 u-pro
u-pro_291 u-pro 291 171 -
Hydroxylysine 1_252 HL 1 252 171 u-pro
Hydroxylysine 2_252 HL 2 252 171 u-pro
alpha-Amino-N-butyric-acid_274 aaba 274 171 u-val
Ornithine_237 orn 237 171 u-orn
U13C5-Ornithine_239 u-orn 239 171 -
Cystathionine 1_282 cyst1 282 171 u-15N2-Lys

dervitizing agent_315
deriv
agent 315 171 u-tyr

Cystathionine 2_282 cyst2 282 171 u-15N2-Lys
Lysine_244 lys 244 171 u-15N2-Lys
U13-C6, 15N2-Lysine_248 u-15N2-Lys 248 171 -
Cystine_291 cys 291 171 u-tyr
Tyrosine_352 tyr 352 171 u-tyr
U-13C6-Tyrosine_358 u-tyr 358 171 -

Methionine_320 met 320 171 u-15N2-met
U13-C5, 15N2-met_326 u-15N2-met 326 171 -
Valine_288 val 288 171 u-val
U13C5-Valine_293 u-val 293 171 -
Isoleucine_302 ileu 302 171 u-leu
allo-Isoleucine_302 aileu 302 171 u-leu
Homocystine_306 hcys 305 171 13C2-hys

1,1-13C2-Homocystine_308
1,1-13C2-h

cys 306 171 -
Leucine_302 leu 302 171 u-leu
U13C6-Leucine_302 u-leu 308 171 -
Phenylalanine_335 phe 335 171 u-phe
U13C6-Phenylalanine_342 u-phe 342 171 -
Tryptophan_375 trp 375 171 u-phe

GC-MS analysis of tricarboxylic acid cycle (TCA) metabolites
Targeted profiling of TCA metabolites was conducted at the Mayo Clinic by gas chromatography
mass spectrometry (GC-MS) as previously described99,100, with a few modifications. Briefly, 5 mg
of tissue were homogenized in 1X PBS on an Omni bead ruptor (Omni International, Kennesaw,
GA) prior to adding 20 μl of internal solution containing U-13C labeled analytes (13C3 sodium
lactate, 13C4 succinic acid, 13C4fumaric acid, 13C4 alpha ketoglutaric acid, 13C4 malic acid, 13C4

aspartic acid, 13C5 2-hydroxyglutaric acid, 13C5glutamic acid, 13C6 citric acid, 13C2,15N glycine, 13C2

sodium pyruvate). For plasma, 50 μl were used. The proteins were removed by adding 300 μl of
chilled methanol and acetonitrile solution to the sample mixture. After drying the supernatant in
the speedvac, the sample was derivatized with ethoxime and then with MtBSTFA + 1% tBDMCS
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before it was analyzed on an Agilent 5977B GC/MS (Santa Clara, California) under single ion
monitoring conditions using electron ionization. Concentrations of lactic acid (m/z 261.2),
fumaric acid (m/z 287.1), succinic acid (m/z 289.1), ketoglutaric acid (m/z360.2), malic acid (m/z
419.3), aspartic acid (m/z 418.2), 2-hydroxyglutaratic acid (m/z 433.2), cis aconitic acid
(m/z459.3), citric acid (m/z 591.4), and isocitric acid (m/z 591.4), glutamic acid (m/z 432.4) were
measured against 7-point calibration curves that underwent the same derivatization procedure
using ethoxyamine and MtBSTFA. The injection volume was 1uL, and the flow rate was
1mL/min. Table 8 shows the temperature program. Agilent MassHunter was used for data
processing.

Table 8. GC temperature gradient program

Rate (°C/min) Value (°C) Hold Time (min) Run Time (min)
Initial 120 0.5 0.5
Ramp 1 25 188 0 3.22
Ramp 2 7 275 0 15.649
Ramp 3 35 320 1.066 18

LC-MS/MS analysis of ceramides
Targeted profiling of ceramides was conducted at the Mayo Clinic. Plasma and tissue
ceramides, sphinganine, sphingosine, sphingosine-1-phosphate (S1P) were measured by
previously described methods101,102. Briefly, a 25 μl aliquot of plasma or 5 mg tissue homogenate
was spiked with an internal standard mixture prior to undergoing extraction. Data acquisition
was conducted in SRM mode after chromatographic separation in electrospray ionization in
positive mode on Thermo Quantiva mass spectrometer coupled to a Waters Acquity UPLC
system. Concentrations of each analyte were calculated against their respective calibration
curves. Coefficients of variation for a healthy plasma control analyzed with each batch of 40
samples over a one-month period were 6.3%, 6.2%, 3.1%, 5.0%, 5.7%, 3.2%, 4.9% and 3.3%
for sphingosine, sphingosine-1-phosphate, C16:0-ceramides, C18:0-ceramides,
C20:0-ceramide, C22:0-ceramide, C24:1-ceramide and C24:0-ceramide, respectively. Table 9
shows the gradient table where Buffer A consisted of 2mM Ammonium formate, 0.1% formic
acid, 1% MeOH, 99% water, and Buffer B consisted of 1mM Ammonium formate, 0.1% formic
acid, 1% water, 99% MeOH. SRM transitions are listed in Table 10.

Table 9. Gradient program

Time %A %B Flow (mL/min)
initial 20.0 80.0 0.400
1.50 10.0 90.0 0.400
2.50 10.0 90.0 0.400

10.00 10.0 90.0 0.400
12.00 1.0 99.0 0.400
16.00 1.0 99.0 0.400
16.20 20.0 80.0 0.400
20.00 20.0 80.0 0.400
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Table 10. SRM transitions

Analyte parent (m/z) product (m/z)
Sph 300.30 282.30
d7-Sph 307.34 289.27
SPA 302.30 284.30
d7-SPA 309.35 291.30
S1P 380.30 264.30
d7-S1P 387.29 271.30
C8-Ceramide 426.40 264.25
C14-Ceramide 510.70 264.25
C16-Ceramide 538.70 264.25
d7-C16-Ceramide 545.53 271.28
C18:1-Ceramide 564.70 264.25
C18-Ceramide 566.60 264.25
d7-C18-Ceramide 573.58 271.28
C20-Ceramide 594.80 264.25
C22-Ceramide 622.60 264.25
C24:1-Ceramide 648.80 264.25
d7-C24:1-Ceramide 655.65 271.27
C24-Ceramide 650.80 264.25
d7-C24-Ceramide 657.68 271.27

LC-MS/MS analysis of acylcarnitines
Targeted profiling of acylcarnitines was conducted at the Mayo Clinic. Acylcarnitines (specifically
C0-C18:1) were measured by LC-MS using established methods100,103. Briefly, 25 μl of plasma
or 5 mg homogenized tissue were spiked with an IS consisting of isotopically-labeled
acylcarnitines. The samples were then extracted with cold MeOH:DCM (1:1) followed by
centrifugation at 12,000 g for 10 minutes. The supernatant was transferred to another vial, dried
down and reconstituted in mobile phase. A calibration curve was built from a purchased acyl
carnitine mix aliquoted at various concentrations, and spiked with the same IS as the samples.
The samples and calibration standards were analyzed on a triple quadrupole mass
spectrometer coupled with an UHPLC system. Separate gradient programs were used for
C0-C8 species (Table 11) and C10-C18 species (Table 12), where Buffer A consisted of 2mM
Ammonium formate, 0.1% formic acid, 1% MeOH, 99% water, and Buffer B consisted of 1mM
Ammonium formate, 0.1% formic acid, 1% water, 99% MeOH. Data acquisition was conducted
in SRM mode (Table 13). Analyte concentrations of each unknown were calculated against their
perspective standard curves.

Table 11. C0-C8 gradient program

Time %A %B Flow (mL/min)
initial 99 1 0.35
0.5 99 1 0.35
6.5 20 80 0.35
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10 1 99 0.35
12 1 99 0.35
13 99 1 0.35
16 99 1 0.35

Table 12. C10-C18 gradient program

Time %A %B Flow (mL/min)
initial 99 1 0.35
0.5 99 1 0.35
6.5 87 13 0.35
8 80 20 0.35

10.5 1 99 0.35
13.5 1 99 0.35
14 99 1 0.35
17 99 1 0.35

Table 13. SRM transitions
analyte parent m/z product m/z
Carnitine 162.10 85.02
d9-carnitine 171.11 85.02
acetylcarnitine 204.12 85.02
d3-acetylcarnitine 207.12 85.02
propionylcarnitine 218.14 85.02
d3-propionylcarnitine 221.14 85.02
butyryl/isobutyryl carnitine 232.15 85.02
d3-butyryl carnitine 235.39 85.02
isovaleryl/valeryl carnitine 246.17 85.02
d9-isovaleryl carnitine 255.17 85.02
octanoylcarnitine 288.22 85.02
d3-octanoylcarnitine 291.36 85.02
decanoylcarnitine 316.20 85.02
d3-decanoylcarnitine 319.20 85.02
Lauroylcarnitine 344.28 85.02
d9-Lauroylcarnitine 353.56 85.02
myristoylcarnitine 372.36 85.02
d9-myristoylcarnitine 381.36 85.02
palmitoylcarnitine 400.39 85.02
d3-palmitoylcarnitine 403.37 85.02
C17-carn 414.39 85.02
oleoylcarnitine 426.39 85.02
stearoylcarnitine 428.39 85.02
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Targeted lipidomics of low-level lipids

Sample preparation
Targeted profiling of lipids was conducted at Emory University using previously published
methods104,105. Powdered tissue samples (10 mg) were homogenized in 100 µl PBS with Bead
Ruptor (Omni International, Kennesaw, GA). Homogenized samples were diluted with 300 μL
20% methanol and spiked with 1% BHT solution to a final BHT concentration of 0.1% and pH of
3.0 by acetic acid addition. Samples were then centrifuged (10 minutes, 14,000 rpm), and the
supernatants were transferred to 96-well plates for further extraction. The supernatants were
loaded to Isolute C18 SPE columns (conditioned with 1000 μL ethyl acetate and 1000 μL 5%
methanol). The SPE columns were then washed with 800 μL water and 800 μL hexane. The
oxylipins were eluted with 400 μl methyl formate. Automated solid phase extraction (SPE) was
conducted with a Biotage Extrahera (Uppsala, Sweden). The eluate was dried with nitrogen and
then reconstituted with 200 μL methanol prior to LC-MS analysis. Sample blanks, pooled extract
samples used as quality controls (QC), and consortium reference samples, were prepared for
analysis using the same methods. The external standards consisted of prostaglandin E2
ethanolamide, oleoyl ethanolamide, palmitoyl ethanolamide, arachidonoyl ethanolamide,
docosahexaenoyl ethanolamide, linoleoyl ethanolamide, stearoyl ethanolamide,
oxy-arachidonoyl ethanolamide, 2-arachidonyl glycerol, docosatetraenoyl ethanolamide,
α-linolenoyl ethanolamide, oleamide, dihomo-γ-linolenoyl ethanolamide, decosanoyl
ethanolamide, 9,10 DiHOME, prostaglandin E2-1-glyceryl ester, 20-HETE, 9-HETE, 14,15
DiHET, 5(S)-HETE, 12(R)-HETE, 11(12)-DiHET, 5,6-DiHET, thromboxane B2, 12(13)-EpOME,
13 HODE, prostaglandin F2α, 14(15)-EET, 8(9)-EET, 11(12)-EET, leukotriene B4, 8(9)-DiHET,
13-OxoODE, 13(S)-HpODE, 9(S)-HpODE, 9(S)-HODE, resolvin D3, resolvin E1, resolvin D1,
resolvin D2, 9(S)HOTrE, 13(S)HOTrE, 8-iso Progstaglandin F2α. All external standards were
purchased from Cayman Chemical (Ann Arbor, Michigan) at a final concentration in the range
0.01-20 μg/ml.

