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Supplementary Chemistry 

Abbreviations Used  
EDC, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide; 
TEA, triethylamine; 
CDI, 1,1′-carbonyldiimidazole; 
DMSO, dimethyl sulfoxide; 
DIPEA, N-ethyl-N-isopropylpropan-2-amine; 
DCM, dichloromethane; 
HOAc, acetic acid; 
MeOH, methanol; 
DMSO, dimethyl sulfoxide; 
HPLC, high-performance liquid chromatography; 
LCMS, liquid chromatography-mass spectrometry; 
min, minute(s); 
h, hour(s); 
HOAt, 1-hydroxy-7-azabenzotriazole; 
HATU, N-[(dimethylamino)-1H-1,2,3-triazolo-[4,5-b]pyridin-1-ylmethylene]-N-methylmethanaminium 

hexafluorophosphate N-oxide; 
IPA, isopropanol; 
RT, retention time; 
equiv., equivalent; 
TFA, trifluoroacetic acid; 

General procedure 

2-(3-Chlorophenyl)-N-(isoquinolin-4-yl)acetamide (Z1530724813) 

Isoquinolin-4-amine hydrochloride (61.6 mg, 342.14 mmol), 2-(3-chlorophenyl)acetic acid (64.0 mg, 

376.45 mmol), EDC (64.1 mg, 413.18 mmol), TEA (41.4 mg, 409.41 mmol), and HOAt (50.82 mmol, 

410.12 mmol) were mixed in anhydrous DMSO (0.5 mL). The reaction mixture was sealed and kept at 25 

°C for 18 h. After that, the mixture was evaporated under reduced pressure, and the residue was dissolved 

in DMSO (0.6 mL). The solution was filtered, analyzed by LCMS, and then purified by HPLC to afford 2-

(3-chlorophenyl)-N-(isoquinolin-4-yl)acetamide (32.0 mg, 31.62%) as a yellow solid. 
1H NMR (500 MHz, DMSO-d6) δ (ppm) 10.26 (s, 1H), 9.14 (s, 1H), 8.68 (s, 1H), 8.14 (d, J = 8.1 Hz, 1H), 

8.05 (d, J = 8.5 Hz, 1H), 7.82 (dd, J = 8.4, 6.9 Hz, 1H), 7.70 (t, J = 7.5, 7.5 Hz, 1H), 7.48 (s, 1H), 7.42-7.36 

(m, 2H), 7.36-7.30 (m, 1H), 3.87 (s, 2H). 
MS (ESI+) m/z calculated for C17H14ClN2O+ ([M+H]+) 297.1, found: 297.0. 
HPLC condition: 

Column: Chromatorex 18 SMB100-5T 100x19 mm) 
Mobile phase: 40:40:90% at 0:1:5 min, H2O/MeOH 
Flow rate: 30 mL/min 



 

 

 

 

2-(3-Chlorophenyl)-N-(4-methylpyridin-3-yl)acetamide (Z1129289650) 

 
4-Methylpyridin-3-amine (40.9 mg, 378.46 mmol), 2-(3-chlorophenyl)acetic acid (71.0 mg, 417.62 mmol), 

EDC (71.1 mg, 458.30 mmol), and HOAt (53.69 mg, 438.50 mmol) were mixed in anhydrous DMSO (0.5 

mL). The reaction mixture was sealed and kept at 25 °C for 18 h. After that, the mixture was evaporated 

under reduced pressure; and the residue was dissolved in DMSO (0.7 mL). The solution was filtered, 

analyzed by LCMS, and then purified by HPLC ( eluting: 40-40-90% 0-1-5 min H2O/MeOH, flow: 30 

mL/min (loading pump 4 mL/min methanol); column: Chromatorex 18 SMB100-5T 100x19 mm) to afford 

2-(3-chlorophenyl)-N-(4-methylpyridin-3-yl)acetamide (62.6 mg, 63.46%) as a yellow solid. 
1H NMR (500 MHz, DMSO-d6) δ (ppm) 9.76 (s, 1H), 8.47 (s, 1H), 8.22 (d, J = 5.0 Hz, 1H), 7.44-7.39 (m, 

1H), 7.39-7.34 (m, 1H), 7.34-7.28 (m, 2H), 7.23 (d, J = 4.9 Hz, 1H), 3.72 (s, 2H), 2.16 (s, 3H). 
MS (ESI+) m/z calculated for C14H14ClN2O+ ([M+H]+) 261.1, found: 261.0. 
 
(R)-6-Chloro-N-(isoquinolin-4-yl)chromane-4-carboxamide (Z4643752419) and (S)-6-Chloro-N-

(isoquinolin-4-yl)chromane-4-carboxamide (Z4646694589) 

 
6-chlorochromane-4-carboxylic acid (0.156 g, 735.84 μmol, 1 eq), isoquinolin-4-amine (0.127 g, 937.72 

μmol, 1.2 eq), HATU (377.5 mg, 0.99 mmol, 1.35 eq), and DIPEA (284.77 mg, 2.20 mmol, 3 eq) were 

mixed in anhydrous DMSO (3 mL), and the solution was stirred at 20 °C for 12 h . After that, the reaction 

mixture was purified by reverse phase HPLC to afford (R,S)-6-chloro-N-(isoquinolin-4-yl)chromane-4-

carboxamide (90 mg, 36%). 
 
(R)-6-Chloro-N-(isoquinolin-4-yl)chromane-4-carboxamide (Z4643752419) and (S)-6-Chloro-N-

(isoquinolin-4-yl)chromane-4-carboxamide (Z4646694589) were obtained as two fractions (RT = 32.069 

min and 46.990 min respectively) from separation of the (R,S)-6-chloro-N-(isoquinolin-4-yl)chromane-4-

carboxamide (90 mg) using a Chiralpak IC-III (250*20 mm, 5 μm) column, eluting with hexane:IPA:MeOH 

(80-10-10) with flow rate of 13 mL/min. 
1H NMR (500 MHz, DMSO-d6) δ (ppm) 10.38 (s, 1H), 9.17 (s, 1H), 8.69 (s, 1H), 8.16 (d, J = 8.2 Hz, 1H), 

8.09 (d, J = 8.5 Hz, 1H), 7.85 (dd, J = 8.4, 7.0 Hz, 1H), 7.72 (t, J = 7.5, 7.5 Hz, 1H), 7.37 (d, J = 2.6 Hz, 

1H), 7.19 (dd, J = 8.8, 2.7 Hz, 1H), 6.85 (d, J = 8.8 Hz, 1H), 4.43-4.35 (m, 1H), 4.26-4.18 (m, 1H), 4.17 (t, 

J = 5.7, 5.7 Hz, 1H), 2.30-2.20 (m, 2H). 
MS (ESI+) m/z calculated for C19H16ClN2O2

+ ([M+H]+) 339.1, found: 339.0.  
 
