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A Software Packages and Implementation

Models were implemented using Python (v3.6.9). Scikit Learn (v0.24.1) was used for standardization,
median imputation, and calculating performance metrics. Imbalanced Learn (v0.7.0) was used
to implement SMOTE. Performance metrics were calculated using Scikit Learn and manually
programmed. XGBoost baseline models were implemented using the XGBoost library (v1.3.3).
Neural network baseline models were implemented using Keras (v2.6.0). Reinforcement learning
was set up using Tensorflow (v2.6.2). All models were run using an Intel Xeon E-2146G Processor
(CPU: 6 cores, 4.50 GHz max frequency).

B Reinforcement Learning for Classification

Reinforcement learning (RL) has been linked to many real-world AI applications, with some of its
most well-known successes stemming from game play and control challenges (e.g. AlphaGo [Silver
et al., 2017], StarCraft [Vinyals et al., 2019], Atari games [Mnih et al., 2013], etc.). However, the
core elements of RL have been shown to be successful on a wider range of tasks, including those that,
on the surface, do not appear to have a particular “agent” interacting with an “environment” (which
is typically regarded as the standard RL set-up [Sutton & Barto, 2018; Li, 2017]). Such problems
include classification tasks, which have commonly been addressed using standard supervised learning
algorithms, where an input through a model to predict a class label. RL, instead, uses an agent to
interact with the input to determine which class it belongs to, and then receives an immediate reward
from its environment based on that prediction. A positive reward is given to the agent when a label is
correctly predicted, and a negative one is given otherwise. This feedback helps the agent learn the
optimal "behavior" for classifying samples correctly, such that it accumulates the maximum rewards.
This learned behavior is an augmented representation of the task, making it possible to learn beyond
the immediate information encoded in the input (Wiering et al., 2011). To do this, an agent performs
actions that set memory cells, which then can be used by the agent, together with the original input,
to select actions and classify samples (Wiering et al., 2011; Lin et al., 2019).

C Model Architectures

C.1 Baseline Model Architectures

Neural Network: The rectified linear unit (ReLU) activation function was used for the hidden layers
and the sigmoid activation function was used in the output layer. For updating model weights, the
Adaptive Moment Estimation (Adam) optimizer was used during training.

XGBoost: XGBoost (Chen & Guestrin, 2016) is a popular ensemble model that has achieved state-of-
the-art results on many machine learning challenges. Ensemble methods combine the predictions of
multiple models, such that the generalization error is improves (i.e., contribution of individual error
from any individual model is lessened). XGBoost in particular, utilizes a boosting technique, where
trees are sequentially added and fit to correct for the prediction errors made by previous models.
Default settings were used in all experiments.

C.2 Dueling Training Architecture
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Figure 1: A typical single-stream Q-network is shown in a). A dueling architecture, with two streams
to independently estimate the state-values (scalar) and advantages (vector) for each each action is
shown in b) (this implements equation 9).

D COVID-19 Data and Preprocessing

D.1 Ethics statement

United Kingdom National Health Service (NHS) approval via the national oversight/regulatory body,
the Health Research Authority (HRA), has been granted for development and validation of artificial
intelligence models to detect Covid-19 using routinely collected hospital data (CURIAL; NHS HRA
IRAS ID: 281832).

D.2 Data Inclusion and Exclusion

All data used is part of the NHS data for research and subject to data opt out (i.e. patients can apply
to the NHS to stop their data from being used for research). Patients opting out of electronic health
record (EHR) research were excluded.

The following inclusions and exlusions are reproduced from previous studies (Soltan et al., 2022,
Yang et al., 2022a, Yang et al., 2022b).