Data collection
Targeted oxylipin and endocannabinoid data were acquired using an ExionLC/Qtrap5500
(SCIEX, Waltham, MA) LC-MS system. For chromatography, a ThermoFisher Scientific
AccucoreTM C18 column (100 mm × 4.6, 2.6 µm particle size) was used. The mass
spectrometry data acquisition was conducted in both positive and negative ion modes. The
mobile phases were water with 10 mM ammonium acetate (mobile phase A), and acetonitrile
with 10 mM ammonium acetate (mobile phase B). The chromatographic method used the
following gradient program shown in Table 14. The column temperature was set to 50°C, and
the injection volume was 10 µL with negative ion mode and 2 μL with positive ion mode. For
mass spectrometry analysis, the heated electrospray ionization source was operated at a
vaporizer temperature of 650°C, a spray voltage of 5.5 kV for positive ion mode and 4.5 kV for
negative ion mode, curtain gas, ion source gas 1, ion source gas 2 were 20, 60 and 50,
respectively. The declustering potential, entrance potential, collision energy, and collision cell
exit potential were 200, 10, 40, and 10 for the negative ion mode, respectively and 90, 10, 47

36



and 18, respectively, for positive ion mode. MRM transitions are shown in Table 15 (negative
mode) and Table 16 (positive mode).

Table 14. Targeted lipidomics LC-MS gradient program

Time %A %B Flow (mL/min)
0 90 10 0.5

0.5 90 10 0.5
1 50 50 0.5
2 50 50 0.5

2.1 25 75 0.5
5 25 75 0.5
7 15 85 0.5

12 15 85 0.5
12.1 90 10 0.5
18 90 10 0.5

Table 15. Targeted lipidomics negative mode MRM transitions

analyte parent m/z product m/z
9,10 DIHOME 313.2 201.0
PGE E2 351.2 315.1
20- HETE 319.2 289.2
9-HETE 319.2 167.2
14,15 DHET 337.2 207.0
5 HETE 319.2 115.1
12 R-HETE 319.2 179.1
11,12-DHET 337.2 167.1
8,9-DHET 337.2 127.2
5,6 EET 319.2 191.1
5,6-DHET 337.2 71.0
TXB2 369.2 169.1
PGF2A 353.2 193.3
14(15)-EET / 15-HETE 319.2 219.0
LTB4 335.2 195.1
8(9)-EET 319.2 69.2
11(12)-EET 319.2 167.1
Resolvin D1 375.3 215.1
Resolvin D2 375.3 215.2
Resolvin D3 375.3 147.1
Resolvin E1 349 109
Resolvin E1 349 161
12(13)-EpOME 295.2 195.1
13 HODE 295.2 195.1
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13-OxoODE (13-KODE) 293.2 113.1
13(S)-HpODE 311.2 113.1
13(S)HOTrE 293.2 195.1
9(S)-HODE 295.2 277.6
9(S)-HODE 295.2 171.3
9(S)-HpODE 311.2 201.0
9(S)-HpODE 311.2 185.1
9(S)HOTrE 293.2 185.1
9(S)HOTrE 293.2 171.1
8-iso Progstaglandin F2α 353.2 255
8-iso Progstaglandin F2α 353.2 219.2
8-iso Progstaglandin F2α 353.2 193.1

Table 16. Targeted lipidomics positive mode MRM transitions

analyte parent m/z product m/z
PGE2 Ethanolamide (PGE2-EA)_271.3 396.5 271.3
PGE2 Ethanolamide (PGE2-EA)_358.3 396.5 358.3
PGE2 Ethanolamide (PGE2-EA)_376.3 396.5 376.3
Oleoyl Ethanolamide (OEA) 326.4 62.1
Palmitoyl Ethanolamide 300.4 62.1
ARA-Ethanolamide (AEA) 348.4 62.1
Docosahexaenoyl Ethanolamide (DHEA) 372.4 62.1
Linoleoyl Ethanolamide (LEA) 324.4 62.1
Stearoyl Ethanolamide (ceramid) 328.4 62.1
oxy-Arachidonoyl Ethanolamide (oxy-AEA) 364 76
2-Arachidonoyl Glycerol (2AG) trans1 379.4 135
2-Arachidonoyl Glycerol (2AG) trans2 379.4 161
Docosatetraenoyl Ethanolamide (DEA) 376.59 62.1
Alpha-Linolenoyl Ethanolamide (ALEA) 322.4 62.1
Oleamide 282.5 247.4
Dihomo-Gamma-Linolenoyl Ethanolamide 350.4 62.1
Docosanoyl Ethanolamide 384.5 62.1

Data processing and quality control
Sciex OS (AB SCIEX, Version 1.6.1) was used to process the raw LC-MS data. Standard curves
were built for each oxylipin/endocannabinoid and calibrated against external standards, i.e, all
concentration points should be in the linear portion of the curve with an R-squared value no less
than 0.9. Additionally, features with a high coefficient of variation (CV), defined as CV > 150%, in
pooled QCs were removed from the dataset. Pearson correlation among the QCs for each
tissue type were calculated with the Hmisc R library, and figures documented in QC report were
plotted with the corrplot R library106,107.
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Metabolomics data processing and normalization

Metabolomics sample pre-processing was performed by each Chemical Analysis Site (CAS) as
described above for each platform. These datasets were separated into two data types:
“named”, for chemical compounds confidently identified, and “unnamed”, for compounds with
specific chemical properties but without a standard chemical name. Only named metabolites
were included in downstream analyses. The resulting named datasets were the input for the
data processing and normalization procedures described in this section. Table 17 provides a
summary of features measured by each platform, and the tissues and samples analyzed by
each platform are presented in Extended Data Fig. 1e. The large number of features identified
by reversed-phase positive untargeted lipidomics (lrppos) is due to a large number of multi-peak
isomers.

For both untargeted and targeted datasets, measurements were log2-transformed, negative
values were converted to missing values, and features with >20% missing values were
removed. For untargeted datasets and targeted datasets with more than 12 features, remaining
missing values were imputed using K-nearest neighbors (k=10 samples). Missing values in
targeted datasets with 12 or fewer features were not imputed. For outlier identification in each
dataset, we calculated each sample's median correlation value against the other N-1 samples
and selected a threshold to designate outliers as those with below-threshold median correlation
values. All outliers were reviewed by Metabolomics CAS, and only 21 confirmed technical
outliers in the untargeted datasets were removed.

To normalize untargeted datasets, we median-centered samples if neither sample medians nor
upper quartiles were significantly associated with sex or sex-stratified training group
(Kruskal-Wallis p-value < 0.01). Targeted datasets were not normalized as they were quantified
using absolute concentrations.

A total of 1116 metabolites were measured by two or more platforms. We retained all features
with repeated measurements and integrated their differential analysis results using
meta-regression (see “Meta-analysis of metabolomics results”).

Table 17. Description of metabolomics platforms.

ASSAY DESCRIPTION SITE TARGETED N TISSUES MAX N NAMED
FEATURES

hilicpos HILIC positive Broad 0 19 306

lrppos Untargeted lipidomics,
reversed-phase
positive

GTech 0 9 1341

rppos Reversed-phase
positive

UMich 0 9 211

ionpneg Ion pairing negative UMich 0 9 80

rpneg Reversed-phase
negative

UMich 0 9 160
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ASSAY DESCRIPTION SITE TARGETED N TISSUES MAX N NAMED
FEATURES

hilicpos HILIC positive Broad 0 19 306

lrppos Untargeted lipidomics,
reversed-phase
positive

GTech 0 9 1341

rppos Reversed-phase
positive

UMich 0 9 211

lrpneg Untargeted lipidomics,
reversed-phase
negative

GTech 0 9 523

amines Amines Mayo 1 9 39

tca TCA cycle Mayo 1 9 12

etamidpos Ethanolamides Emory 1 9 10

oxylipneg Oxylipins Emory 1 9 27

ka Ketoacids Duke 1 5 3

acoa Acyl-CoA Duke 1 4 67

nuc Nucleotides Duke 1 4 36

Multiplexed bead-based immunoassays

Protein extraction
Tissue lysates for the immunoassays were prepared at Stanford University. All 30 samples per
tissue (15+15 for testes and ovaries, 3 samples per sex per time point, 5 time points) were
processed in a single batch. Upon retrieval from storage at -80°C, tissue samples were kept on
dry ice until addition of a lysis buffer. Cold lysis buffer (25mM Tris-HCl, pH 7.5; 100mM NaCl;
0.01% Triton-X 100; 0.0025% NP-40) was supplemented with Halt protease inhibitor cocktail
(Thermo Fisher # 78429) to 1x just prior to use. 550 μl of chilled lysis buffer were added to each
tissue sample; the tube was inverted several times and placed on ice. To facilitate lysis, each
sample was sonicated using a Branson Sonifier 250 with 3 1-second bursts at an output setting
of 1 and constant duty cycle. Samples were rocked at 4°C for 1 hour. Sample tubes were then
centrifuged at max speed (>20,000 xg) at 4°C for 10 minutes to pellet debris. The cleared
supernatant from each sample was then transferred into an Eppendorf Protein Lo-Bind 1.5-ml
tube. Protein concentrations of lysates were measured in duplicates using the BCA Assay
(Thermo Fisher # 23225). A Tecan Infinite M1000 plate reader was used to read absorbance at
562 nm. Microsoft Excel was used to generate a standard curve based on the
background-subtracted absorbance of provided BSA protein standards, and this curve was used
to extrapolate the protein concentrations in each tissue sample lysate. All samples for a given
tissue were then normalized to the protein concentration of the lowest sample through addition
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of an appropriate amount of lysis buffer. Lysates from each tissue were then plated into 2
replicate 96-well master plates (Greiner # 651201). Plates were sealed with PCR seals and
stored at -80°C prior to analysis.