 

 



 

 

 

 

(R,S)-6-chloro-N-(isoquinolin-4-yl)-1,2,3,4-tetrahydroisoquinoline-4-carboxamide 

 
Step1. 4-bromo-6-chloroisoquinoline (6.9 g, 28.64 mmol), triethylamine (2.88 g, 28.47 mmol) and 

Pd(dppf)Cl2.2CH2Cl2 (1.16 g, 1.43 mmol) were dissolved in MeOH (100 mL). The reaction mixture was 

stirred at 80 °C under CO atmosphere (25 bar) for 16 h. After cooling, the reaction mixture was filtered, 

and the combined MeOH solution was evaporated under reduced pressure to give a residue. The residue 

was then suspended in water, and the suspension was filtered, air-dried to afford methyl 6-

chloroisoquinoline-4-carboxylate (5.0 g, 79.3%). which was used in the subsequent step without further 

purification. 
 
Step 2. Methyl 6-chloroisoquinoline-4-carboxylate (5.0 g, 22.62 mmol) was dissolved in acetic acid (50 

mL). Sodium cyanoborohydride (4.25 g, 67.48 mmol) was then added portionwise to the solution at room 

temperature, and the reaction mixture was stirred overnight. After that, the reaction mixture was evaporated, 

and the residue was diluted with water then extracted with CHCl3 (2 x 300 mL). The combined organic 

layer was dried over sodium sulfate and evaporated in vacuo to give methyl 6-chloro-1,2,3,4-

tetrahydroisoquinoline-4-carboxylate (3.4 g, 66.8%) which was used in subsequent step without further 

purification. 
 
Step 3. di-tert-butyl dicarbonate (3.14 g, 14.4 mmol, 1.2 equiv.) was added to the solution of methyl 6-

chloro-1,2,3,4-tetrahydroisoquinoline-4-carboxylate (3.4 g, 12.0 mmol) and NaHCO3 (5 equiv., aqueous 

solution) in MeOH (100 mL). The reaction mixture was stirred at 50 °C overnight. Then, the mixture was 

diluted with water and extracted with chloroform (2 x 50 mL). The combined organic layer was dried over 

sodium sulfate and evaporated to give 2-tert-butyl 4-methyl 6-chloro-3,4-dihydroisoquinoline-2,4(1H)-

dicarboxylate ( 3.4g), which was used in the subsequent step without further purification. 
 
Step 4. 2-tert-butyl 4-methyl 6-chloro-3,4-dihydroisoquinoline-2,4(1H)-dicarboxylate (3.4 g, 10.4 mmol) 

was mixed in MeOH (30 mL) and H2O (60 mL), and then NaOH (1.24 g, 31 mmol) was added to the 

solution. The reaction mixture was heated at 50 °C overnight. Then, the mixture was diluted with water, 

acidified with NaHSO4 to pH 4 and extracted with chloroform (2 x 50 mL). The combined organic layer 

was dried over sodium sulfate and evaporated to give 2-(tert-butoxycarbonyl)-6-chloro-1,2,3,4-

tetrahydroisoquinoline-4-carboxylic acid (2.9 g), which was used in the subsequent step without further 

purification. 
 
Step 5. 2-(tert-butoxycarbonyl)-6-chloro-1,2,3,4-tetrahydroisoquinoline-4-carboxylic acid (4.0 g, 12.86 

mmol), isoquinolin-4-amine hydrochloride (2.21 g, 12.26 mmol), (3-

[(ethylimino)methylidene]aminopropyl)dimethylamine hydrochloride (3.51 g, 18.39 mmol), N,N-

dimethylpyridin-4-amine (298.58 mg, 2.45 mmol), and triethylamine (1.85 g, 18.34 mmol, 2.55 mL) were 

suspended in DMF, and the reaction mixture was heated at 50 °C overnight. After cooling to room 

temperature, the mixture was evaporated to give a residue, which was then suspended in water and filtered 

to give tert-butyl 6-chloro-4-(isoquinolin-4-ylcarbamoyl)-3,4-dihydroisoquinoline-2(1H)-carboxylate 

(1.45 g, 35.1%), which was used in the subsequent step without further purification. 



 

 

 

 

 
Step 6. tert-butyl 6-chloro-4-(isoquinolin-4-ylcarbamoyl)-3,4-dihydroisoquinoline-2(1H)-carboxylate 

(1.39 g, 3.18 mmol) was dissolved in MeOH, and then acetyl chloride (748.0 mg, 9.59 mmol, 680.0 µL) 

was added at to the solution at room temperature. The reaction mixture was heated at 50 °C overnight. 

Then, the mixture was diluted with water, basified with potassium carbonate to pH 12, and extracted with 

CHCl3. The organic layer was dried over sodium sulfate. The volatiles were removed under reduced pressure 

to give  (R,S)-6-chloro-N-(isoquinolin-4-yl)-1,2,3,4-tetrahydroisoquinoline-4-carboxamide (0.9 g, 84%). 
1H NMR (500 MHz, DMSO-d6) δ (ppm) 11.25 (s, 1H), 9.09 (s, 1H), 8.92 (s, 1H), 8.14 (d, J = 8.2 Hz, 1H), 

8.00 (d, J = 8.5 Hz, 1H), 7.86-7.79 (m, 1H), 7.71 (t, J = 7.5, 7.5 Hz, 1H), 7.37 (d, J = 2.2 Hz, 1H), 7.26 (dd, 

J = 8.2, 2.3 Hz, 1H), 7.18 (d, J = 8.3 Hz, 1H), 4.04 (d, J = 16.3 Hz, 1H), 3.92 (d, J = 16.4 Hz, 1H), 3.83 (t, 

J = 4.0, 4.0 Hz, 1H), 3.46 (dd, J = 12.7, 3.5 Hz, 1H), 3.13 (dd, J = 12.8, 4.4 Hz, 1H). 
MS (ESI+) m/z calculated for C19H17ClN3O+( [M+H]+) 338.1,  found: 338.2. 
 