Oxford University Hospitals NHS Foundation Trust (OUH): We included all patients attending
acute and emergency care settings at OUH who received routine blood tests on arrival, considering
presentations before December 1, 2019, and thus before the pandemic, as the COVID-19-negative
(control) cohort. We considered presentations during the ‘first wave’ of the UK COVID-19 pandemic
(December 1, 2019 to June 30, 2020) with PCR confirmed SARS-CoV-2 infection as the COVID-
19-positive (cases) cohort. We excluded patients who did not receive laboratory blood tests or were
younger than 18 years of age. Due to incomplete penetrance of testing during the first wave of
the pandemic, and imperfect sensitivity of the PCR test, there is uncertainty in the viral status of
patients presenting during the pandemic who were untested or tested negative. We therefore selected
a pre-pandemic control cohort during training to ensure absence of disease in patients labelled as
COVID-19-negative. Clinical features extracted for each presentation included first-performed blood
tests, blood gases, vital signs measurements and PCR testing for SARS-CoV-2 (Abbott Architect
[Abbott, Maidenhead, UK], TaqPath [Thermo Fisher Scientific, Massachusetts, USA] and Public
Health England-designed RNA-dependent RNA polymerase assays).

Portsmouth Hospitals NHS Foundation Trust (PUH): PUH considered all patients admitted to the
Queen Alexandria Hospital, serving a population of 675,000 and offering tertiary referral services to
the surrounding region, between March 1, 2020 and February 28, 2021. Confirmatory COVID-19
testing was by laboratory SARS-CoV2 RT-PCR assay, considering any positive PCR result within
48hrs of admission as a true positive.

University Hospitals Birmingham NHS Foundation Trust (UHB): UHB considered all patients
admitted to The Queen Elizabeth Hospital, Birmingham, between December 01, 2019 and October
29, 2020. The Queen Elizabeth Hospital is a large tertiary referral unit within the UHB group which
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provides healthcare services for a population of 2.2 million across the West Midlands. Confirmatory
COVID-19 testing was performed by laboratory SARS-CoV-2 RT-PCR assay.

Bedfordshire NHS Foundation Trust (BH): BH considered all patients admitted to Bedford Hospital
between January 1, 2021 and March 31, 2021. BH provides healthcare services for a population
of around 620,000 in Bedfordshire. Confirmatory COVID-19 testing was performed on the day of
admission by point-of-care PCR based nucleic acid testing [SAMBA-II & Panther Fusion System,
Diagnostics in the Real World, UK, and Hologic, USA].

Table 1: Summary population characteristics for OUH training cohorts, prospective validation cohort
of patients attending OUH, independent validation cohorts of patients admitted to three independent
NHS Trusts. *indicates merging for statistical disclosure control.

OUH (pre-pandemic & wave 1 cases, to 30/06/2020) OUH PUH UHB BH

Cohort Pre-pandemic cohort COVID-19-cases cohort 01/10/2020-06/03/2021 01/03/2020-28/02/2021 01/12/2019-29/10/2020 01/01/2021-31/03/2021
n, patients 114,957 701 22,857 37,896 10,293 1177
n, COVID positive 0 701 2,012 (8.80%) 2,005 (5.29%) 439 (4.27%) 144 (12.2%)
Sex:
- Male (%) 53370 (46.43) 376 (53.64) 11409 (49.91) 20839 (54.99) 4831 (46.93) 627 (53.27)
- Female (%) 61587 (53.57) 325 (46.36) 11448 (50.09) 17054 (45.0) 5462 (53.07) 549 (46.64)
Age, yr (IQR) 60 (38-76) 72 (55-82) 67 (49-80) 69 (48-82) 63 (42-79) 68.0 (48-82)
Ethnicity:
-White (%) 93921 (81.7) 480 (68.47) 17387 (76.07) 28704 (75.74) 6848 (66.53) 1024 (87.0)
-Not Stated (%) 13602 (11.83) 128 (18.26) 4127 (18.06) 8389 (22.14) 1061 (10.31) ≤10
-South Asian (%) 2754 (2.4) 22 (3.14) 441 (1.93) 170 (0.45) 1357 (13.18) 71 (6.03)
-Chinese (%) 284 (0.25) * 51 (0.22) 42 (0.11) 41 (0.4) ≤10
-Black (%) 1418 (1.23) 25 (3.57) 279 (1.22) 187 (0.49) 484 (4.7) 36 (3.06)
-Other (%) 1840 (1.6) 34 (4.85)* 410 (1.79) 269 (0.71) 333 (3.24) 29 (2.46)
-Mixed (%) 1138 (0.99) 12 (1.71) 162 (0.71) 135 (0.36) 169 (1.64) 13 (1.1)

Table 2: Clinical predictors considered.