Targeted multiplexed bead-based immunoassays
The immunoassays were performed by the Stanford Human Immune Monitoring Center (HIMC).
The rat tissue lysates were kept at -80°C until used for immunoassays. Levels of 54 cytokines
were measured in rat samples using five Luminex panels: MILLIPLEX MAP Rat
Cytokine/Chemokine Magnetic Bead Panel (Millipore, RECYTMAG-65K); MILLIPLEX MAP Rat
Myokine Magnetic Bead Panel (Millipore, RMYOMAG-88K); MILLIPLEX MAP Rat Metabolic
Hormone Magnetic Bead Panel (Millipore, RMHMAG-84K); MILLIPLEX MAP Rat Putuitary
Magnetic Bead Panel (Millipore, RPTMAG-86K); MILLIPLEX MAP Rat Adipokine Magnetic
Bead Panel (Millipore, RADPKMAG-80K). All samples from the same tissue were analyzed on
the same plate to avoid plate-to-plate variability. Therefore, batch correction within a tissue was
not possible or necessary. Custom Assay CHEX control beads (Radix BioSolutions,
Georgetown, Texas) were added to all wells to monitor instrument performance, application of
the detection antibody, application of the fluorescent reporter, and nonspecific binding (CHEX1,
CHEX2, CHEX3, and CHEX4, respectively)108. Samples were mixed with antibody-linked
magnetic beads on a 96-well plate and incubated overnight at 4°C with shaking. Cold and
room-temperature incubation steps were performed on an orbital shaker at 500-600 rpm. Plates
were washed twice with wash buffer in a Biotek ELx405 washer. Following one-hour incubation
at room temperature with biotinylated detection antibody, streptavidin-PE was added for 30
minutes with shaking. Plates were washed as described above and PBS was added to wells for
reading in the Luminex FlexMap3D Instrument with a lower bound of 50 beads per sample per
cytokine. Reports were generated using Masterplex QT/Mirai Bio/Hitachi software and exported
as csv files. Samples were measured in singlets.

Data preprocessing
Raw mean fluorescence intensities (MFI) were log2-transformed, and measurements for
analytes with fewer than 20 beads in a well were removed. Log2-MFI for analytes measured by
multiple panels were correlated to determine reproducibility. TNFA measurements were close to
background levels in the Rat Metabolic Hormone Panel likely due to dilutions, while TNFA
measured in Rat Cytokine/Chemokine Magnetic Bead Panel showed a dynamic range of signal
intensities. Thus, TNFA measurements from the Rat Metabolic Hormone Panel were removed.
For remaining measurements in each panel and tissue, samples with more than 50% missing
values (i.e., due to low bead count) were removed; features with at least two missing values for
a single experimental group (e.g., males trained for 2 weeks) were removed (this affected four
colon analytes and one spleen analyte, all in the Rat Cytokine/Chemokine Panel). Remaining
missing values were imputed with k-nearest neighbors (k=5 features). This was the version of
the data used for visualization (e.g., principal component analysis). Within each panel, tissue,
and analyte, we calculated the mean and standard deviation and removed outlying
measurements more than 4 standard deviations away from the mean. This version of the data
with extreme feature-specific outliers removed was used for differential analysis.
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STATISTICAL ANALYSES

Outlier identification
Outlier identification is described in “Metabolomics data processing and normalization” for
metabolomics datasets and “Multiplexed bead-based immunoassays” for immunoassay data.
Otherwise, outliers were identified through a combination of principal component analysis of
normalized datasets and examination of assay-specific quality control metric scores. For all
proteomics, transcriptomics, RRBS, and ATAC-seq datasets, we first examined the top three
principal components of each tissue separately. Samples were flagged if they fell outside of
three times the interquartile range for at least one of the first three principal components.
Refined methods were used for remaining data types to identify extreme outliers for exclusion
from differential analysis. All identified outliers were manually inspected before removal from the
final dataset used for downstream analysis.

For transcriptomics datasets, principal component analysis (PCA) was run separately on the top
1000 most variable genes in each tissue, using the TMM-normalized data described above.
Outliers were defined as samples outside of five times the interquartile range for any principal
component that explained at least five percent of variance in the data. A total of 16 samples
were removed.

For ATAC-seq datasets, PCA was run separately on the top 10,000 most variable features in
each tissue and sex, using the normalized data described above. Outliers were defined as
samples outside of three times the interquartile range for any principal component that
explained at least 7.5% of variance in the data. A total of 11 samples were removed.

Five RRBS samples from the kidney dataset were excluded based on their sequencing quality
scores (e.g., having a low total number of reads). Two additional samples, one from lung and
one from hippocampus, were removed as they fell outside of five times the interquartile range of
at least one of the three first principal components.

For proteomics datasets, the following samples were removed as they were flagged by PCA
and also showed large differences in median TMT reporter ion intensity: two gastrocnemius
samples from the global proteome and phosphoproteome datasets; one heart sample from
global proteome, phosphoproteome, and acetylome datasets; and one additional heart sample
only from the ubiquitylome dataset. As detailed in the experimental methods, all acetylome
samples labeled with the TMT channel 130C were suspected to be failed reactions caused by
the reagent lot and excluded from downstream analysis.

1-week and 2-week female vena cava samples were excluded from all analyses due to
apparent brown adipose tissue contamination, as indicated by gene expression levels of Ucp1,
a brown adipose marker, and confirmation that brown adipose contamination was sometimes
visible during vena cava dissection.
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Differential analysis
All differential analyses were performed separately in each tissue and ome dataset (e.g. heart
RNA-Seq). Males and females in a dataset were analyzed separately as we often observed
significantly different residual variances between males and females when both sexes were
fitted together. Limma with empirical Bayes variance shrinkage was used to perform differential
analyses for all proteomics, metabolomics, and ATAC-seq data109; the edgeR pipeline for
methylation analysis was used for RRBS110; DESeq2 was used for RNA-Seq68; base R linear
models, lmtest, and multcomp were used for the immunoassays111,112. For all proteomics,
ATAC-seq, immunoassays, and RRBS, the input for differential analysis was the normalized
data described above. For RNA-Seq, the input was filtered raw counts, in accordance with the
DESeq2 workflow. For targeted metabolomics, KNN-imputed log2-transformed data were used
for datasets with more than 12 features; otherwise, log2-transformed data were used. For
untargeted metabolomics, log2 KNN-imputed data were used; the sample data were
median-centered if neither sample medians nor upper quartiles were significantly associated
with sex or sex-stratified training group (Kruskal-Wallis p-value < 0.01).

In order to select analytes that changed over the training time course, we performed F-tests
(limma, edgeR::glmQLFTest) or likelihood ratio tests (DESeq2::nbinomLRT, lrtest) to compare a
full model with ome-specific technical covariates and training group as a factor variable (i.e.
sedentary, 1 week, 2 weeks, 4 weeks, 8 weeks) against a reduced model with only technical
covariates. For the immunoassays, a training group was excluded from the model if there were
fewer than two non-missing values. For each feature, male- and female-specific p-values were
combined using Fisher’s sum of logs meta-analysis to provide a single p-value, referred to as
the training p-value. To account for false discovery rate across all statistical tests, the training
p-values were adjusted across all datasets within each ome using Independent Hypothesis
Weighting (IHW) with tissue as a covariate113. Training-differential features were selected at 5%
IHW FDR.

Given the regression model of each analyte computed as explained above, we used the
contrasts of each training time point versus the sex-matched sedentary controls to calculate
time- and sex-specific effect sizes, their variance, and their p-values (e.g., using linear F-tests),
referred to as the timewise summary statistics. Specifically, for limma models we used
limma::contrasts.fit and limma::eBayes, for DESeq2 models we used DESeq2::DESeq, for
edgeR models we used edgeR::glmQLFTest, and for the immunoassays we used aov() and
multcomp::glht(). For the immunoassays, a contrast was not tested if there were fewer than two
non-missing values in either training group.

Covariates were selected from assay-specific technical metrics that explained variance in the
data and were not correlated with exercise training: log2 CHEX4 for the immunoassays, which is
a measure of non-specific binding108; RNA integrity number (RIN), median 5’-3’ bias, percent of
reads mapping to globin, and percent of PCR duplicates as quantified with Unique Molecular
Identifiers (UMIs) for RNA-Seq; fraction of reads in peaks and library preparation batch for
ATAC-seq. The same covariates were used in both differential analysis approaches described
above.
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Training group and sex permutation analyses
Permutation tests were based on 100 permutations of the transcriptomics data in each tissue.
First, we performed permutation tests of groups within sex. For each sex, the original group
labels were shuffled to minimize the number of animal pairs that remain in the same group. For
example, if there were 5 animals in week 1 (1w), in the shuffled labels each animal was put
randomly in a different group (controls,1w, 2w, 4w, or 8w). For differential analysis, only the
group labels were shuffled and all other covariates remained as in the original data. For each
permuted dataset we reran the differential abundance pipeline and counted the number of
transcripts that were selected at 5% FDR adjustment. Second, we performed permutation tests
of sex within groups. For each group and each sex, half of the animals were selected randomly
and their sex was swapped. Only the sex labels were shuffled and all other covariates remained
as in the original data. For each permutation we reran the differential analysis pipeline and
extracted the timewise summary statistics. A gene was considered sexually dimorphic if for at
least one time point the z-score (absolute) difference between males and females was greater
than 3.

Meta-analysis of metabolomics results
The metabolomics data were collected using different platforms from six different sites.
Moreover, some platforms were targeted (i.e., quantified a predefined small set of metabolites of
interest), whereas other platforms were untargeted. There were 1116 cases in which at least two
sites measured the same metabolite in the same tissue. In these cases, we used
meta-regression to integrate the differential analysis results, implemented using R’s metafor
package114.

For a given metabolite m, the input to this analysis included the timewise effect sizes yg,p and
their variances vg,p where g denotes the analysis group, which is a combination of the training
time point and the sex for which the summary statistics were computed using the regression
models explained above, and p (∈ 1,...,nm) denotes the platform. If m had data from at least
three platforms, of which at least one was untargeted and at least one was targeted, then we
added nested random effects for both the platform and the targeted status. That is, in metafor’s
notation we used: “mods ~ 0+analysis_group” and “random = list(~analysis_group|platform,
~analysis_group|is_targeted)”. The inner|outer notation defines a blockwise dependence
structure for the random effects, where different outer values are assumed to be independent,
and the same outer values may be dependent based on their inner values. If the targeted status
was redundant (e.g., we only had two platforms, one was targeted and the other was
untargeted) then we kept the platform-level random effects only.