rel-(R)-6-chloro-N-(isoquinolin-4-yl)-1,2,3,4-tetrahydroisoquinoline-4-carboxamide (Z4943052515, 

rel-BEN-DND-f2e727cd-5-1) and rel-(R)-6-chloro-N-(isoquinolin-4-yl)-1,2,3,4-

tetrahydroisoquinoline-4-carboxamide (Z4943052518, rel-BEN-DND-f2e727cd-5-2) 

 
(R,S)-6-chloro-N-(isoquinolin-4-yl)-1,2,3,4-tetrahydroisoquinoline-4-carboxamide (50 mg) was separated 

using the condition mentioned below to afford two isomers (Z4943052515, Z4943052518) at RT = 21.465 

min and RT = 31.200 min. 
Chiral separation condition: 

Column: Chiralcel OD-H (250*20 mm, 5 µm) 
Mobile phase: hexane:IPA:MeOH, 80:10:10 
Flow rate: 12 mL/min 

Z4943052515, rel-BEN-DND-f2e727cd-5-1: 
Yield: 18.02 mg (36.04%) 
Analytical RT = 11.878 min (Chiralcel OD-H (250*4.6 mm, 5 µm), hexane:IPA:MeOH, 70:15:15, 0.6 

mL/min) . 
Z4943052518, rel-BEN-DND-f2e727cd-5-2: 
Yield: 17.94 mg (35.88%) 
Analytical RT = 15.304 min (Chiralcel OD-H (250*4.6 mm, 5 µm), hexane:IPA:MeOH, 70:15:15, 0.6 

mL/min). 
 
 

 

 

 

 

 



 

 

 

 

(R,S)-6-Chloro-N-(isoquinolin-4-yl)-2-(methylsulfonyl)-1,2,3,4-tetrahydroisoquinoline-4-

carboxamide 

 
 
6-chloro-N-(isoquinolin-4-yl)-1,2,3,4-tetrahydroisoquinoline-4-carboxamide (100 mg, 0.3 mmol) and 

DIPEA (0.1 mL) were dissolved in DMF (4 mL), and then methanesulfonyl chloride (40 mg, 0.36 mmol) 

was added to the solution. The reaction mixture was stirred at room temperature for 16 h. Then, the mixture 

was purified by HPLC (25-50% 0-5 min H2O/ACN, flow: 30 mL/min (loading pump 4 mL/min acetonitrile); 

column: Chromatorex 18 SMB100-5T 100x19 mm 5 µm) to give (R,S)-6-chloro-N-(isoquinolin-4-yl)-2-

(methylsulfonyl)-1,2,3,4-tetrahydroisoquinoline-4-carboxamide (34 mg). 
1H NMR (500 MHz, DMSO-d6) δ (ppm) 10.37 (s, 1H), 9.18 (s, 1H), 8.67 (s, 1H), 8.16 (dd, J = 8.3, 4.9 Hz, 

2H), 7.87-7.80 (m, 1H), 7.72 (t, J = 7.5, 7.5 Hz, 1H), 7.42 (d, J = 2.1 Hz, 1H), 7.35 (dd, J = 8.3, 2.2 Hz, 

1H), 7.31 (d, J = 8.3 Hz, 1H), 4.43 (s, 2H), 4.36 (t, J = 5.9, 5.9 Hz, 1H), 3.83 (d, J = 5.8 Hz, 2H), 3.00 (s, 

3H). 
MS (ESI+) m/z calculated for C20H19ClN3O3S+([M+H]+) 416.1, found: 416.0. 
 
rel-(R)-6-chloro-N-(isoquinolin-4-yl)-2-(methylsulfonyl)-1,2,3,4-tetrahydroisoquinoline-4-

carboxamide (Z4988872945) and rel-(R)-6-chloro-N-(isoquinolin-4-yl)-2-(methylsulfonyl)-1,2,3,4-

tetrahydroisoquinoline-4-carboxamide (Z4988873021) 

 
(R,S)-6-Chloro-N-(isoquinolin-4-yl)-2-(methylsulfonyl)-1,2,3,4-tetrahydroisoquinoline-4-carboxamide 

(50 mg) was separated using the condition mentioned below to afford two isomers (Z4988872945 and 

Z4988873021) at RT = 41.218 min and RT = 51.863 min. 
 

Chiral separation condition: 
Column: Chiralpak IG (250*20 mm, 5 µm) 
Mobile phase: hexane:IPA:MeOH, 50:25:25 
Flow rate: 12 mL/min 



 

 

 

 

Z4988872945: 
Yield: 10.49 mg (42.30%) 
Analytical RT = 20.869 min (Chiralpak IG (250*4.6 mm, 5 µm), IPA:MeOH, 50:50, 0.6 mL/min). 
Z4988873021: 
Yield: 10.40 mg (41.94%) 
Analytical RT = 16.342 min (Chiralpak IG (250*4.6 mm, 5 µm), IPA:MeOH, 50:50, 0.6 mL/min). 
 
(R,S)-6-chloro-2-(((1-cyanocyclopropyl)methyl)sulfonyl)-N-(isoquinolin-4-yl)-1,2,3,4-

tetrahydroisoquinoline-4-carboxamide 

 
Step 1. tert-butyl 6-chloro-4-(isoquinolin-4-ylcarbamoyl)-3,4-dihydroisoquinoline-2(1H)-carboxylate (2.2 

g, 97% purity) was dissolved in dioxane, and HCl (8 % solution in dioxane, 3 equiv.) was added to the 

solution. The reaction mixture was stirred at room temperature overnight. The crystalline substance was 

filtered off, washed with acetone, and dried to afford crude 6-chloro-N-(isoquinolin-4-yl)-1,2,3,4-

tetrahydroisoquinoline-4-carboxamide dihydrochloride, which was used in the next step without further 

purification (1.8 g, 98%). 
 