Category Features
Vital Signs Heart rate, respiratory rate, systolic blood pressure,

diastolic blood pressure, temperature
Full Blood Count Haemoglobin, haematocrit, mean cell volume,

white cell count, neutrophil count, lymphocyte
count, monocyte count, eosinophil count, basophil
count, platelets

Liver Function Tests & C-reactive protein Albumin, alkaline phosphatase, alanine amino-
transferase, bilirubin, C-reactive protein

Urea & Electrolytes Sodium, potassium, creatinine, urea, estimated
glomerular filtration rate

D.3 Preprocessing

We used electronic health record (EHR) data with linked, deidentified demographic information
for all patients presenting to emergency departments. To better compare our results to previously
published studies using the same datasets (Soltan et al., 2022, Yang et al., 2022a, Yang et al., 2022b),
we used the same focused subset of routinely collected clinical features (including blood tests and
vital signs) and patient cohorts.

The OUH training set consisted of COVID-free cases prior to the outbreak, so we matched every
COVID-positive case to twenty COVID-free presentations based on age, representing a simulated
prevalence of 5%. Consistent with previous studies, we also used population median imputation to
replace any missing values. We then standardized all features in our data to have a mean of 0 and a
standard deviation of 1.

A training set was used for model development, hyperparameter selection, and training; a validation
set was used for threshold-adjustment; and after successful development and training, held-out test
sets were then used to evaluate the performance of the final model. Hyperparameters and thresholds
values used in the final models can be found in Supplementary Tables 7, 8, and 9 (Section F in the
Supplementary Material).
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Table 3: Previously published COVID-19 status prediction results. using same datasets and patient
cohorts. Sensitivity, specificity, and AUROC shown, alongside 95% confidence intervals, unless
otherwise specified.

Test Set Sensitivity Specificity AUROC

Soltan et al., 2022.
Method: XGBoost + SMOTE + Threshold Adjustment (0.9)

OUH 0.857 (SD 0.009) 0.686 (SD 0.022) 0.878 (SD 0.001)
PUH 0.841 (0.825-0.857) 0.713 (0.709 -0.718) 0.872 (0.863 -0.882)
UHB 0.788 (0.748-0.824) 0.747 (0.738 -0.755) 0.858 (0.838 -0.878)
BH 0.743 (0.666-0.807) 0.848 (0.825 0. 869) 0.881 (0.851- 0.912)

Yang et al., 2022.
Method: Neural Network + SMOTE + ENN + Threshold Adjustment (0.85)

OUH 0.844 (0.828-0.860) 0.710 (0.704-0.717) 0.777 (0.765-0.789)
PUH 0.857 (0.842-0.873) 0.672 (0.667-0.677) 0.765 (0.752-0.777)
UHB 0.847 (0.814-0.881) 0.716 (0.708-0.725) 0.782 (0.756-0.808)
BH 0.847 (0.789-0.906) 0.822 (0.799-0.845) 0.835 (0.793-0.876)

Yang et al., 2022.
Method: Neural Network + Threshold Adjustment (0.85)

OUH 0.762 (0.744-0.781) 0.844 (0.839-0.849) 0.878 (0.868-0.888)
PUH 0.633 (0.585-0.681) 0.903 (0.897-0.910) 0.861 (0.837-0.885)
UHB 0.714 (0.621-0.807) 0.854 (0.839-0.870) 0.878 (0.832-0.924)
BH 0.724 (0.561-0.887) 0.908 (0.869-0.948) 0.880 (0.798-0.963)

E Multiclass Patient Diagnosis Data and Preprocessing

E.1 Ethics statement

The eICU Collaborative Research Database (eICU-CRD) is a publicly-available, anonymized database
with pre-existing institutional review board (IRB) approval. The database is released under the Health
Insurance Portability and Accountability Act (HIPAA) safe harbor provision. The re-identification risk
was certified as meeting safe harbor standards by Privacert (Cambridge, MA) (HIPAA Certification
no. 1031219-2).