In practice, we observed that in 154 cases the default metafor optimizer failed to converge. In
these cases, we modified the default parameters to optimizer = “nloptr”, algorithm =
“NLOPT_LN_SBPLX”. Still, optimization failed in 61 additional cases. When both the default and
alternative optimizers failed, we opted for a standard fixed effect model without random effects.
Other than these cases, we had 361 models with random effects for both the platform and the
targeted status, and 694 models with a platform-only random effect.
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As a summary of each model we kept the overall model p-value (i.e., the modifiers p-value)
QMp (used as the training p-value), and the residual heterogeneity p-value QEp. We flagged
103 models with QEp < 0.001 as having excessive heterogeneity. Using this definition we
partitioned the meta-analysis results into three classes: (1) excessive heterogeneity, and has a
targeted platform (57 cases), (2) excessive heterogeneity, without a targeted platform (46
cases), and (3) low heterogeneity (1013 cases). For class (2) we discarded the meta-analysis
and kept the all platform-level results for m as-is. For class (1) we discarded the meta-analysis
and kept only the targeted platform-level results for m. For class (3) we kept the meta-analysis
results only (i.e., discarded the platform-level results), and used the meta-regression model to
calculate the timewise summary statistics, i.e., time- and sex-specific meta-analysis effect sizes,
their variance, and their p-values.

Graphical clustering of differential analysis results
Given the timewise differential analysis summary statistics for each analyte, computed as
explained above, we next clustered the analytes into homogeneous patterns. Ovary, testis, and
vena cava results were excluded from this analysis because not all time points and sexes were
represented in the samples, which is a prerequisite for this longitudinal approach.

Standard clustering analysis can be used for identifying the main patterns in the data. For
example, by generating a matrix of z-scores from the timewise summary statistics, where
analytes are the rows and the eight training groups (e.g., 1-week males) are the columns,
standard clustering algorithms can be applied. However, this methodology has three main
limitations. First, off-the-shelf clustering algorithms use standard distance or correlation metrics
to compute analyte pairwise distances. Thus, this may give the same distance between -1 to 1
as between 1 and 3. In the z-score space, the latter may be more important as it can signify a
difference between a significant discovery (z=3) and a borderline result (z=1). Moreover,
standard distance metrics do not directly account for correlations over sex and time. Second,
standard clustering and fuzzy clustering analyses lead, by definition, to information loss. For
example, clustering the analytes has a limited descriptive power in the presence of split or
convergence points over the longitudinal trajectories. For an example of a split point in time,
consider a group of features that have the same upregulation pattern up to week 4, but only a
subset of the features returns to baseline levels in week 8, while the rest remain up-regulated.
Clustering analysis will likely result in two clusters, without showing a direct connection between
them. Finally, clustering algorithms typically disagree about the number of clusters in the
underlying data, especially in noisy data. For example, a parametric mixture of gaussians
clustering using the mclust R package115 tends to estimate the number of clusters at 28-30
(depending on internal parameters of the algorithm). However, in practice we found that the
solutions of these algorithms tend to result in a very large cluster around the origin, with
excessive standard deviations in each axis, resulting in many significant z-scores in this “null”
cluster. Thus, this algorithm does not provide reasonable results for our matrix of z-scores. As
an alternative that utilizes our additional information about the data, we implemented a solution
that overcomes the limitations of standard clustering. First, we model z-scores directly using a
mixture distribution to separate null from non-null cases, thereby circumventing the limitation of
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naive distance metrics explained above. Second, we learn the joint distribution of events over
the groups, thereby accounting for correlations over time between sexes. Finally, we utilize a
graphical framework for representing the time-course of differential events. This provides an
enhanced representation that allows for the identification of both split and convergence events
over time.

To set the stage for our graphical clustering solution we start with some notation. Let 𝑍 ∈ 𝑅𝑛 𝑥 𝑡 𝑥 2

be the timewise z-scores, where zi,j,k denotes the z-score of analyte i (∈ 1,...,n) computed at the
training time point j (∈ 1,...,t) of sex k (∈ {m,f}, for males and females, respectively). Assuming
that zi,j,k follows a mixture distribution of null and non-null z-scores (i.e., a standard two-groups
model), then each zi,j,k has a latent configuration hi,j,k ∈ {-1,0,1}, where -1 denotes
down-regulation, 0 denotes null (no change), and 1 denotes up-regulation. For simplicity, let h

denote a full configuration matrix (e.g., specifying if a z-score is null, up, or down∈ {− 1, 0, 1}𝑡 𝑥 2

for each time point in each sex), and let zi be the matrix of all z-scores of analyte i. We∈ 𝑅𝑡 𝑥 2

used the expectation-maximization (EM) process of the repfdr algorithm116,117 to estimate for
each possible h both its prior probability π(h) and its posterior Pr(h|zi), for every analyte i. In this
process, repfdr infers the marginal mixture distribution of each time point j and sex k. That is, all
z-scores z*jk are used to estimate the densities: ,𝑓
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package (see 118 for details). Given these densities, the EM process is used such that Z is the
observed data and H is the missing data. It iteratively updates the estimates for π(h) and
Pr(h|zi) to increase the overall complete composite likelihood (see 117 for details).

Once the algorithm converges, we discard configurations h with π(h) < 0.001 and normalize
Pr(h|zi) to sum to 1 (i.e., all posteriors given the same zi). The main output of the EM for our
analysis are these new posteriors that can be interpreted as a soft clustering solution, where the
greater the value is, the more likely it is for analyte i to participate in cluster h. Of note, repfdr
makes two simplifying assumptions about the data: (1) the z-score patterns of the analytes are
independent, and (2) for a specific analyte i, the z-scores across the groups are independent
conditioned on h.

Given the posteriors Pr(h|zi) computed above, we assign analytes to “states”. A state is a tuple
(sm,j, sf,j), where sm,j is the differential abundance state null, up, or down (0,1, and -1 in the
notation above, respectively) in males at time point j, and sf,j is defined similarly for females (at
time point j). Thus, we have nine possible states in each time point. For example, assume we
inspect analyte i in time point j, asking if the abundance is up-regulated in males while null in
females. Then, we sum over all posteriors Pr(h|zi) such that hm,j=1 and hf,j=0. If the resulting
value is greater than 0.5, then we say that analyte i belongs to the node set S(sm,j, sf,j). Thus, we
use S(sm,j, sf,j) to denote all analytes that belong to a state (sm,j, sf,j). Then, for every pair of states
from adjacent time points j and j+1 we define their edge set E(sm,j, sf,j, sm,j+1, sf,j+1) as the
intersection of S(sm,j, sf,j) and S(sm,j+1, sf,j+1). Thus, the sets S and E together define a tree
structure that represent different differential patterns over sex and time.
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Comprehensive feature-to-gene map
We compiled a feature-to-gene map that associates every feature tested in our differential
analysis with gene identifiers. All proteomics feature IDs (RefSeq accessions) were mapped to
gene symbols and Entrez IDs using NCBI’s “gene2refseq” mapping files
(https://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2refseq.gz, accessed 12/18/2020). Epigenomics
features were mapped to the nearest gene using the R function ChIPseeker::annotatePeak()119

with Ensembl gene annotation (Rattus norvegicus release 96). Gene symbols, Entrez IDs,
Ensembl IDs, and Rat Genome Database (RGD) IDs were mapped to each other using the
RGD rat gene annotation (https://download.rgd.mcw.edu/data_release/RAT/GENES_RAT.txt,
accessed 11/12/2021).

Pathway enrichment analysis of graphical clusters
All non-metabolite training-differential features (5% IWH FDR) were mapped to Ensembl gene
symbols using the feature-to-gene map described above. Training-differential metabolites were
mapped to KEGG IDs. For each graphical cluster of interest (i.e., the ten largest paths, two
largest nodes, and two largest single edges with at least 20 features in each tissue), we
performed pathway enrichment analysis separately for the Ensembl genes (or KEGG IDs for
metabolomics) associated with differential features in each ome. For most omes, background
gene (or metabolite) sets were specified as the set of Ensembl IDs (or KEGG IDs) associated
with all features tested within the corresponding tissue during differential analysis. For
epigenomics (ATAC-seq and RRBS), the background gene sets were defined as the set of all
genes expressed in each tissue, taken from our RNA-Seq data. For gene-centric omes (i.e., all
but metabolomics) we performed enrichment analysis of KEGG and REACTOME rat pathways
(organism “rnorvegicus”) using the gprofiler2::gost function in R with the custom backgrounds
defined above120. Only pathways with at least 10 and up to 200 members were tested. Because
gprofiler2::gost only returns adjusted p-values, we recalculated nominal p-values using a
one-tailed hypergeometric test, which is consistent with how gprofiler2::gost calculates
enrichments. For metabolites, we performed enrichment of KEGG pathways using the
hypergeometric method in the R FELLA package with custom backgrounds as defined above121.
Pathway enrichment analysis p-values were adjusted across all results using Independent
Hypothesis Weighting (IHW) with tissue as a covariate. We defined significantly enriched
pathways as those with q-value < 0.1. Significant pathway enrichments driven by a single gene
were removed from the results (Extended Data Table 11).

Molecular interaction networks
We considered three resources for biological interactions: BioGRID (v
BIOGRID-ORGANISM-4.2.193.tab3)21, STRING (v 10116.protein.physical.links.v11.5)122, and
biological pathways. BioGRID and STRING were used for protein-protein interactions. Biological
pathways contain various types of interactions, including undirected protein interactions,
directed signaling interactions, and gene-metabolite pairs. For the analysis below we ignored
the type (and direction). Pathway interactions were retrieved using the graphite R package (v
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1.37.1)123,124. We used all directed and undirected (but not indirect) pathway interactions from
Reactome, PathBank, and KEGG125–127. Metabolite IDs from these pathways were mapped to
KEGG and InChiKey IDs (if ones were not provided). Metabolites that only had ChEBI or CAS
identifiers were mapped to KEGG and InChiKey IDs using the CTS online tool
(http://cts.fiehnlab.ucdavis.edu/batch). Finally, KEGG and InChiKey IDs were mapped to RefMet
IDs using the Metabolomics Workbench REST service. A few extra missing KEGG IDs were
added manually (as provided by chemical analysis sites).