Step 2. 6-chloro-N-(isoquinolin-4-yl)-1,2,3,4-tetrahydroisoquinoline-4-carboxamide dihydrochloride 

(600.0 mg, 1.47 mmol) and triethylamine (739.52 mg, 7.31 mmol, 1.02 mL) were dissolved in DCM and 

cooled to 5-10 °C. (1-cyanocyclopropyl)methanesulfonyl chloride (393.82 mg, 2.2 mmol) was then added 

to the reaction, and the reaction mixture was stirred at room temperature for 48 h. The reaction mixture was 

evaporated, and the crude product was purified by preparative HPLC to afford (R,S)-6-chloro-2-(((1-

cyanocyclopropyl)methyl)sulfonyl)-N-(isoquinolin-4-yl)-1,2,3,4-tetrahydroisoquinoline-4-carboxamide 

(142.0 mg, 20.2%). 
1H NMR (500 MHz, DMSO-d6) δ (ppm) 10.43 (s, 1H), 9.18 (s, 1H), 8.68 (s, 1H), 8.16 (t, J = 8.5, 8.5 Hz, 

2H), 7.84 (t, J = 7.7, 7.7 Hz, 1H), 7.72 (t, J = 7.5, 7.5 Hz, 1H), 7.43 (d, J = 2.1 Hz, 1H), 7.39-7.33 (m, 1H), 

7.31 (d, J = 8.4 Hz, 1H), 4.57-4.46 (m, 2H), 4.36 (t, J = 6.0, 6.0 Hz, 1H), 3.97-3.84 (m, 2H), 3.61-3.50 (m, 

2H), 1.43-1.38 (m, 2H), 1.24-1.19 (m, 2H). 
MS (ESI+) m/z calculated for C24H22ClN4O3S+([M+H]+) 481.1, found: 481.2. 
 
 

 

 

 

 

 

 

 

 



(4S)-6-chloro-2-[(1-cyanocyclopropyl)methylsulfonyl]-N-(4-isoquinolyl)-3,4-dihydro-1H-

isoquinoline-4-carboxamide (Z5129808241, rel-MAT-POS-dc2604c4-1-2) and (4R)-6-chloro-2-[(1-

cyanocyclopropyl)methylsulfonyl]-N-(4-isoquinolyl)-3,4-dihydro-1H-isoquinoline-4-carboxamide 

(Z5129808244, re-MAT-POS-dc2604c4-1-1) 

(R,S)-6-chloro-2-(((1-cyanocyclopropyl)methyl)sulfonyl)-N-(isoquinolin-4-yl)-1,2,3,4-

tetrahydroisoquinoline-4-carboxamide (90 mg) was separated using the condition mentioned below to 

afford (Z4988872945 and Z4988873021) at RT = 15.399 min and 23.429 min. 
Chiral separation condition: 

Column: CHIRALPAK IС (250x21 mm, 5 µm) 
Mobile phase: IPA:MeOH, 50:50 
Flow rate: 12 mL/min 

Z5129808241, rel-MAT-POS-dc2604c4-1-2: 
Yield: 480.37 mg (48.04%) 
Analytical RT = 12.281 min (Chiralpak IA (250x4.6 mm, 5 µm); MeOH:IPA, 50:50; flow rate: 0.6 

mL/min). 
Z5129808244, rel-MAT-POS-dc2604c4-1-1: 
Yield: 436.07 mg (43.61%) 
Analytical RT = 20.221 min (Chiralpak IA (250x4.6 mm, 5 µm); MeOH:IPA, 50:50; flow rate: 0.6 

mL/min). 

(2-hydroxyquinolin-4-yl)(4-(3-(trifluoromethyl)phenyl)piperazin-1-yl)methanone 



 

 

 

 

 
A vial was charged with 2-hydroxyquinoline-4-carboxylic acid (typically 0.1 mmol, 1.0 equiv.), and CDI 

(prepared in advance at 15% solution in DMSO, 1.1 equiv.) was then added to the vial. The reaction mixture 

was heated with stirring at 50 °C for 2 h. After that, 1-(3-(trifluoromethyl)phenyl)piperazine (1.1 equiv.) 

was added to the reaction, and the vial was sealed and heated at 100 °C for 6 h. In the case of using a salt 

of the amine, an additional amount of DIPEA was added to the reaction mixture to convert the amine to the 

basic form. After cooling to the ambient temperature, the mixture was filtered and the solution was 

subjected to HPLC purification.  
1H NMR (600 MHz, DMSO-d6) δ (ppm) 11.92 (s, 1H), 7.53 (m, 1H), 7.42 (m, 1H), 7.34 (m, 1H), 7.19 (m, 

3H), 7.07 (d, J = 5.0 Hz, 1H), 6.51 (s, 1H), 3.80 (m, 2H), 3.32 (m, 4H), 3.20 (m, 1H), 3.01 (m, 1H). 
MS (ESI+) m/z calculated for C21H19F3N3O2

+ ([M+H]+) 402.1, found: 402.4. 
Separation condition: 

Column: Waters Sunfire C18 OBD Prep Column, 100 Å2, 5 µm, 100x19 mm with SunFire C18 

Prep Guard Cartridge 
Mobile phase: H2O:MeOH. In some cases, ammonia or TFA was used as an additive to improve 

the separation of the products. 
 
6-chloro-N-(isoquinolin-4-yl)thiochromane-4-carboxamide 1,1-dioxide 
Step 1. To the solution of 6-chloro-3,4-dihydro-2H-1-benzothiopyran-4-one (2.0 g, 10.07 mmol)  in DCM 

(20 mL) were added trimethylsilanecarbonitrile (1.3 g, 13.09 mmol)  and a catalytic amount of diiodozinc 

(160.69 mg, 503.4 µmol). The reaction mixture was stirred at room temperature overnight, at which time, 

a check by NMR showed full conversion. The volatiles were removed in vacuo to give a crude 6-chloro-4-

[(trimethylsilyl)oxy]-3,4-dihydro-2H-1-benzothiopyran-4-carbonitrile (2.99 g, 99.7%), which was used in 

the next step without further purification. 
 
Step 2. To a 50-mL single neck round bottom reaction flask equipped with a magnetic stirrer, a reflux 

condenser, and a nitrogen inlet were added 6-chloro-4-[(trimethylsilyl)oxy]-3,4-dihydro-2H-1-

benzothiopyran-4-carbonitrile (2.99 g, 10.04 mmol), tin(II) chloride dihydrate (9.14 g, 40.16 mmol), glacial 

acetic acid (8 mL), and concentrated hydrochloric acid ( 8 mL). The reaction apparatus was immediately 

flushed with Argon and plunged into a preheated (100 oC) oil bath. With vigorous stirring, the reaction 

mixture was heated for 48 h. After cooling to room temperature, the mixture was diluted with water (20 

mL) and extracted with DCM (2 x 20 mL). The combined organic layer was dried over Na2SO4 and 

evaporated to give a residue, which was then suspended in NaOH (1 N, 30 mL)  and DCM (20 mL). The 

aqueous layer was carefully acidified with HCl (10%) to pH = 2 and then extracted with DCM (3 x 15 mL). 