E.2 Data Inclusion and Exclusion

In terms of clinical applications of AI, patient diagnosis as been a popular problem to address
(Sheikhalishahi et al., 2021; Lipton et al., 2015; Razavian et al., 2016), as it can directly influence
clinical decision-making, resource allocation, and healthcare costs.

Here, the task was to predict which acute condition might be developed by a patient during the course
of an ICU stay, as defined through ICD-9 codes. A similar task that included both acute and chronic
conditions was previously investigated using the eICU-CRD dataset by grouping 767 ICD-9 codes
into 25 overarching diagnoses, and then predicting these using a BiLSTM model (Sheikhalishahi et
al., 2021). Using similar inclusion and exclusion criteria, we selected adult patients (age > 18) with
a minimum of 15 ICU records, and grouped these records into 1 hour windows. Our clinical team
reviewed the list of 25 diagnoses, removed 13 diagnoses considered chronic, non-acute, or poorly
defined, and grouped the remaining 12 diagnoses into their relevant system and clinical specialties.
This resulted in five labels: acute cardiovascular event, acute respiratory event, acute gastrointestional
event, acute systemic event, and acute renal event. This grouping was selected to reflect clinic reality,
where an emergency physician might consult with a system specialist to rule out a severe condition
before admission to ICU, and to account for the relatedness of diagnoses within a system. For
example, pneumonia is a leading cause of respiratory failure, and combining both diagnoses into a
single "acute respiratory event" category reflects the systemic nature of the disease. We removed any
samples that did not have a differentiable ICD9 code, or did not belong to any of the curated groups,
resulting in 24,102 samples for training and testing.
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Table 4: Summary population characteristics for eICU-CRD cohort.
Characteristic eICU-CRD Cohort
Sex:
Female (%) 10842 (45.0)

Male (%) 13260 (55.0)
Age (IQR) 65 (54-76)
Ethnicity:
Unknown (%) 1462 (6.1)

Asian (%) 479 (2.0)
African American (%) 2557 (10.6)
Caucasian (%) 18440 (76.5)
Hispanic (%) 1002 (4.2)
Native American (%) 162 (0.67)

Table 5: Acute event groups and respective prevalences.

Label Events Prevalence
Acute cardiovascular event Acute myocardial infarction, acute

cerebrovascular disease
0.288

Acute respiratory event Respiratory failure, insufficiency, ar-
rest, pneumonia, pleurisy, pneumotho-
rax, pulmonary collapse, other upper
respiratory disease, other lower respi-
ratory disease

0.336

Acute gastrointestinal event Gastrointestinal hemorrhage 0.087
Acute systemic event Septicemia, shock 0.174

Acute renal event Renal failure, fluid and electrolyte dis-
order

0.113

Table 6: Clinical predictors considered for predicting patient discharge status and patient diagnosis.

Category Features
Demographic features Gender, age, ethnicity, height, weight
Measurements at hospital admission Non-invasive systolic blood pressure, non-

invasive diastolic blood pressure, non-
invasive mean arterial pressure, heart rate,
Supporting oxygen used at admission,
blood oxygen saturation, Glasgow coma
score, diagnosis at admission

Measurements at ICU admission Glucose
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E.3 Preprocessing

Further preprocessing was performed to remove samples with any missing values, one-hot encode
categorical features, and standardize all continuous features to have a mean of 0 and a standard
deviation of 1.

We used a 75:25 training and test ratio, resulting in 18,076 training and 6,026 test samples, respec-
tively. As before, the training set was used for model development, hyperparameter selection, and
training; and after successful development and training, the held-out test set was used to evaluate the
performance of the final model. It should be noted that, as this is a multiclass task, standard threshold
adjustment cannot be used, and thus, we did not split the data to include an additional validation set.

