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1 Supplementary results 

This section provides additional results omitted in the main manuscript. These include: i) climate impacts of 

digital content consumption under different carbon budgets (Supplementary Fig. 1); ii) breakdown of impacts 

embodied in end-user devices (Supplementary Fig. 2) and breakdown of total impacts by digital content 

(Supplementary Fig. 3); iii) environmental impacts considering global data centres powered by renewable 

electricity (Supplementary Fig. 4 and Supplementary Fig. 5); iv) environmental impacts considering changes 

in digital content consumption patterns (Supplementary Fig. 6 and Supplementary Fig. 7); v) uncertainty 

analysis results based on Monte Carlo simulation (Supplementary Fig. 8).
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1.1 Climate impacts under different carbon budgets 

The results presented in the main manuscript consider a stringent carbon budget (501 kg CO2 

per capita per year) consistent with a high likelihood (67%) of limiting global warming to 1.5 °C above the pre-

industrial level. We generated additional results for different temperature limit targets (i.e., 1.5 °C, 1.7 °C, and 

2.0 °C) and likelihoods of reaching these targets (i.e., 17%, 33%, 50%, 67%, and 83%) based on the 

Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6)1. The cumulative carbon 

budgets over the period 2020-2100 range from 300 Gt CO2 for an 83% chance of limiting global warming to 

1.5 °C to 2,300 Gt CO2 for a 17% chance of limiting global warming to 2 °C (AR6 Table SPM.2, p. 41 “Estimates 

of historical emissions and remaining carbon budgets”1). Supplementary Table 1 shows the estimated per 

capita carbon budgets following the equal share per capita approach as described in the Methods section of 

the main manuscript. Furthermore, Supplementary Fig. 1 depicts the corresponding share occupied by digital 

content consumption, which varies from 7% to 55%. 

Supplementary Table 1. Estimated per capita carbon budgets from the beginning of 2020 based on IPCC 
AR61. The values represent the remaining kg of CO2 per capita per year as of 2020 until global net zero CO2 
emissions are reached. 

Temperature limit 
Likelihood of limiting global warming to temperature limit 

17% 33% 50% 67% 83% 

1.5 °C 1,126 813 626 501 375 

1.7 °C 1,815 1,314 1,064 876 688 

2.0 °C 2,878 2,127 1,689 1,439 1,126 
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Supplementary Fig. 1. Share of per capita carbon budget required by digital content consumption 
considering carbon budgets consistent with different temperature limit targets (1.5 °C, 1.7 °C, and 2.0 °C) 
and likelihoods of achieving these targets (17%, 33%, 50%, 67%, and 83%). Impacts for a user archetype 
representing the global average consumption patterns across all Internet users and using the global average 
electricity mix. Rows in the heatmap correspond to different user locations ranked according to the required 
share (the global average is labelled in bold). 
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1.2 Additional breakdown of impacts 

 
Supplementary Fig. 2. Life cycle environmental impacts embodied in end-user devices breakdown by device 
type. Impacts for a user archetype representing the global average consumption patterns across all Internet 
users and using the global average electricity mix. Embodied refers to impacts from raw materials extraction, 
manufacturing, distribution, and end-of-life management. The desktop computer is the largest contributor 
(between 28% and 58% of embodied impacts, depending on the category), whereas the smartphone is the 
lowest one even though it is the most used device (53% of the time spent on digital content).
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Supplementary Fig. 3. Life cycle environmental impacts of digital content consumption breakdown by digital 
content. Impacts for a user archetype representing the global average consumption patterns across all 
Internet users and using the global average electricity mix. Video streaming generates on average between 
42% and 51% of the total impacts, while web surfing, social media, music streaming, and video conferencing 
contribute each with 10−18%. 
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1.3 Environmental impacts considering global data centres powered by renewable electricity 

 
Supplementary Fig. 4. Share of per capita carrying capacity required by digital content consumption over a 
year considering that global data centres are partially powered by (a) wind and (b) solar PV. The “100% 
renewable electricity” scenario corresponds to a hypothetical scenario in which global data centres are 
entirely powered by renewable electricity, while the “0% renewable electricity” scenario corresponds to the 
default assumption in which global data centres are entirely powered by the regional electricity mixes. Impacts 
for a user archetype representing the global average consumption patterns across all Internet users and using 
the global average electricity mix (for charging end-user devices). 
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Supplementary Fig. 5. Breakdown of data centres impacts considering that they are powered by (a) the 
regional electricity mixes, (b) wind, and (c) solar PV. Impacts for a user archetype representing the global 
average consumption patterns across all Internet users and using the global average electricity mix (for 
charging end-user devices). 
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1.4 Environmental impacts considering changes in digital content consumption patterns 