The organic layers were combined, dried over Na2SO4, and then evaporated to give 6-chloro-3,4-dihydro-

2H-1-benzothiopyran-4-carboxylic acid (1.44 g, 62.7%)  
 
Step 3. To a mixture of 6-chloro-3,4-dihydro-2H-1-benzothiopyran-4-carboxylic acid (1.0 g, 4.37 mmol) 

in acetonitrile:H2O (1:1, 20 mL) was added trichlororuthenium hydrate (19.72 mg, 87.46 µmol). After that, 

sodium periodate (2.34 g, 10.93 mmol) was added in portions. The reaction mixture was then stirred for 3 

h. Solids were filtered and washed with water (10 mL) and ethyl acetate (25 ml). The organic layer was 

separated, and the aqueous layer was re-extracted with ethyl acetate (2 x 10 mL). The combined organic 

layer was dried over Na2SO4 and evaporated to give a residue, which was then dissolved in acetonitrile (25 

mL), and SiliaMetS Thiol Metal Scavengers was added to the solution. The mixture was stirred for 30 min 

and then filtered. The filtrate was evaporated in vacuo to give 6-chloro-1,1-dioxo-3,4-dihydro-2H-

1lambda6-benzothiopyran-4-carboxylic acid (940.0 mg, 82.5%). 
 
Step 4. DIPEA (86.76 mg, 671.32 µmol) was added to a mixture of 6-chloro-1,1-dioxo-3,4-dihydro-2H-

1lambda6-benzothiopyran-4-carboxylic acid (50.0 mg, 191.8 µmol), isoquinolin-4-amine hydrochloride 

(41.58 mg, 230.17 µmol), and HATU (109.39 mg, 287.71 µmol) in DMF (2 mL). The reaction mixture was 



 

 

 

 

stirred at room temperature overnight. The reaction progress was checked by LCMS. After consumption of 

starting material, the reaction mixture was subjected to prepHPLC to give 6-chloro-N-(isoquinolin-4-yl)-

1,1-dioxo-3,4-dihydro-2H-1lambda6-benzothiopyran-4-carboxamide (42.8 mg, 57.7%). 
MS (ESI+) m/z calculated for C19H16ClN2O3S+ ([M+H]+) 387.1, found: 387.2. 
Separation condition: 

Column: Chromatorex 18 SMB100-5T 100x19 mm 5 µm, 
Mobile phase: 20-35% in 0-6 min, H2O/acetonitrile) 
Flow rate: 30 mL/min 

 
6,7-dichloro-N-(isoquinolin-4-yl)-4-methyl-1,2,3,4-tetrahydroquinoline-4-carboxamide 

 
Step 1. Methyl 6,7-dichloro-1,2,3,4-tetrahydroquinoline-4-carboxylate (1.98 g, 7.6 mmol) in anhydrous 

THF (20 mL) was added dropwise at -30 °C under a nitrogen atmosphere to a solution of lithium 

diisopropylamide (1 equiv.)  in THF. The mixture was stirred at room temperature for 1 h. After that, 

iodomethane (1.62 g, 11.4 mmol, 710.0 µL, 1.5 equiv.) was added at -50 °C to the mixture, and then the 

reaction was stirred at room temperature overnight. The reaction mixture was quenched with saturated 

aqueous NH4Cl and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried 

over anhydrous Na2SO4, and evaporated in vacuo to give a residue, which was purified by column 

chromatography (SiO2, hexane/ethyl acetate) to give methyl 6,7-dichloro-4-methyl-1,2,3,4-

tetrahydroquinoline-4-carboxylate (400.0 mg, 19.2%).  
 
Step 2. Methyl 6,7-dichloro-4-methyl-1,2,3,4-tetrahydroquinoline-4-carboxylate (400.0 mg, 1.46 mmol) 

was dissolved in methanol (15 mL), and then sodium hydroxide (70.12 mg, 1.75 mmol) in water (8 mL) 

was added to the solution. The obtained mixture was stirred at room temperature overnight, concentrated 

in vacuo to give sodium 6,7-dichloro-4-methyl-1,2,3,4-tetrahydroquinoline-4-carboxylate (400.0 mg, 

97.5%) 
 
Step 3. To a suspension of sodium 6,7-dichloro-4-methyl-1,2,3,4-tetrahydroquinoline-4-carboxylate (400.0 

mg, 1.42 mmol)  in dioxane (8 mL) and H20 (8 mL) was added sodium hydrogen carbonate (357.32 mg, 

4.25 mmol) and prop-2-en-1-yl carbonochloridate (256.34 mg, 2.13 mmol, 230.0 µL, 1.5 equiv.). After 

stirring overnight at room temperature, the reaction mixture was washed with methyl tertiary-butyl ether. 

Hydrochloric acid was then added to the water layer,  and the mixture was extracted with ethyl acetate. The 

organic layer was washed with saturated brine, dried over anhydrous Na2SO4, and evaporated in vacuo to 

give 6,7-dichloro-4-methyl-1-[(prop-2-en-1-yloxy)carbonyl]-1,2,3,4-tetrahydroquinoline-4-carboxylic 

acid (300.0 mg, 61.5%). 
 
Step 4. HATU (321.66 mg, 845.97 µmol)  was added to a mixture of  6,7-dichloro-4-methyl-1-[(prop-2-

en-1-yloxy)carbonyl]-1,2,3,4-tetrahydroquinoline-4-carboxylic acid (253.2 mg, 735.63 

µmol),  isoquinolin-4-amine (106.06 mg, 735.63 µmol), and ethylbis(propan-2-yl)amine (237.44 mg, 1.84 

mmol, 320.0 µL, 2.5 equiv.)  in DMF (10 mL). The obtained mixture was stirred at room temperature 

overnight, then poured into water, and extracted with ethyl acetate.  The organic layer was washed with 

saturated brine, dried over anhydrous Na2SO4, and evaporated in vacuo to give a residue, which was purified 



 

 

 

 

by HPLC (Chromatorex (18 SMB100-5T 100x19 mm), H2O/acetonitrile) to give prop-2-en-1-yl 6,7-

dichloro-4-[(isoquinolin-4-yl)carbamoyl]-4-methyl-1,2,3,4-tetrahydroquinoline-1-carboxylate (14.0 mg, 

4%) . 
 