F Hyperparameter Values and Decision Thresholds

F.1 COVID-19 Diagnosis

Table 7: Final Hyperparameter Values Used in Reinforcement Learning, Neural Network, and
XGBoost-Based Models in COVID-19 Prediction Task

Reinforcement Learning Neural Network XGBoost
Dropout = 0.3

Learning rate = 0.0004
Neurons = 100

Discount Factor = 0.1
Exploration Factor = [0.01, 1]

Dropout = 0.3
Learning rate = 0.1

Neurons = 10

Depth = 3
N estimators = 100
Learning rate = 0.1

We implemented early stopping, which monitored validation performance, optimizing training for
a sensitivity of >0.85 and specificity of >0.75. These thresholds were set to ensure that the model
would be able to detect positive COVID-19 cases.

Table 8: Adjusted Threshold Values Used in Reinforcement Learning, Neural Network, and XGBoost
Models, for COVID-19 status prediction.

Model Threshold

0.85 0.9

Reinforcement Learning (Q-imb) 0.5050 0.4970
Reinforcement Learning (DDQN) 0.5070 0.5010
XGBoost 0.0060 0.0020
XGBoost + SMOTE 0.0120 0.0060
XGBoost + Cost-Sensitive 0.0120 0.0060
NN 0.0341 0.0140
NN + Cost-Senstive 0.4148 0.2645
NN + SMOTE 0.0862 0.0641
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F.2 Multiclass Patient Diagnosis

Table 9: Final Hyperparameter Values Used in Reinforcement Learning, Neural Network, and
XGBoost-Based Models in ICU Diagnosis Prediction Task

Reinforcement Learning Neural Network XGBoost
Dropout = 0.3

Learning rate = 0.0001
Neurons = 3000

Discount Factor = 0.1
Exploration Factor = [0.01, 1]

Dropout = 0.3
Learning rate = 0.01

Neurons = 200

Depth = 3
N estimators = 100
Learning rate = 0.1

G Additional Results

G.1 DDQN and Dueling DDQN Comparison

The dueling DDQN consistently outperforms the DDQN, across all four test sets. This can also be
seen in the training curves, as the dueling DDQN appears to be able to learn a better policy.

Figure 2: AUROC scores during training, comparing DDQN and Dueling DDQN models. Curves are
shown for the COVID-19 prediction task.
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G.2 COVID-19 Diagnosis

Table 10: Performance metrics for COVID-19 prediction. Results reported as F-measure, G-mean,
sensitivity, specificity, and AUROC for OUH, PUH, UHB, and BH test sets; 95% confidence intervals
(CIs) also shown. Red and blue values denote best and second best scores, respectively for F-measure
and G-mean. No threshold adjustment was applied (i.e. default threshold of 0.5 used for prediction)

Model F G Sensitivity Specificity AUROC

OUH
Reinforcement Learning (Q-imb) 0.441 0.782 0.819 (0.802-0.835) 0.746 (0.740-0.752) 0.861 (0.850-0.871)
Reinforcement Learning (DDQN) 0.304 0.515 0.863 (0.848-0.878) 0.308 (0.301-0.314) 0.758 (0.745-0.771)
Neural Network 0.470 0.502 0.253 (0.234-0.272) 0.996 (0.996-0.997) 0.877 (0.867-0.886)
Neural Network + SMOTE 0.593 0.706 0.510 (0.489-0.532) 0.978 (0.976-0.980) 0.871 (0.861-0.881)
Neural Network + Cost-Sensitive 0.507 0.795 0.723 (0.703-0.742) 0.874 (0.869-0.878) 0.872 (0.862-0.882)
XGBoost 0.577 0.623 0.391 (0.369-0.412) 0.994 (0.992-0.995) 0.877 (0.867-0.887)
XGBoost + SMOTE 0.595 0.657 0.435 (0.414-0.457) 0.990 (0.989-0.992) 0.876 (0.866-0.886)
XGBoost + Cost-Sensitive 0.584 0.685 0.478 (0.456-0.499) 0.982 (0.980-0.983) 0.869 (0.859-0.879)

