

Gasdermin B, an asthma-susceptibility gene, promotes MAVS-TBK1 signalling and airway inflammation

Tao Liu¹, Siqi Liu^{1,7}, Xianliang Rui^{1,7}, Ye Cao², Julian Hecker¹, Feng Guo¹, Yihan Zhang³, Lu Gong¹, Yihan Zhou ¹, Yuzhen Yu¹, Nandini Krishnamoorthyni⁴, Samuel Bates¹, Sung Chun ⁵, Nathan Boyer ¹, Shuang Xu¹, Jin-Ah Park⁶, Mark A. Perrella ⁴, Bruce D. Levy ⁴, Scott T. Weiss ¹, Hongmei Mou ³, Benjamin A. Raby^{1,4,5,8} and Xiaobo Zhou^{1,8}

¹Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA. ²Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA. ³The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. ⁴Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA. ⁵Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA. ⁶Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA. ⁷These authors contributed equally. ⁸These authors jointly conceptualised and supervised this work.

Corresponding author: Xiaobo Zhou (xiaobo.zhou@channing.harvard.edu)

Check for updates	Shareable abstract (@ERSpublications) Asthma GWAS gene <i>GSDMB</i> promotes the induction of <i>ISGs</i> , mucus production and lung inflammation post-respiratory virus infection <i>in vivo</i> . In cellular models, <i>GSDMB</i> recognises and binds viral RNA, thereby activating viral RNA-induced MAVS-TBK1 signalling. https://bit.ly/48CVGxC
	Cite this article as: Liu T, Liu S, Rui X, <i>et al.</i> Gasdermin B, an asthma-susceptibility gene, promotes MAVS-TBK1 signalling and airway inflammation. <i>Eur Respir J</i> 2024; 63: 2301232 [DOI: 10.1183/13993003.01232-2023].
	This extracted version can be shared freely online.
Copyright ©The authors 2024. This version is distributed under the terms of the Creative	Abstract <i>Rationale</i> Respiratory virus-induced inflammation is the leading cause of asthma exacerbation, frequently accompanied by induction of interferon-stimulated genes (<i>ISGs</i>). How asthma-susceptibility genes modulate cellular response upon viral infection by fine-tuning <i>ISG</i> induction and subsequent airway
Commons Attribution Non- Commercial Licence 4.0. For commercial reproduction rights and permissions contact permissions@ersnet.org	 inflammation in genetically susceptible asthma patients remains largely unknown. <i>Objectives</i> To decipher the functions of gasdermin B (encoded by <i>GSDMB</i>) in respiratory virus-induced lung inflammation. <i>Methods</i> In two independent cohorts, we analysed expression correlation between <i>GSDMB</i> and <i>ISGs</i>. In human bronchial epithelial cell line or primary bronchial epithelial cells, we generated <i>GSDMB</i>-
This article has an editorial commentary: https://doi.org/10.1183/ 13993003.02223-2023	overexpressing and <i>GSDMB</i> -deficient cells. A series of quantitative PCR, ELISA and co- immunoprecipitation assays were performed to determine the function and mechanism of <i>GSDMB</i> for <i>ISG</i> induction. We also generated a novel transgenic mouse line with inducible expression of human unique <i>GSDMB</i> gene in airway epithelial cells and infected the mice with respiratory syncytial virus to determine
Received: 3 March 2023 Accepted: 31 Dec 2023	the role of <i>GSDMB</i> in respiratory syncytial virus-induced lung inflammation <i>in vivo</i> . <i>Results GSDMB</i> is one of the most significant asthma-susceptibility genes at 17q21 and acts as a novel RNA sensor, promoting mitochondrial antiviral-signalling protein (MAVS)-TANK binding kinase 1 (TBK1) signalling and subsequent inflammation. In airway epithelium, <i>GSDMB</i> is induced by respiratory viral infections. Expression of <i>GSDMB</i> and <i>ISGs</i> significantly correlated in respiratory epithelium from two independent asthma cohorts. Notably, inducible expression of human <i>GSDMB</i> in mouse airway epithelium led to enhanced <i>ISGs</i> induction and increased airway inflammation with mucus hypersecretion upon respiratory syncytial virus infection. <i>Conclusions GSDMB</i> promotes <i>ISGs</i> expression and airway inflammation upon respiratory virus infection, thereby conferring arthma risk allele carriers