Step 5. To a solution of prop-2-en-1-yl 6,7-dichloro-4-[(isoquinolin-4-yl)carbamoyl]-4-methyl-1,2,3,4-

tetrahydroquinoline-1-carboxylate (14.0 mg, 29.77 µmol)  in DCM (5 mL) under argon were added 

Pd(PPh3)4 (3.45 mg, 2.98 µmol) and morpholine (5.2 mg, 59.69 µmol, 10.0 µL, 2.0 equiv.) . After stirring 

overnight at room temperature, the obtained mixture was concentrated in vacuo and then subjected to 

separation (Chiralpak AS-H (250*20 mm, 5 µm), hexane-IPA-MeOH) without additional work-up to give 

6,7-dichloro-N-(isoquinolin-4-yl)-4-methyl-1,2,3,4-tetrahydroquinoline-4-carboxamide (9.91 mg, 86.2% 

yield). 
MS (ESI+) m/z calculated for C20H18Cl2N3O+ ([M+H]) 386.1, found: 386.0. 
 
6-chloro-N-(isoquinolin-4-yl)-3-methyl-3,4-dihydro-2H-1-benzopyran-4-carboxamide 

 

To a solution of 6-chloro-3-methyl-3,4-dihydro-2H-1-benzopyran-4-carboxylic acid (1.1 g, 4.85 mmol) in 

DMF (5 mL) were added isoquinolin-4-amine hydrochloride (876.51 mg, 4.85 mmol), DIPEA (1.25 g, 9.7 

mmol, 1.69 mL, 2.0 equiv.) and HATU (2.03 g, 5.34 mmol), and the reaction mixture was stirred overnight 

at room temperature. Water (30 mL) was then added to the reaction, and the solution was extracted with 

ethyl acetate (4 x 50 mL). The combined organic layers were washed with brine, dried with sodium sulfate, 

filtered, and evaporated in vacuo to give a residue, which was purified by flash chromatography using a 

CombiFlash to afford 6-chloro-N-(isoquinolin-4-yl)-3-methyl-3,4-dihydro-2H-1-benzopyran-4-

carboxamide (1.2 g, 93.0% purity, 65.2%). 
1H NMR (600 MHz, DMSO-d6) δ (ppm) 10.42 (s, 1H), 9.12 (s, 1H), 8.66 (s, 1H), 8.18-8.11 (m, 2H), 7.90-

7.88 (m, 1H), 7.73-7.71 (m, 1H), 7.32 (s, 1H), 7.19-7.17 (m, 1H), 6.83 (d, J = 6.0 Hz, 1H), 4.31-4.28 (m, 

1H), 4.10 - 4.07 (m, 2H), 2.32-2.30 (m, 1H), 1.07 (d, J = 8.4 Hz, 3H). 
MS (ESI+) m/z calculated for C20H18ClN2O2

+ ([M+H]+) 353.1, found: 353.0. 
 

  



 

 

 

 

 

Fig. S1. The SARS-CoV-2 main viral protease (Mpro) is highly conserved across 

coronaviruses. A. Mpro sequences across coronaviruses are highly conserved due to their 

requirement to cleave viral polyproteins in numerous locations, showing very little variation in 

residues lining the active site near the scissile bond. B. Available structural data for Mpro from 

multiple coronaviruses shows a high degree of sequence and structural conservation, especially 

in the vicinity of the active site. 

  



 

 

 

 

 

Fig. S2. Initial crowdsourcing efforts produced structures and hits with biochemical potency 

for four distinct chemical series. Ugi, quinolones and benzotriazoles were based on literature 

compounds for SARS-CoV main protease. Top: Early representative X-ray structures of each 

series. Bottom: Representative compounds from each series. 

  



 

 

 

 

 

Fig S3. Word cloud representation of crowdsourced submission description. Representation 

of word frequency from 2,127 crowdsourced submission descriptions. Although this is just a 

qualitative assessment, some trends may emerge (beyond the obvious theme of structure based 

fragment optimization): any of the predictions relied on docking (“dock”, “vina”); fewer were 

“by-eye”; several of the predictions attempted to “link”, “combine”, or “merge” fragments.  

 

  



Fig S4. Breakdown of early submitted designs by methods. We attempted to evaluate if a 

specific ‘design method’ was more successful based on the descriptions of early designs. It is clear 

the historical SARS inhibitors perform the best (therefore it might be best to start from a known 

inhibitor when one is available). Other approaches, however, do not give a clear signal. While 

hypothesis-driven designs seem to be more potent than ‘docking’ driven designs, this was driven 

mainly by a group of covalent designs submitted by the core group.  



 

 

 

 

 
Fig S5. Outliers in retrospective alchemical free energy calculations drove new chemical 

insight that informed improvements in modeling strategy. Alchemical free energy calculation 

Sprint 10 considered transformations proposed from ADA-UCB-6c2cb422-1 as a reference 

compound. Retrospective calculations included in the batch showed excellent correspondence for 

many compounds, as well as a near-vertical band of outliers with no correlation with experiment. 

Examination of the outliers in this band (right) revealed they shared conservative modifications to 

the quinoline scaffold engaging P1 that made very small changes to steric contacts but significantly 

modified the pKa of the nitrogen engaging His163, suggesting we needed to consider multiple 

protonation state variants of both His163 and the part of the compound engaging it in hydrogen 

bonding. Future iterations of free energy calculations considered multiple protonation states of 

His163 and design compounds. 

  

https://fah-public-data-covid19-moonshot-sprints.s3.us-east-2.amazonaws.com/dashboards/sprint-10/sprint-10-2021-07-26-x10959-dimer-neutral-restrained/retrospective_microstate_transformations/index.html
https://fah-public-data-covid19-moonshot-sprints.s3.us-east-2.amazonaws.com/dashboards/sprint-10/sprint-10-2021-07-26-x10959-dimer-neutral-restrained/retrospective_microstate_transformations/index.html


Fig S6. Parent compounds for HTC optimization. A. Structure of the precursor for the Chan-

Lam reaction, in which we attempted to functionalize Position C5 of the chloro-phenyl (marked 

with an arrow) to expand into the P3-P5 pockets (cyan). PDB ID: 7GLP; Resolution 1.92Å B. 

Structure of an example of a methyl-derived amide for the parent acid MAT-POS-4223bc15-21 

(for which we were not able to get a good co-crystal structure, possibly due to its relatively weak 

affinity). We attempted to derivatize the amide bond to expand towards the P3-P5 pockets (cyan). 