PUH
Reinforcement Learning (Q-imb) 0.316 0.741 0.814 (0.797-0.831) 0.674 (0.669-0.678) 0.831 (0.819-0.842)
Reinforcement Learning (DDQN) 0.245 0.594 0.810 (0.793-0.827) 0.435 (0.430-0.440) 0.762 (0.750-0.774)
Neural Network 0.47 0.601 0.367 (0.345-0.388) 0.987 (0.985-0.988) 0.857 (0.847-0.868)
Neural Network + SMOTE 0.452 0.735 0.574 (0.552-0.596) 0.942 (0.940-0.944) 0.856 (0.845-0.866)
Neural Network + Cost-Sensitive 0.356 0.775 0.767 (0.748-0.785) 0.784 (0.780-0.789) 0.850 (0.839-0.861)
XGBoost 0.504 0.639 0.414 (0.393-0.436) 0.985 (0.984-0.987) 0.881 (0.871-0.891)
XGBoost + SMOTE 0.521 0.702 0.506 (0.484-0.528) 0.976 (0.974-0.977) 0.881 (0.871-0.890)
XGBoost + Cost-Sensitive 0.521 0.734 0.557 (0.535-0.578) 0.967 (0.966-0.969) 0.881 (0.871-0.891)

UHB
Reinforcement Learning (Q-imb) 0.315 0.772 0.793 (0.755-0.831) 0.753 (0.744-0.761) 0.837 (0.814-0.861)
Reinforcement Learning (DDQN) 0.206 0.494 0.845 (0.811-0.879) 0.289 (0.280-0.298) 0.721 (0.694-0.749)
Neural Network 0.351 0.444 0.198 (0.161-0.235) 0.995 (0.993-0.996) 0.866 (0.844-0.888)
Neural Network + SMOTE 0.418 0.667 0.460 (0.414-0.507) 0.966 (0.963-0.970) 0.850 (0.828-0.873)
Neural Network + Cost-Sensitive 0.364 0.780 0.704 (0.661-0.747) 0.864 (0.858-0.871) 0.861 (0.839-0.883)
XGBoost 0.417 0.548 0.303 (0.260-0.346) 0.990 (0.988-0.992) 0.861 (0.839-0.883)
XGBoost + SMOTE 0.431 0.608 0.376 (0.331-0.421) 0.983 (0.980-0.985) 0.853 (0.830-0.876)
XGBoost + Cost-Sensitive 0.410 0.633 0.412 (0.366-0.458) 0.973 (0.970-0.976) 0.851 (0.829-0.874)

BH
Reinforcement Learning (Q-imb) 0.582 0.823 0.799 (0.733-0.864) 0.849 (0.827-0.871) 0.867 (0.829-0.906)
Reinforcement Learning (DDQN) 0.364 0.573 0.826 (0.765-0.888) 0.397 (0.367-0.427) 0.706 (0.656-0.756)
Neural Network 0.306 0.353 0.125 (0.071-0.179) 0.994 (0.990-0.999) 0.885 (0.849-0.921)
Neural Network + SMOTE 0.481 0.549 0.306 (0.230-0.381) 0.986 (0.979-0.993) 0.882 (0.845-0.919)
Neural Network + Cost-Sensitive 0.586 0.759 0.618 (0.539-0.697) 0.931 (0.916-0.947) 0.883 (0.847-0.920)
XGBoost 0.457 0.498 0.250 (0.179-0.321) 0.993 (0.988-0.998) 0.894 (0.859-0.929)
XGBoost + SMOTE 0.491 0.526 0.278 (0.205-0.351) 0.994 (0.990-0.999) 0.885 (0.849-0.921)
XGBoost + Cost-Sensitive 0.556 0.614 0.382 (0.303-0.461) 0.987 (0.981-0.994) 0.889 (0.854-0.925)
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Table 11: Performance metrics for COVID-19 prediction. Results reported as F-measure, G-mean,
sensitivity, specificity, and AUROC for OUH, PUH, UHB, and BH test sets; 95% confidence intervals
(CIs) also shown. Red and blue values denote best and second best scores, respectively for F-measure
and G-mean. Threshold adjustment applied to optimize models to sensitivities of 0.85.