The rat STRING network contained 115,389 high confidence interactions (score > 500),
covering 10,322 genes. The graphite rat gene-gene network contained 161,130 interactions,
covering 8942 genes and metabolites. The rat gene-metabolite pathways network contained
95,295 interactions, covering 5791 genes and metabolites. In contrast, the BioGRID rat network
was much smaller with 6408 interactions only. To account for this limitation we used the human
and mouse networks to extend the rat BioGRID network. By mapping gene symbols from these
organisms to rat gene symbols via the RGD ortholog mapping (v39), we were able to generate a
BioGRID rat network with 461,685 interactions, covering 15,856 genes. When analyzing data
from a specific tissue, all networks were reduced to their induced subgraphs using the
background gene and metabolite sets explained above.

Network connectivity analysis
Given an interaction network G=<V,E> (where V is a set of nodes, and E is a set of undirected
edges), a “reference” set of nodes S, and a node of interest v, we tested the connectivity
between v and S in G using a simple hypergeometric test. Assume a null hypothesis in which all
neighbors of v in G are selected at random. Under this null hypothesis, the number of neighbors
of v that are in S follows a hypergeometric distribution HG(N,K,n), where N is the number of
nodes in the graph G (i.e., |V| the number of nodes in V), K is the number of neighbors of v in G,
and n=|S| is the number of nodes in S. Thus, for each node v in G we can obtain a p-value for
the connectivity of v and S.

To illustrate the tight connectivity of our multi-omic results in the gastrocnemius (SKM-GN), we
examined the sex-consistent, up-regulated analytes identified in week 8. These data contained
64 multi-omic genes identified by at least two different omes. We used this set of genes as the
reference set S, and for each of the three gene networks above we computed the p-value for
every node. For a node v in S the p-value was computed by taking S\{v} as the reference set
(i.e., by excluding v from S). In each network we selected the significant nodes at 5%
Benjamini-Hochberg FDR adjustment, resulting in 95, 51, and 326 genes in the STRING,
pathways, and BioGRID networks, respectively. These sets were significantly enriched both in
the multi-omic genes in S and in genes that were discovered by a single ome in our analyses (p
< 10^-10 for each set using Fisher’s exact test; see Extended Data Fig. 9b).

Based on the analysis above we took the BioGRID network interactions and used them to
generate an interaction graph of all genes and metabolites identified in SKM-GN 8w_F1_M1
(i.e., up-regulated in both sexes in week 8). We clustered the graph using the leading
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eigenvector clustering algorithm128, implemented in the igraph R package129. This resulted in
three large connected clusters that had at least 10 nodes (Extended Data Table 13).

Transcription factor enrichment analysis methods
We conducted transcription factor (TF) motif enrichment analysis on sets of genes that satisfied
the IHW-adjusted training p-value threshold of 0.05 for differential expression in a given tissue,
isolating the 13 tissues that had at least 300 genes meet the differential expression threshold.
The analysis was carried out by findMotifs.pl (HOMER v4.11.1)130. Enrichment of a motif in a
tissue is quantified by the percent of promoter regions of differentially expressed genes
containing that motif, with enrichment p-values calculated by comparing enrichment among
target genes to enrichment among a background gene set that is normalized for GC%. To
determine tissue similarity in motif enrichment, we calculated the mean absolute value of
differences in enrichment over all TFs between each tissue and conducted hierarchical
clustering of the tissues on their enrichment differences.

For more detailed analyses, we selected the top ten enriched TFs from each tissue and then
removed any TFs whose corresponding genes were not found to be expressed in the RNA-Seq
data. Pearson correlation was calculated between tissue-standardized TF motif enrichment
scores and tissue-standardized TF gene expression across the set of control samples in each of
the 13 tissues.

Rat-to-human ortholog map
We compiled a map between rat Ensembl IDs and human gene symbols using several external
sources. GENCODE metadata and annotation files were used to map between human Ensembl
transcript IDs, Entrez IDs, GENCODE IDs, and Ensembl gene IDs131. RGD files were used to
map between human and rat gene symbols as well as between various rat gene identifiers132.

Gene and PTM set enrichment analysis
Gene set enrichment analysis (GSEA) and PTM set enrichment analysis (PTM-SEA) were
performed using the ssGSEA2.0 implementation by Krug et al.133. For GSEA, differential
enrichment analysis t-scores (trained versus control) were used as input. Feature-level data was
summarized into gene-level data using the maximum absolute t-score. The gene set database
used included canonical pathways available through the Human Matrisome database available
through MatrisomeDB (http://matrisome.org/), and the MitoPathways database available through
MitoCarta 3.0134–136. Human gene symbols were mapped to rat orthologs before running the
analysis. The ssGSEA2 function was run using parameters that avoid normalization, require at
least 5 overlapping features with the gene set, and use the area under the curve as the
enrichment metric (sample.norm.type = “none”, weight=0.75, correl.type = “rank”, statistic =
“area.under.RES”, output.score.type = “NES”, min.overlap=5).
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For PTM-SEA, phosphosite-level t-scores were used as input. Phosphosite flanking sites were
mapped from rats to humans as described below. The PTM set database used was the human
PTMSigDB133. The ssGSEA2 function was run using parameters that avoid sample
normalization, require at least 5 overlapping features with the gene set, and use the area under
the curve as the enrichment metric (sample.norm.type = “none”, weight = 0.75, correl.type =
“rank”, statistic = “area.under.RES”, output.score.type = “NES”, min.overlap = 5).

Mapping PTMs from rat to human proteins
We used the NCBI Reference Protein Sequence database (RefSeq) to annotate protein IDs.
Most of the Post-Translational Modification (PTM) resources and tools available are for humans;
rat annotation is lacking. To leverage information from humans, we mapped PTM sites from rats
to humans following a bioinformatics approach. Briefly, we used BLAST+ v2.11.0137,138 to align all
rat sequences to the UniProt human proteome FASTA for canonical protein sequences
(UniProtKB query "reviewed:true AND proteome:up000005640", download date 02/03/2021)139.
The median protein sequence identity between rats and humans is 85%. Only alignments with a
sequence identity greater than 60% were included for mapping. For most proteins, BLAST+
outputs multiple pairwise alignments (one-to-many). In those cases, we selected the alignment
with the larger "positives" and "identities" values and required an exact match for the S/T/Y
residues identified in this study. As a result, we could map with confidence 73.5% of all the
phosphorylation sites we identified.

Correlation of training-differential features with cell type markers
In order to characterize the extent to which the presence of different cell type populations were
reflected in trajectories of specific clusters of training-differential features, we correlated these
trajectories with transcript- and protein-level expression of cell markers. Well-documented,
immune cell-type-specific surface markers classically employed in tissue staining and cell
sorting procedures were selected through literature review and using resources from companies
such as ThermoFisher and Biolegend (Extended Data Table 20). Hemoglobin genes were
added to the list of erythrocyte markers. Marker of proliferation Ki-67 (Mki67) was also included
to reflect cell proliferation140, and markers of lymphatic tissue were curated from the literature141.
For each marker, we calculated the Pearson correlation between the normalized expression of
the marker and the average normalized expression across all features in the given cluster of
interest. Correlations were performed on sample-level data, separately for each tissue and ome
(transcriptomics and proteomics). For each cell or tissue type with more than one marker, we
performed a one-sample t-test to assess whether or not the corresponding correlations were
significantly different from zero, separately for each tissue and ome (5% BY FDR).

Immune cell type deconvolution
In addition to correlating gene expression with specific immune cell type markers, we performed
immune cell type deconvolution on bulk, tissue-level transcriptomic data using CIBERSORTx
(v1.05)142. Ensembl gene IDs were mapped human gene symbols using the rat-to-human
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ortholog map described above, and raw read counts from each tissue were deconvoluted using
the LM22 immune cell signature matrix generated by CIBERSORT developers143 with the
following parameters: absolute mode, B-mode batch correction, no quantile normalization, 0
permutations for significance analysis. The resulting absolute scores for each cell type in each
sample were used for statistical analyses and comparisons within each tissue (Extended Data
Fig. 12e).

Enrichment of LM22 immune cell types
In a parallel approach to immune cell type deconvolution, we performed enrichment of the
CIBERSORT LM22 immune cell types using cell type specificity scores calculated from the
LM22 leukocyte gene expression matrix143,144. The specificity index (SI) was calculated for each
gene and cell type on a gene by cell-type matrix of the average expression for each cell type
using the pSI::specificity.index R function with arguments e_min=0, bts=1, and SI=TRUE145. The
resulting SI were log2-transformed and multiplied by -1 so that larger scores corresponded to
greater cell type specificity. The rat-to-human ortholog map described above was used to map
human gene symbols from the LM22 dataset to rat gene identifiers. For each immune cell type,
tissue, and graphical node of interest (e.g., memory B cells, white adipose tissue, 8w_F1_M1),
we tested for enrichment of immune cell type signatures by comparing the cell type specificity
scores corresponding to the training-differential transcripts in the given tissue and cluster to the
cell type specificity scores corresponding to all other genes expressed in that tissue using a
one-sided Mann-Whitney U test (wilcox.test function in R with argument alternative = “greater”).
Significant enrichments were reported at q-value < 0.05 across all tests (Extended Data Fig.
12f).

Quantification of sex differences in the training response
The extent of sex differences in the training response were characterized in two ways. First, we
correlated the training log2 fold-changes between males and females for each
training-differential feature in order to characterize differences in the direction of the training
effect. A zero was prepended to the time-ordered vector of log2 fold-changes for each sex to
indicate baseline (i.e., the log2 fold-change between the controls trained for zero weeks and
themselves is zero). In order to account for spurious association due to autocorrelation146, we
first took the lagged difference of values in each vector and divided those values by the square
root of the lagged differences in the time points (i.e., 0, 1, 2, 4, and 8 weeks). Then we
calculated the Pearson coefficient between these transformed vectors (Extended Data Fig. 10).
Second, we calculated the difference between the male and female areas under the curve (ΔAUC,
males - females) made by plotting time versus log2 fold-change for each training-differential
feature, including a (0,0) point. This characterized the difference in the magnitude of response
between the sexes. All log2 fold-changes for a feature were scaled to have unit variance before
calculating sex-specific AUC using the pracma::trapz function in R147. Because ΔAUC does not
account for time, it is difficult to interpret alone. Therefore, we plotted the ΔAUC against the
correlation between male and female training log2 fold-changes (Extended Data Fig. 10) to
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visualize the sex difference in both magnitude (x-axis) and direction (y-axis) of the training
response for all training-differential features in each tissue.