PDB ID: 7GKV; Resolution 1.88Å. 



 

 

 

 

 

 
 

Fig S7. Optimization of HTC Chan-Lam Reaction. A. Model reaction scheme. B. Initial 

reaction condition screening was performed to find the most suitable base (Py: Pyridine; Et3N: 

triethylamine; DBU: 1,8-Diazabicyclo(5.4.0)undec-7-ene; DABCO: 1,4-

diazabicyclo[2.2.2]octane) and ligand (BiPy: Bipyridine; TMP: 3,4,7,8-Tetramethyl1,10-

phenanthroline; DMAP: 4-Dimethylaminopyridine) for the synthesis of arylamines using DMSO 

as a solvent, atmospheric oxygen as an oxidant, and Cu(OAc)2*H2O as a copper source. The 

experiment was done in a 384-well plate and the reactants were arrayed manually. We report 

estimated yields (%). Under the tested conditions, the yields correlate with the nucleophilicity of 

the tested model amines. The highest yields were obtained using DMAP and Et3N. C. We 

investigated the effect of copper source on product yield, using the previously optimized reaction 

conditions (DMAP, Et3N). There was no significant difference between copper-iodide (CuI) and 

copper-chloride (CuCl), thus we decided to proceed with CuI since it is a known promoter for this 

reaction in combination with DMAP (94). D. The final optimization step included switching the 

pinacol boronic ester to an unprotected boronic acid as well as the Et3N to trihexylamine - a less 

volatile homolog of Et3N, which yielded 76% product formation when piperidine was used as the 

model amine, without phenol or homocoupling side-products and 4% of protodeboronated starting 

material. These reaction conditions were used for library synthesis. 

  



 

 

 

 

 
 

Fig S8. Optimization of HTC amide coupling. A. Model reaction scheme. B. We investigated 

suitable coupling agents. Reactions in DMSO, with equimolar amounts of DIPEA (N,N-

Diisopropylethylamine), coupling agent (DMT-MM: 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-

methyl- morpholinium chloride; EDC: 1-Ethyl-3- (3-dimethylaminopropyl) carbodiimide HCl; 

HATU: 1-[Bis(dimethylamino) methylene]-1H-1,2,3-triazolo[4,5-b] pyridinium 3-oxide 

hexafluorophosphate), model amine (aniline, benzylamine, morpholine, and sec-butylamine), 

and carboxylic acid each. After pre-activating the acid with the coupling agent for five minutes, 

model amines were arrayed to each well. After overnight incubation, each well was diluted with 

50% ACN (Acetonitrile) in water, and the yields were estimated from the UV chromatograms. 

We report estimated yields (%). In all cases, unreacted acid was observed. C. With higher ratios 

of coupling agent and base, the yields did increase, but uronium modified starting material was 

observed. We tried repeating the reaction in DMA (Dimethylacetamide) or NMP (N-

methylpyrrolidone), but the yields were even lower (data not shown). D. We increased the 

amount of DIPEA to 5 equ. and replaced HATU with EDC to avoid formation of side products. 

Using EDC, we observed 100% acid consumption. To avoid isomerization of the activated acid 

to unreactive N-acylurea, we explored the use of additives (HOAt: 1-Hydroxy-7-

azabenzotriazole; HOBt: Hydroxybenzotriazole; OSu:N,N-Disuccinimidyl carbonate). We report 

estimated yields (%). E. Since DMAP did not significantly improve the yield, we decided to 

proceed with HOAt as an additive to simplify the UV chromatograms. These reaction conditions 

were used for library synthesis.    



 

 

 

 

 

Fig S9. HTC optimization of Mpro inhibitors towards P3-5. A. Selected Chan-Lam installed 

derivatives of ADA-UCB-6c2cb422-1 and B. Amide coupling derivatives of MAT-POS-

4223bc15-23 were tested both as crude reaction mixtures, as well as pure resynthesized 

compounds in the Mpro biochemical assay. 

  



 

 

 

 

 

 

 

 



 

 

 

 

 

 

Fig S10. Chloroacetamide fragment optimization. Measured IC50 are reported in μM. A. 

Optimization of a piperazine chloroacetamide series B. Optimization of a 

diazepane  chloroacetamide series C. Further derivatization of the (s) isomer of the piperazine 

chloroacetamides D. Further derivatization of the (r) isomer of the piperazine chloroacetamides E. 

Singelton chloroacetamides tested. 

  



 

 

 

 

 
 

Supplementary Figure 11: Covalentization of potent binders leads to a 40 nM Mpro 

inhibitor. The structure of MAT-POS-b3e365b9-1 (top left; PDB: 7GFB) suggested that 

installation of an acrylamide moiety off the central amide might be able to engage covalently with 

the catalytic Cys145. While the acrylamide version VLA-UCB-50c39ae8-7 proved 3-fold less 

potent, the co-crystal structure showed it was able indeed to form the designed covalent bond (top 

right; PDB: 7GJ7). Moreover, similar covalentization of a close analog (MAT-POS-f7918075-2; 

bottom left; PDB: 7GAV) led to MAT-POS-e69ad64a-2 (bottom right; PDB: 7GJE) with almost 

19-fold improvement in IC50 down to 41 nM. This suggests that very slight modification of the 

overall binding pose can lead to dramatic rate enhancements as they place the electrophile more 

accurately for nucleophilic attack by the cysteine. 

 

 

 

 
Supplementary Figure 12: Distribution of Crystallographic statistics over collected Mpro 

datasets in two crystal forms. See Data S4 for a breakdown by structure. 

  



Supplementary Figure 13: Electron density maps for ligands highlighted in this 

manuscript. 2FoFc maps (blue) and PanDDA event maps (orange). See Data S4 for PDB IDs. 



 

 

 

 

  



 

 

 

 

 
Supplementary Figure 14: A diverse library of potential designs accessible through robust, 

parallel chemistry was designed using the amine functionality of BEN-DND-f2e727cd-5 

(racemate of MAT-POS-3ccb8ef6-1) as the reactive handle. The library consisted of targets 

accessible via standard reactions such as amide, sulfonamide, and urea couplings from large in-

stock monomer classes. The large enumerated libraries were filtered down to a diverse 41 member 

library MAT-POS-4223bc15, which included the potent sulfonamide MAT-POS-4223bc15-12. 

More focused exploration of that promising compound from in-stock building blocks (MAT-POS-

dc2604c4) then led to advanced compound MAT-POS-dc2604c4-1 (racemate of MAT-POS-

e194df51-1).  