Model F G Sensitivity Specificity AUROC

OUH
Reinforcement Learning (Q-imb) 0.462 0.792 0.791 (0.773-0.809) 0.793 (0.788-0.799) 0.861 (0.850-0.871)
Reinforcement Learning (DDQN) 0.323 0.628 0.788 (0.770-0.806) 0.500 (0.493-0.507) 0.758 (0.745-0.771)
Neural Network 0.442 0.782 0.814 (0.797-0.831) 0.751 (0.746-0.757) 0.874 (0.864-0.884)
Neural Network + SMOTE 0.412 0.756 0.837 (0.821-0.853) 0.683 (0.676-0.689) 0.869 (0.859-0.879)
Neural Network + Cost-Sensitive 0.470 0.792 0.768 (0.750-0.787) 0.816 (0.811-0.822) 0.872 (0.862-0.882)
XGBoost 0.456 0.791 0.810 (0.793-0.827) 0.773 (0.767-0.779) 0.877 (0.867-0.887)
XGBoost + SMOTE 0.457 0.790 0.794 (0.777-0.812) 0.786 (0.780-0.791) 0.876 (0.866-0.886)
XGBoost + Cost-Sensitive 0.434 0.776 0.819 (0.802-0.836) 0.736 (0.730-0.742) 0.869 (0.859-0.879)

PUH
Reinforcement Learning (Q-imb) 0.327 0.754 0.794 (0.776-0.812) 0.716 (0.711-0.720) 0.831 (0.819-0.842)
Reinforcement Learning (DDQN) 0.262 0.661 0.756 (0.737-0.774) 0.578 (0.573-0.584) 0.762 (0.750-0.774)
Neural Network 0.331 0.760 0.825 (0.808-0.842) 0.699 (0.695-0.704) 0.860 (0.849-0.870)
Neural Network + SMOTE 0.320 0.746 0.818 (0.802-0.835) 0.681 (0.676-0.685) 0.853 (0.842-0.863)
Neural Network + Cost-Sensitive 0.332 0.76 0.809 (0.792-0.826) 0.714 (0.709-0.718) 0.850 (0.839-0.861)
XGBoost 0.363 0.792 0.836 (0.820-0.852) 0.751 (0.746-0.755) 0.881 (0.871-0.891)
XGBoost + SMOTE 0.351 0.781 0.834 (0.818-0.851) 0.730 (0.726-0.735) 0.881 (0.871-0.890)
XGBoost + Cost-Sensitive 0.364 0.792 0.829 (0.813-0.846) 0.757 (0.752-0.761) 0.881 (0.871-0.891)

UHB
Reinforcement Learning (Q-imb) 0.327 0.778 0.765 (0.726-0.805) 0.790 (0.782-0.798) 0.837 (0.814-0.861)
Reinforcement Learning (DDQN) 0.214 0.598 0.761 (0.721-0.801) 0.471 (0.461-0.480) 0.721 (0.694-0.749)
Neural Network 0.325 0.785 0.820 (0.784-0.856) 0.752 (0.744-0.761) 0.867 (0.846-0.889)
Neural Network + SMOTE 0.302 0.763 0.825 (0.789-0.860) 0.705 (0.696-0.714) 0.848 (0.825-0.871)
Neural Network + Cost-Sensitive 0.336 0.782 0.756 (0.716-0.796) 0.808 (0.801-0.816) 0.861 (0.839-0.883)
XGBoost 0.321 0.774 0.770 (0.731-0.809) 0.779 (0.770-0.787) 0.861 (0.839-0.883)
XGBoost + SMOTE 0.312 0.763 0.754 (0.714-0.794) 0.773 (0.764-0.781) 0.853 (0.830-0.876)
XGBoost + Cost-Sensitive 0.308 0.764 0.774 (0.735-0.814) 0.753 (0.745-0.762) 0.851 (0.829-0.874)