Comparison with extant training response omics data
We first compared our results with the gene expression data meta-analysis of Amar et al.8. Amar
et al. used meta-analysis to synthesize skeletal muscle gene expression data from 26 cohorts
(n=430 subjects). Each cohort had a group of subjects that went through a training program and
had a pre-training time point and at least one post-training time point. Most of the studies
collected data from vastus lateralis. They identified 114 genes that were consistently
up-regulated across the studies. However, these 114 genes were selected at extremely strict
cutoffs, and extensive effect heterogeneity of many other genes were observed. We compared
our vastus lateralis transcriptomics differential analysis results with the results of the
meta-analysis. First, we computed the significance of the Spearman correlation between our
estimated log2 fold-changes and the estimated log2 fold-change from the meta-analysis
(Extended Data Fig. 9d-e). Second, we ranked all available human genes according to their
meta-analysis statistics and then performed gene set enrichment analysis (GSEA) using our
identified gene sets as the sets of interest. For this analysis we used our sex-consistent
differentially expressed gene sets (i.e., F1_M1, F-1_M-1, and F0_M0 according to our graphical
analysis notation) from all weeks (Extended Data Fig. 9f). For this GSEA, the human genes
were ranked using: (-log10 meta-analysis p-value)*(meta-analysis log2 fold-change). Finally, we
checked the overlap between our gene sets and the set of genes with excessive true
heterogeneity from the human data. These were defined as genes with a meta-analysis I2 >
75%. We used Fisher’s exact test for testing the null hypothesis of a random overlap (Extended
Data Fig. 9g).

We also compared our results to the data from Bye et al.22. These are microarray-based gene
expression data collected from the soleus of female rats before or after 8 weeks of training.
Animals exercised for 1.5 hours 5 days per week with intervals between 50-90% VO2max.
Similarly to our study, animals were sacrificed 48 hours after the last exercise bout after 8 weeks
of training. Bye et al. also had two study arms: high capacity runners (HCR) vs. low capacity
runners (LCR). Gene expression profiles were obtained from the Gene Expression Omnibus
(GEO) record GSE10527. Sample .CEL data were RMA-normalized, and all resulting
expression profiles were quantile-normalized together. We then used limma for differential
analysis to quantify the differential expression of genes before and after training for both the
HCR and LCR groups. We then compared the resulting differential analysis results to our week
8 female transcriptomics results of the vastus lateralis and gastrocnemius (both skeletal muscle
tissues, but are different from the soleus). We computed Fisher’s exact test p-values, comparing
the reported gene sets by both studies at 0.01 significance (Extended Data Fig. 9h).

For proteomics, we compared our results to data from Hostrup et al.23. In this study, eight
untrained men (23–38 years of age) completed a high intensity interval training (HIIT) regimen
that consisted of 5 weeks of supervised cycling, performed as 4–5x4 min intervals at a target
heart rate of >90% max interspersed by 2 min of active recovery, undertaken three times
weekly. Samples from the vastus lateralis were obtained before and after the regimen, and both
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protein expression and lysine acetylation were quantified. We compared our gastrocnemius
global protein abundance results with this study (vastus lateralis had no proteomics data, and
gastrocnemius had no acetylation data). Differential abundance results for proteomics from the
original study were obtained from their supplementary material. As in the Bye et al. data
analysis, we used Fisher’s exact test p-values, comparing the reported gene sets by both
studies at 0.01 significance (Extended Data Fig. 9i).

Disease ontology enrichment analysis
We first preprocessed the disease ontology database before applying the enrichment analyses.
Our rationale here was that many disease terms may be enriched with general biological
processes that are relevant for many tissues both in health and disease states (e.g., cell
proliferation in cancer disease terms), and are thus not likely to reflect a true association
between our exercise-specific results and diseases. We therefore generated tissue-specific
disease ontology terms by utilizing gene expression data from GTEx v8148. For each disease
ontology term and a tissue (covered by GTEx) we computed the p-value for the overlap
between the term’s gene set and the tissue’s gene set. If the p-value was greater than 0.001
then we omitted the term from the tissue’s analyses. Disease ontology enrichment analysis was
then performed using the DOSE R package24 for each of our tissue- and ome-specific gene sets
that had at least 20 genes. Identified associations were declared as significant if their
FDR-adjusted p-value was <0.05 and they had at least three genes in the intersection between
our set and the disease term gene set.

Metabolite enrichment by RefMet class
Enrichment of metabolite classes were calculated from training-regulated metabolites in each
metabolite class and tissue using ssGSEA2.0133. RefMet Main Classes were used as the
metabolite sets input (Extended Data Table 26), and the metabolite -log10 training p-values were
used as input scores (Extended Data Table 25). Given that these are broad metabolite classes
that may include various biological processes, we performed the enrichment using only the
training-associated p-values without considering directionality or temporality. As training
p-values do not indicate the temporality, direction, or sex-specificity of training-induced changes,
we considered significant enrichments (q-value<0.05) with positive normalized enrichment
scores (NES>0) positive results. A positive result indicates that metabolites in the given class
were disproportionately regulated by training in the given tissue.
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SUPPLEMENTARY DISCUSSION

Multi-omic analysis of exercise training

Details for each omic analysis performed
Transcriptomic data from RNA sequencing (RNA-Seq) were collected in all 18 solid tissues and
the blood (n=5 per sex and time point); epigenomic data from transposase-accessible chromatin
using sequencing (ATAC-seq) and reduced representation bisulfite sequencing (RRBS) were
collected in 8 tissues (n=5 per sex and time point). Proteomic data were generated by
LC-MS/MS for 7 tissues (n=6 per sex and time point) using TMT-based quantification where
each plex contained a common tissue reference to enable quantification across plexes
(Extended Data Fig. 2a). Global proteome and phosphoproteome data were acquired in all 7
tissues, whereas acetylome (acetylated lysines; acetylsites) and ubiquitylome (K-ε-GG ubiquitin
remnants; ubiquitylsites) were acquired from the liver and heart. Metabolomic data were
generated for plasma and all 18 solid tissues using up to seven targeted platforms, four
untargeted metabolomic platforms, and two untargeted lipidomic platforms (n=5 per sex and
time point). Multiplexed immunoassay panels were applied to 17 tissues to accurately quantify
low-abundance proteins of biological relevance, including cytokines. These datasets were
generated using five different rat panels (54 analytes total; n=3 per sex and time point). For
each ome, QC metrics were used to ensure the data were of high quality (Extended Data Fig.
2b-k; Methods). Across assays, only 98 samples (1.0%) were identified as technical outliers and
excluded from downstream analysis (Supplementary Table 1; Methods).

Permutation tests demonstrate significant responses to
endurance training
We utilized permutation testing to identify tissues with significant endurance-training-induced
changes in differential gene expression (Extended Data Fig. 3a-b). Except for the hypothalamus
and hippocampus, every tissue was significant in at least one sex (p≤0.01), and cases with
p>0.05 tended to correspond to tissue and sex combinations with very few differential
transcripts. We also permuted sex labels within training groups to identify tissues with a
significant sexually dimorphic endurance training response (Extended Data Fig. 3c-d). Most
tissues were significant at p<0.05, and seven tissues were significant at p≤0.01 (adrenal gland,
blood, heart, kidney, lung, vastus lateralis, and white adipose).
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Multi-tissue response to training

Sexually conserved responses reveal tissue-dependent
adaptations to endurance training
We identified pathways enriched by tissue-specific exercise-responsive genes (Extended Data
Fig. 4b) and tabulated a subset of highly-specific genes to gain insight into tissue-specific
training adaptation (Supplementary Table 4). It is important to note that the pathway enrichment
results were derived from training-regulated features without constraints on when or how they
were regulated during the training time course. Therefore, directionality of the enrichments is not
interpretable; we instead highlight the temporal dynamics of specific features.

Focusing on sex-consistent adaptations in the lung, revealed temporal changes in features
related to immune cell recruitment and tissue remodeling (Extended Data Fig. 4b). For example,
the neutrophil marker S100A8 decreased at 2 weeks in both sexes, while immunoregulatory
CD109149 decreased at all training timepoints in males and at 8 weeks in females
(Supplementary Table 4). THSD7A, a protein with angiogenic functions150, increased with
training in both sexes (Supplementary Table 4). These findings highlight candidate mechanisms
by which exercise training promotes lung health and remodeling. The kidney displayed
ribosome pathway enrichments (Extended Data Fig. 4b); specific up-regulated features included
neuron-specific Cabp1151 and Hsd17b1, which is involved in sex hormone steroidogenesis152

(Supplementary Table 4), highlighting novel physiological adaptations in the kidney that may
impact systemic homeostasis. Liver-specific training-regulated genes drove an enrichment for
cofactor and cholesterol biosynthesis (Extended Data Fig. 4b) and included ACAT2 and
TM7SF2 in both sexes and HMGCR and Mvk in males (Supplementary Table 4). Such
adaptations may contribute to beneficial effects of endurance training on circulating lipid
profiles153. In the heart, unique features up-regulated with training included genes related to ion
flux, such as the potassium channel-associated genes Kcnip2 and Kcnk3, which are
down-regulated in heart disease and regulate cardiomyocyte polarization154,155 and TAX1BP3,
which promotes internalization of the potassium channel KCNJ4 and whose mutations are
linked to dilated cardiomyopathy156 (Supplementary Table 4). Further, both sexes showed
consistently decreased phosphorylation of RRAGD T390, a transducer of amino acid-induced
mTORC1 activation157, which is key in cardiac remodeling (Supplementary Table 4). Together,
these highlight potential candidate mediators of cardiac remodeling with endurance training. The
gastrocnemius displayed multiple pathway enrichments related to metabolic processes and
striated muscle contraction (Extended Data Fig. 4b), with downregulation of genes related to ER
structure and function (LNPK, VAMP5, NRBP1, SLC37A4, Ptpn1), redox (NMRAL1, SELENOF),
and N-glycan biosynthesis (MAN2A2) (Supplementary Table 4). In the white adipose tissue,
pathway enrichments were related to extracellular matrix reorganization (Extended Data Fig.
4b), with upregulation in genes related to neurogenesis and neuroendocrine cellular regulation
(MCFD2, ATP6AP1, TXLNA) (Supplementary Table 4). MCFD2 maintains stemness of adult
neuronal progenitors158; given white adipose is primarily sympathetically innervated, this
highlights a potential mechanism for enhanced neuronal control of lipolysis159.
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Endurance training induces a multi-tissue protein-specific
increased in the abundance of heat shock proteins
We considered the six deeply profiled tissues for a gene-level analysis across tissues (Heart,
gastrocnemius, white adipose tissue, liver, lung, and kidney). As mentioned in the main text,
heat shock proteins (HSPs) showed a significant increase in protein abundance across all of
these tissues (Extended Data Fig. 5). Other notable genes responding to exercise training in
five of these six tissues considered include the carnitine acetyltransferase Crat, a regulator of
metabolic flexibility160, Fscn1, a marker of neurogenesis161, Hadha, a mitochondrial enzyme that
promotes long chain fatty acid oxidation, and Tns1, a focal adhesion molecule with roles in
cellular signaling and proliferation, including angiogenesis162 (Supplementary Table 3). The
HSP family has important cytoprotective functions163 and is dysregulated in metabolic diseases
like diabetes164. In humans, the major HSPs, HSPA1A/HSPA1B and HSP90A1AA (a.k.a HSP70
and HSP90, respectively) were observed to increase in protein abundance within skeletal
muscle of lifelong footballers and highly trained rowers165,166. HSP accumulation can therefore
explain some of the cytoprotective and other health benefits associated with exercise167,168. The
discordance between transcript and protein abundance is likely due to the sample collection
occurring 48 hours after the last exercise bout, where transient changes in transcripts following
acute exercise are expected to return to baseline. In agreement, HSP70 transcript levels have
been described to increase immediately after exercise169, while the increased protein
abundance has been observed up to 6 days after exercise170. Moreover, none of the measured
PTMs could explain the striking change in protein abundance. The differences in alteration of
HSPs at both the protein and transcript level illustrate the importance of simultaneously
measuring multiple omes to fully understand the response to endurance training, and further
research is required to explain the molecular mechanism behind this striking observation.