 

 

 

 

 
 

Supplementary Figure 15: Visualization of selected safety data of the COVID Moonshot lead 

series. (A) Protease enzyme selectivity measured at 100 μM (Nanosyn panel) shows high 

selectivity of COVID Moonshot compounds from different series against a large panel of 

proteases. Compounds from the aminopyridine lead series are marked in bold throughout Fig S12, 

with the lead compound marked by a triangle. (B) MAT-POS-e194df51-1 shows IC50s >30 μM 

across the Eurofins principle panel (yellow circle), with two other compounds from the 

aminopyridine series also demonstrating a favorable profile. (C) Permeability data for the 



 

 

 

 

aminopyridine series is detailed, showing a high MDCK-MDR1 efflux ratio (ER) for MAT-POS-

e194df51-1 that suggests low brain penetrance, whilst the high MDCK-LE permeability indicates 

high intrinsic permeability. (D) CYP reactivity of selected COVID Moonshot compounds, 

showing variable engagement of Cyp3A4 across the series, but no risk of time dependent 

inhibition. Further, the risk of CYP3A4 induction via PXR is low.  All raw data is available as 

supplementary material. 

  



 

 

 

 

 



 

 

 

 

Supplementary Figure 16: Visualization of selected ADME, in vitro and in vivo PK data of 

the COVID Moonshot lead series. (A) Both in vitro clearance measurements in microsomes 

(blue) and hepatocytes (grey) show a higher clearance in rats than humans. Data suggests dominant 

Phase 1 metabolism for the aminopyridine series. (B) Linked rat in vitro and rat in vivo clearances 

are depicted for microsomes and hepatocytes. (C) For all in vivo PK measurements, rat (blue) and 

mouse (grey) clearance is depicted in relation to fluorescence IC50 values. (D) For compounds 

with plasma protein binding assessed, unbound clearance is shown for rodent PK experiments. In 

panels A to D, MAT-POS-e194df51-1 is marked by a triangle.  (E) Rat intravenous (IV, at 2 

mg/kg) and oral (PO, at 10 mg/kg) PK experiments show the progression of oral bioavailability 

(BA) of the aminopyridine lead series. All raw data is available in Data S3. 

  



 

 

 

 

 

Supplementary Figure 17: Closely related analogues of the lead compound, PET-UNK-

29afea89-2 and MAT-POS-932d1078-3, demonstrate antiviral activity across different 

cellular antiviral assays and a kidney organoid model.  A: shows the chemical structure of PET-

UNK-29afea89-2 and MAT-POS-932d1078-3. B: dose-response curves of both compounds in 

Immunofluorescence assays in Hela-ACE2 cells, and C: Cytopathic Effect assays in A549-ACE2-

TMPRSS2 cells. The curves also show the cytotoxicity data (dotted lines), demonstrating the lack 

of cytotoxic activity across all three cell lines.  D-E: Antiviral activity of MAT-POS-932d1078-

3  and PET-UNK-29afea89-2 in kidney organoids infected with SARS-CoV-2 in the presence of 

1 µM and 10 µM of compounds or DMSO as a control. D: Intracellular viral RNA measured by 

qPCRand E: infectious viral titers released from the apical side of the organoids at 48 hpi, 

measured by plaque assay on Vero E6 cells. Data in D are mean and SD of 2 biological replicates 

from a representative experiment of 2 independent experiments. Intracellular viral RNA levels in 

D were normalized to expression of the β-actin housekeeping gene. 

  



Supplementary Figure 18: The interaction patterns of our lead compound MAT-POS-

e194df51-1 with the Mpro binding site is distinct to known clinical antivirals nirmatrelvir 

and ensitrelvir (S-217622), thus likely to be active against resistant variants. (A) The van der 

Waals interaction energy between the inhibitors and key residues in the Mpro binding site, and the 

binding poses of (B) nirmatrelvir (PDB ID: 8DZ2), (C) ensitrelvir (S-217622; PDB ID: 8DZ0) and 

(D) MAT-POS-e194df51-1 (PDB ID: 7GAW). The interaction energy is computed using a method

previously reported in ref (95) and validated for hepatitis C virus protease.



Supplementary Table 1: Summary crystallographic statistics for all collected datasets 

Space group C 1 2 1 P 21 21 21 

No. of datasets 359 228 

High resolution range (A) 1.18 - 2.84 1.43 - 2.44 

Mean high resolution (A) 1.67 1.82 

Standard deviation high resolution (A) 0.22 0.17 

Mean abs. dev. high resolution (A) 0.17 0.13 

Median high resolution (A) 1.65 1.83 

Median abs. dev. high resolution (A) 0.14 0.09 

Mean Unique reflections (High res shell) 92663 (1508) 78964 (1931) 

Mean CCHalf (High res shell) 0.99 (0.33) 1 (0.6) 

Mean I/SigI (High res shell) 8.31 (0.68) 9.28 (1.53) 

Mean overall completeness (High res shell) 98.03 (93.56) 93.49 (67.18) 

Mean Rmerge (High res shell) 0.12 (1.32) 0.15 (1.29) 

Mean multiplicity (High res shell) 3.22 (2.76) 6.69 (6.12) 

Rwork range 0.16 - 0.23 0.2 - 0.3 

Mean Rwork 0.19 0.23 

Standard deviation Rwork 0.01 0.01 

Mean abs. dev. Rwork 0.01 0.01 

Median Rwork 0.19 0.22 

Median abs. dev. Rwork 0.01 0.01 

Rfree range 0.19 - 0.31 0.22 - 0.33 

Mean Rfree 0.23 0.26 

Standard deviation Rfree 0.02 0.02 

Mean abs. dev. Rfree 0.01 0.01 

Median Rfree 0.22 0.26 

Median abs. dev. Rfree 0.01 0.01 



 

 

 

 

Data S1. (separate file) 

Summary of all collected biochemical data.  

Data S2. (separate file) 

Summary of designs uploaded to the COVID Moonshot platform.  

Data S3. (separate file) 

Summary of nanomole high throughput optimization.  

Data S4. (separate file) 

Summary of crystallographic and refinement statistics  

Data S5. (separate file) 

Summary of ADMET and PK data.  

Data S6. (separate file) 

Summary of all cellular anti-viral data produced in this project.  

Data S7. (separate file) 

The Covid Moonshot consortium member list 
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