BH
Reinforcement Learning (Q-imb) 0.617 0.837 0.799 (0.733-0.864) 0.878 (0.858-0.898) 0.867 (0.829-0.906)
Reinforcement Learning (DDQN) 0.349 0.625 0.660 (0.582-0.737) 0.592 (0.562-0.622) 0.706 (0.656-0.756)
Neural Network 0.589 0.820 0.778 (0.710-0.846) 0.865 (0.845-0.886) 0.885 (0.849-0.921)
Neural Network + SMOTE 0.553 0.801 0.764 (0.695-0.833) 0.840 (0.818-0.863) 0.879 (0.842-0.916)
Neural Network + Cost-Sensitive 0.614 0.815 0.736 (0.664-0.808) 0.902 (0.884-0.920) 0.883 (0.847-0.920)
XGBoost 0.575 0.822 0.806 (0.741-0.870) 0.838 (0.816-0.861) 0.894 (0.859-0.929)
XGBoost + SMOTE 0.556 0.797 0.743 (0.672-0.814) 0.855 (0.833-0.876) 0.885 (0.849-0.921)
XGBoost + Cost-Sensitive 0.551 0.811 0.812 (0.749-0.876) 0.810 (0.786-0.834) 0.889 (0.854-0.925)

G.3 Multiclass Patient Diagnosis

Table 12: Individual sensitivities per acute event class (alongside 95% CIs), calculated using a
“one-vs-all” method.

Label Cardiovascular Respiratory Gastrointestinal Systemic Renal

Reinforcement Learning (Q-imb) 0.853 (0.837-0.869) 0.677 (0.657-0.697) 0.897 (0.871-0.923) 0.767 (0.741-0.793) 0.545 (0.508-0.582)
Reinforcement Learning (DDQN) 0.725 (0.704-0.746) 0.593 (0.572-0.615) 0.905 (0.880-0.930) 0.689 (0.661-0.718) 0.440 (0.403-0.478)

Neural Network 0.900 (0.886-0.914) 0.754 (0.735-0.773) 0.895 (0.869-0.921) 0.606 (0.576-0.636) 0.419 (0.382-0.456)
Neural Network + SMOTE 0.901 (0.887-0.915) 0.783 (0.765-0.801) 0.893 (0.866-0.920) 0.592 (0.562-0.622) 0.400 (0.363-0.437)

Neural Network + Cost-Sensitive 0.926 (0.914-0.938) 0.524 (0.502-0.546) 0.905 (0.880-0.930) 0.742 (0.715-0.769) 0.465 (0.428-0.502)
XGBoost 0.864 (0.848-0.880) 0.849 (0.833-0.865) 0.897 (0.871-0.923) 0.633 (0.604-0.662) 0.423 (0.386-0.460)

XGBoost + SMOTE 0.863 (0.847-0.879) 0.853 (0.838-0.868) 0.903 (0.877-0.929) 0.626 (0.597-0.655) 0.422 (0.385-0.459)
XGBoost + Cost-Sensitive 0.861 (0.845-0.877) 0.664 (0.643-0.685) 0.907 (0.882-0.932) 0.774 (0.749-0.799) 0.515 (0.478-0.552)
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Table 13: Individual G values per acute event class, calculated using a “one-vs-all” method.

Label Cardiovascular Respiratory Gastrointestinal Systemic Renal

Reinforcement Learning (Q-imb) 0.906 0.780 0.938 0.830 0.714
Reinforcement Learning (DDQN) 0.799 0.522 0.931 0.651 0.681

Neural Network 0.889 0.803 0.941 0.754 0.643
Neural Network + SMOTE 0.891 0.812 0.940 0.748 0.630

Neural Network + Cost-Sensitive 0.873 0.703 0.944 0.817 0.669
XGBoost 0.912 0.823 0.942 0.770 0.647

XGBoost + SMOTE 0.912 0.824 0.945 0.767 0.646
XGBoost + Cost-Sensitive 0.911 0.769 0.947 0.830 0.694

G.4 Training Times

Figure 3: Average training times across 10 training runs, for XGBoost, Neural Network, and
Reinforcement Learning Models. Values displayed on logarithmic (base 10) scale.

Although the time taken to train a reinforcement learning-based model increases, there is the advantage
of increased flexibility of applying the approach to all types of learning, rather than limiting the
performance on tabular data (i.e. because the approach is demonstrated with neural networks, the
principles can be generalised to imbalanced image recognition problems, as well as NLP problems,
which a model such as XGBoost is not appropriate for).
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