Unique transcript and protein responses
The discordance between transcript and protein abundances of HSPs reflects a broader low to
moderate correlation between the transcriptome and proteome, which, as mentioned above, is
likely due to collecting samples 48 hours after the last exercise bout (Extended Data Fig. 4c).
Similarly low correlation between the transcriptome and proteome was observed at the pathway
level using gene set enrichment analysis (GSEA) (Extended Data Fig. 4c, Methods). Several
pathways showed strong agreement while others showed ome-specific enrichment (Extended
Data Fig. 4d; Supplementary Tables 5-6). For example, the oxidative phosphorylation pathway
had a strong positive enrichment at both the transcript and protein levels in the gastrocnemius,
while it only showed positive enrichment for the proteome in the male heart and white adipose
tissue (Extended Data Fig 4d). The cilium assembly pathway was positively enriched in lung
proteomics data, while only the male lung additionally showed enrichment at the transcript level
(Extended Data Fig 4d). Cilia are important protective structures in the lung; therefore, its
regulation has important implications for lung function171. The low correlation between the
transcriptome and proteome is in agreement with numerous previous studies showing that
exercise triggers a transient increase in transcript abundance, with longer-lasting responses at
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the protein level172–174. For example, many myogenic and metabolic genes reach peak
expression at 4-8 hours post-exercise, and their transcript levels return to baseline after 24
hours175. In our study, transient changes in transcripts following acute exercise are expected to
return to baseline before the collection time point. Altogether, these results highlight the value of
profiling multiple omes and tissues, where we observe many unique and shared exercise
training responses that would not otherwise be captured.

TF activity and phosphosignatures

TF enrichment in non-skeletal muscle tissues

Inference of transcription factor activities and phosphosignature changes reveal candidate
mechanisms of tissue adaptation to training. In addition to hematopoietic-associated TFs
(GABPA, ETS1, KLF3, and ZNF143) and MEF2 enrichments, the small intestine, lung, and
brown adipose tissue displayed enrichment in IRF8, a TF highly expressed in dendritic cells176.
The colon displayed upregulation in the circadian regulatory CLOCK TF (Fig. 3a;
Supplementary Table 7). Circadian regulation of the gut positively impacts microbial diversity
and homeostasis177, highlighting a potential mechanism by which endurance training impacts
gut health.

Phosphosignature analysis reveal mechanisms for exercise
adaptation in liver and heart

In the liver, we observed a robust increase in the phosphosignature related to EGFR1, a key
regulator of hepatic regeneration178, as well as HGF ( Extended Data Fig 6b). The HGF
phosphosignature could be explained by an increase in HGF production179 or HGF sensitivity in
the liver. Exercise enhances liver health and metabolism180,181, yet the mechanism for improved
liver health is incompletely understood. In rats, HGF treatment improves conditions of
alcohol-induced fatty liver through reduced fibrosis182–184. In agreement, we observed
phosphorylation of HGF downstream targets, STAT3 and PXN (Extended Data Fig. 6c).
Altogether this analysis identifies a potential mechanism of exercise-mediated improvement in
liver health through HGF signaling.

In the heart, the predicted changes in kinases basal activity can explain heart remodeling in
response to endurance training (Extended Data Fig. 6d). For example, we observed a decrease
in the predicted activity of some AGC protein kinases, including AKT1, which is known to be
involved in cardiac hypertrophy185. AMPK substrates also show decreased phosphorylation,
suggesting decreased AMPK activity. AMPK is an energy sensor activated in the heart
immediately after exercise that acts upstream of MEF2A to promote GLUT4 translocation and
facilitate glucose uptake186,187. Given samples were collected 48 hours after the last bout of
exercise and we observed MEF2A TF enrichment (Fig. 3a) in addition to numerous metabolic
pathway enrichments in the heart throughout training (Supplementary Tables 5-6), a decrease in
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predicted AMPK activity may reflect improved overall metabolism in the resting heart following
training. In contrast, some tyrosine kinases were predicted to have increased activity primarily at
earlier time points, including SRC and mTOR. SRC and mTOR signaling has been implicated in
the regulation of cardiac hypertrophy and structural remodeling188–191, a known beneficial
physiological adaptation to exercise192,193. As mentioned in the main text, changes in SRC
signaling may explain some of the changes in extracellular matrix proteins observed in the heart
of endurance trained rats ( Extended Data Fig. 6f-h ; Supplementary Table 9). Further
investigation of such extracellular remodeling pathways altered by exercise may help elucidate
differential mechanisms between physiological and pathological cardiac hypertrophic
remodeling.

Molecular hubs of exercise adaptation

Analysis of up-regulated features at 8 weeks of training in both

sexes

This section describes additional observation of physiological relevance for the pathway
enrichments of up-regulated features in both sexes at 8 weeks of training. These are all related
to data presented in Supplementary Table 12 and Extended Data Fig. 8. From these key
pathway enrichments, the hippocampus displayed expression of transcripts involved in
neuroplasticity, including Grin2d, a component of the N-methyl-D-aspartate (NMDA) receptor
and the BDNF receptor, Ntrk2194,195. Endurance training is suggested to attenuate cognitive
declines with aging by preserving hippocampal volume in part through increasing circulating
BDNF levels196, highlighting a potential central sexually conserved neuroprotective response to
training. The heart displayed enrichments primarily at the proteomic level for several metabolic
processes, including fatty acid, glucose, and amino acid catabolism, peroxisome and
mitochondrial lipid metabolism, and mitochondrial biogenesis. Numerous metabolic pathways
were up-regulated in both sexes at all training timepoints, highlighting early and prolonged
cardiac adaptations to training (Supplementary Table 11). The liver also displayed pathway
enrichments related to lipid metabolism, including mitochondrial and peroxisomal activity and
biogenesis, in addition to steroid and bile acid biosynthesis at both the transcriptome and
proteome level. Relative to other tissues, 8 weeks of training had substantial impacts on
chromatin accessibility pathway enrichments in the liver, with both sexes displaying enrichments
in nuclear receptor signaling (e.g., Egfr, Foxo3) and cellular senescence through transcription
factors key in liver homeostasis (e.g., Cebpb, Jun)197,198. This further highlights potential
mechanisms by which training improves liver health and reduces disease risk. The spleen
displayed enrichments in terms related to phagocytes and complement activation while the
kidney displayed protein-based pathway enrichments related to peroxisome activity and drug
metabolism. White adipose tissue displayed changes in the methylation of features related to
axon guidance and the protein abundance of features related to fatty acid and steroid
metabolism. The adrenal gland displayed enrichment in transcripts related to lysosomes and
sphingolipid and glycosphingolipid metabolism; sphingolipids are suggested to play a key role in
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steroid hormone synthesis in the adrenal gland199. Future integration of these findings with
changes in circulating hormones and HPA axis regulation may fortify our knowledge of the
effects of endurance training on the systemic endocrine response.

Network connectivity analysis
We utilized a network connectivity analysis framework to characterize the multi-omic,
sex-consistent, week 8, up-regulated features in the gastrocnemius at week 8. After mapping
these features to genes, we observed modest yet significant overlaps between the
transcriptomic, chromatin accessibility, and proteomic assays but not with the methylation
assays (Extended Data Fig. 9a). We then compared three different resources of biological
interaction networks: BioGRID21, STRING122, and biological pathways, including interactions
from Reactome, PathBank, and KEGG125–127. Importantly, these networks were not filtered for
specific functions in order to mitigate bias towards highly investigated pathways. Network
connectivity analysis showed that all three networks had significant enrichments of interactions
between genes identified by a single ome and multi-omic genes (i.e., genes identified by two or
more omes), as well as among these multi-omic genes (Extended Data Fig. 9b; Methods). The
undirected BioGRID network of physical interactions among proteins outperformed the other
networks and was used for further analysis and interpretation.

Network eigenvector clustering128 of the BioGRID network identified three clusters of genes
(Extended Data Fig. 9c; Supplementary Table 13). The largest cluster had 181 nodes, was more
balanced in its omic representation, and was significantly enriched (at 5% FDR) for multiple
muscle adaptation processes, including: mitochondrion organization and fusion, aerobic
respiration, PPAR and insulin signaling, longevity, muscle contraction, and response to heat and
a mechanical stimulus (Fig. 4d; Supplementary Table 14). This analysis complements our
previous pathway analyses by illustrating a direct linkage among these pathways and putative
central regulators and network hubs including HSPs (e.g., HSP90AA1, HSPA4L, and HSPA1B),
HDAC4, and MEF2C (Supplementary Table 13). In agreement, MEF2C was suggested to have
increased activity in our TF enrichment analysis (Fig. 3a). Training-induced phosphorylation of
HDAC4 by calcium/calmodulin-dependent protein kinase (CaMK) leads to its nuclear export and
subsequent regulation of target genes200,201, including GLUT4 for glucose uptake in muscle202. In
the cytosol, non-histone substrates of HDAC4 include the master transcription cofactor for
mitochondrial and oxidative metabolism, PPARGC1A, and several of the myosin heavy chain
isoforms203, linking the central network hub to both mitochondrial and structural remodeling in
skeletal muscle.

From a computational perspective, this network analysis illustrates the utility of the multiomic
data: limiting the data to a single ome causes separation into smaller subnetworks. For
example, JUN is up-regulated only in the ATAC-seq data, HDAC4 and MEF2C have
up-regulation of phosphoproteomics only, and HSPA4L is up-regulated mostly at the protein
level (with some upregulation at the transcript level) (Supplementary Table 13). Thus, examining
only known pathways or a single ome would limit the identification of similar, densely-connected
multi-omic networks.
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Connection to human diseases and traits
We integrated our rat-based data with human exercise studies and disease ontology
annotations to gain translational insight. A significant correlation was observed between the
meta-analysis-inferred fold-changes and our results for both sexes at 8 weeks of training
(p<1e-20, Extended Data Fig. 9d-e). Focusing on our training-differential, sex-consistent genes,
we observed a significant and direction-consistent enrichment of our gene sets in a GSEA
analysis in which genes were ranked by their human meta-analysis results (p<1e-5, Extended
Data Fig. 9f). Human gene expression data have been shown to exhibit excessive heterogeneity
of fold-changes across studies due to observed and unobserved effect modifiers, including sex,
age, training duration, and transcriptomics platform8. These effects substantially limit the power
of the meta-analysis, suggesting a high false negative rate8. In our analysis we observed a
significant overlap between the training-regulated rat genes and human genes with high
fold-change heterogeneity, suggesting that the rat data may be leveraged to help identify
exercise-responsive genes that were not detected by the human meta-analysis (p<1e-4,
Extended Data Fig. 9g).

The disease ontology enrichment analysis helped pinpoint genes regulated in our rat study that
are of relevance in human diseases, e.g., type 2 diabetes (T2D), heart disease, obesity, and
kidney disease (5% FDR; Extended Data Fig. 9k). Leptin (Lep) and matrix metallopeptidase 2
(Mmp2) were down-regulated in white adipose tissue and are both associated with
adipogenesis, T2D, and heart disease204,205. The proinflammatory agent Apolipoprotein C-III
(Apoc3), down-regulated in white adipose tissue and the kidney, is associated with T2D, heart,
and kidney diseases. Apoc3 reduction in mice was recently demonstrated to protect white
adipose tissue against obesity-induced inflammation and insulin resistance206. This highlights
the value of this rat dataset for hypothesis testing in human exercise studies.

Sex-specific responses to exercise

Transcriptional remodeling of the adrenal gland

A large set of transcripts in the adrenal gland was negatively correlated between males and
females, with sustained downregulation in females and transient upregulation at 1 week in
males (Extended Data Fig 11d-e). Endurance training increases adrenal gland mass in both
sexes, with more pronounced hypertrophy in male rats207. While we did not directly quantify
changes in tissue mass, the 1-week induction of these transcripts in males could be explained
by transient training-induced hypertrophy of the adrenal gland. Genes in this transcript set were
related to steroid hormone synthesis pathways and mitochondrial function (Supplementary
Table 11). Indeed, differential expression of many mitochondria-associated genes could be
explained by changes in markers of mitochondrial volume35. These results suggest that the
adrenal gland undergoes modifications related to its major functions in production and release
of steroid hormones and catecholamines in response to endurance training. Finally, motifs of 14
TFs were found to be enriched in this transcript set, including the metabolism-regulating factors
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PPARg, PPARa, and ERRg (Supplementary Table 17). PPARs are known regulators of lipid
metabolism in response to endurance training173, and ERRg regulates mitochondrial metabolism
in both cardiac208 and skeletal muscles209. Altogether, the adrenal gland shows several
sex-specific endurance training adaptations at the molecular level, which should be interpreted
with known sex- and strain-specific differences in the hypothalamo-pituitary-adrenal axis
function in mind210.

Immune-related transcriptional changes in the small intestine
A set of small intestine transcripts down-regulated at 8 weeks, with a more robust response in
females, was significantly enriched for pathways related to gut inflammation and positively
correlated with markers of several immune cell types (Supplementary Table 11; Fig. 5b-c). This
result suggests a greater decrease in immune cell type populations in the small intestine of
female rats and a sex-dependent change in gut immunity. Specifically, reduced expression of
transcripts in the small intestine of female rats included genes involved in B cell receptor
signaling activation (Btk, Cd72, Cd79a) and B and T cell recruitment and activation (Cd3e,
Gata3, Il2rg, Ptpn22, Zap70, Cd5, Card11) (Supplementary Table 11). The pathogenesis of IBD
and other autoimmune disorders is associated with reduced or altered microbial diversity,
inflammation, and reduced gut barrier integrity, which lead to systemic inflammation and
reduced immune tolerance211–214. Endurance training is suggested to reduce systemic
inflammation, in part by increasing gut microbial diversity and gut barrier integrity29. We
highlighted the decreases in Cxcr3 and Il1a with training (Extended Data Fig 12g), both
implicated in the pathogenesis of IBD215–218. CXCR3 increases small intestinal permeability30;
reduced expression of Il1a is indicative of improvements in gut tissue homeostasis31 and
promotes localized immune cell recruitment215,219. Consistent with reduced overall gut
inflammation, the expression of transcripts involved in superoxide production in the small
intestine (Rac2, Ncf1/Ncf4, Cybb)220,221 were decreased with endurance training (Supplementary
Table 2). Reactive oxygen species increase intestinal permeability and propagate gut-mediated
systemic inflammation222,223.

Multi-tissue changes in lipids
We summarized training-regulated metabolites across tissues by performing enrichment of
RefMet metabolite classes (Fig. 6a; Supplementary Table 26). This analysis focused primarily
on lipid classes, as 2105 out of the total 2430 annotated metabolite features in our data were
classified as lipids (Supplementary Table 21). The liver showed the greatest number of
significantly enriched classes, followed by the heart, lung, and hippocampus. The eicosanoid
and octadecanoid lipid classes had significant enrichments in 8 and 7 tissues, respectively.
Eicosanoids and octadecanoids are derived from 20- and 18-carbon polyunsaturated fatty acids,
respectively, most frequently arachidonic acid (AA)224. The AA pathway plays a key role as an
inflammatory mediator involved in many molecular and cellular functions under different
physiological conditions225. Fatty acids and fatty esters, which serve as both energy sources and
building blocks for cellular membranes, were enriched in 7 tissues. Within fatty esters,
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acylcarnitines showed unique regulation across the plasma, brown and white adipose tissues,
heart, and liver (Extended Data Fig. 13e). An early increase in medium- and long-chain
acylcarnitines occurred in the plasma, white adipose tissue, and liver, while a decrease in
short-chain acylcarnitines occurred in brown adipose tissue and the heart. Several metabolites
showed similar regulation across many tissues suggesting organism-level changes, including
increases in N-methylproline and ectoine and decreases in trimethylamine-N-oxide (Extended
Data Fig. 13b). Together, these analyses reveal the dynamic mobilization and oxidation of lipids
across many tissues in response to endurance training.

Conclusions
Mapping the molecular responses to endurance training in a whole organism is critical for
gaining a holistic understanding of the mechanisms that underlie the benefits of exercise.
Previous studies have provided valuable findings but are restricted in scope because they used
limited molecular platforms, examined few tissues, interrogated a narrow temporal range, or
were biased towards a single sex. As large-scale publicly available omic data have proven to be
indispensable for rapidly advancing biomedical research, e.g, 78,148,226,227, we expect that our new
resource will similarly accelerate the generation of novel hypotheses pertaining to the molecular
basis of endurance training.

Each omic dataset quantifies molecules with particular biochemical characteristics and provides
unique insights into exercise adaptation. However, none alone are expected to provide a
complete picture228,229. Through multi-omic analyses we aimed to develop a holistic
understanding of a complex physiological response. Representative examples of these insights
were through transcriptomics and proteomics analyses that showed that most tissues have
persistent protein changes with transient transcript responses, in agreement with models of
tissue training adaptation173. However, in some cases transcript changes persist 48 hours after
the last bout of exercise, showing agreement with the cognate protein, for example energy
metabolism in skeletal muscles. Multi-omic integration also enhances mapping of the signaling
mechanisms of adaptation; proteomics data revealed changes in the heart extracellular matrix
(ECM), and through corresponding prediction of kinase activity from phosphoproteomics data,
we were able to propose an underlying signaling mechanism via SRC kinase. Moreover, the
regulation of kinase activity in the lung may be associated with lung mechanical stress230,231.
Integrating metabolomics data with other omes helped explain the mechanics behind metabolic
regulation, for example the association between liver lipids and the acetylation of proteins in
specific pathways. Some tissues were not subjected to comprehensive multi-omic profiling, yet
the discoveries from this work will motivate their deep molecular profiling in the future, such as
the observed transcriptional regulation of inflammatory bowel disease genes in the small
intestine.

The sex-biased responses to exercise training have not been well characterized. We observed
sex differences in the training response across many tissues and omes, highlighting the critical
importance of including both sexes in exercise science research. Though we recognize that
sexual dimorphism is substantially greater in rats than in humans232 and we have a limited
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sample size for sex-specific comparisons, this work identified important sex-specific adaptive
processes in the adrenal gland, lung, and brown and white adipose tissues, with implications for
how endurance training may differentially improve health in males and females.

We note limitations in our experimental design, datasets, and analyses. In short, samples were
collected 48 hours after the last training bout, therefore acute exercise changes are missed. The
experiment was designed to capture persistent molecular changes in response to endurance
exercise training, and as such, samples were collected 48 hours after the last training bout.
Transient molecular changes induced by acute exercise that occur in minutes to hours after the
training session, primarily in mRNA transcripts and metabolites, are likely not captured through
this experimental design. Future studies integrating acute temporal responses to repeated bouts
of endurance exercise will be required to address this question. Our assays were performed on
bulk tissue and do not cover single-cell platforms. Our resource has limited omic
characterization for certain tissues, and some omes with emerging biological relevance were not
performed in this study, for example, microbiome profiling. Additionally, hundreds of
unannotated metabolomic features remain to be explored and analyzed in detail. While the
fold-changes of many training-regulated features associated with tissue remodeling during
endurance exercise training are modest, they represent coherent processes. We analyzed 3-6
animals per time point and sex combination, and this sample size may limit our ability to identify
modest yet physiologically relevant molecular alterations. The findings and associations we
describe are from rats and may not translate directly to humans. Moreover, our results are
hypothesis-generating and require biological validation. Towards this end, we have generated a
large tissue bank from this study for both sexes and all training timepoints. A key mission of
MoTrPAC was to make these biospecimens available to the research community to help
facilitate new research on the benefits of exercise and health.
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