In the main manuscript we present the environmental impacts of digital content consumption considering a 

user archetype representing the global average consumption patterns across all Internet users. Here, we 

present the results for two alternative user archetypes that differ in their preferences. To provide a lower 

bound, Supplementary Fig. 6 shows the impacts for a user who only uses a smartphone –the end-user device 

with the lowest electricity intensity–, watches video streaming at low quality (480p resolution), listens music 

at low quality, and joins online meetings with audio only. Moreover, to provide an upper bound, 

Supplementary Fig. 7 shows the impacts for a user who watches video streaming at ultra-high definition (4K 

resolution), listens music at high quality, and joins online meetings with high quality video. 
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Supplementary Fig. 6. Carbon footprint and share of per capita carrying capacity occupied by digital content 
consumption for a hypothetical user who only uses a smartphone –the end-user device with the lowest 
electricity intensity–, watches video streaming and listens music at low quality, and joins online meetings 
with audio only. Other assumptions are the same as for the global average user. Rows in the heatmap 
correspond to the electricity mix of various countries ranked according to the carbon footprint (the global 
average electricity mix is labelled in bold). 
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Supplementary Fig. 7. Carbon footprint and share of per capita carrying capacity occupied by digital content 
consumption for a hypothetical user who watches video streaming at ultra-high definition (i.e., 4K 
resolution), listens music at high quality, and joins online meetings with high quality video. Other 
assumptions are the same as for the global average user. Rows in the heatmap correspond to the electricity 
mix of various countries ranked according to the carbon footprint (the global average electricity mix is labelled 
in bold)
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1.5 Uncertainty analysis 

The uncertainties linked to the LCA results due to uncertainties in the life cycle inventory (LCI) data was 

assessed by error propagation via the Monte Carlo sampling method based on 1,000 runs. For each run, LCI 

data values were randomly sampled according to their probability distribution and the life cycle environmental 

impacts of digital content consumption for the global average user were quantified. The impact value for each 

run and category was then compared against the corresponding per capita Earth’s carrying capacity. 

Probability distributions were determined based on the literature for Internet network components data 

(Supplementary Tables 5-8) and the ecoinvent database v3.83 for background inventory data (i.e., 

manufacturing processes, power generation, etc.). It should be noted that the ecoinvent database uses the 

Pedigree matrix to model the uncertainties affecting the inventory data based on five independent data 

features: "reliability", "completeness", "temporal correlation", "geographic correlation", and "further 

technological correlation". 

The results produced by the Monte Carlo simulation for the global average user are reported in Supplementary 

Fig. 8. The results show that the required share of the per capita carrying capacity for acidification, terrestrial 

eutrophication, photochemical ozone formation, ozone depletion, carcinogenic human toxicity, ionising 

radiation, and land and freshwater use remains negligible, even after considering the uncertainties in the LCI 

data (probabilities below 5% of shares above 2%). Regarding the most critical impact categories, the largest 

dispersion is observed for mineral and metals resources depletion, freshwater eutrophication, particulate 

matter formation, non-carcinogenic human toxicity, and climate change. The deterministic impact values 

presented in the main manuscript are close to the lower bound of the 95% uncertainty rage (defined as the 

2.5-97.5th percentiles calculated with pandas v1.5.3), mainly owing to the shape of the lognormal distributions 

used to model background data.  

Moreover, these results suggest that the required share of the carrying capacities may be even higher. Based 

on this analysis, we can conclude that the potential impact of uncertainties in LCI data on the outcome of our 

study might be very limited, i.e., that digital content consumption would still require a substantial share of the 

per capita Earth’s carrying capacity across several impact categories considering current infrastructure. 
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Supplementary Fig. 8. Monte Carlo simulation results showing the per capita carrying capacity required by 
digital content consumption over a year (n=1,000 runs). Impacts for a user archetype representing the global 
average consumption patterns across all Internet users. The bottom and top edges of the box indicate the 25th 
and 75th percentiles, respectively. The line within the box indicates the median value. The whiskers show the 
2.5th and 97.5th percentiles, corresponding to the 95% uncertainty range. The bars represent the deterministic 
impacts as presented in the main manuscript. Note that the deterministic values depart from the median 
values since parameters were generally modelled with skewed distributions.  According to ref.4, it is a known 
issue in LCA that the mean and median values obtained from Monte Carlo simulations are consistently higher 
than the deterministic impacts.
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2 Life cycle inventory data 

This section presents the life cycle inventory (LCI) data used to quantify the environmental impacts of digital 

content consumption. Supplementary Table 2 and Supplementary Table 3 show the consumption patterns of 

the user archetype concerning the annual digital content consumption, quality/resolution, and end-user 

devices used. Supplementary Table 4 reports the electricity intensities used to model electricity consumption 

during the operation of the Internet infrastructure. Supplementary Table 5 and Supplementary Table 6 shows 

the infrastructure-related inventory data. Finally, Supplementary Table 7 includes the data traffic demand of 

digital content. The LCI data is provided in a format that can be directly imported into Brightway2 at ref.5. 
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Supplementary Table 2. Annual digital content consumption patterns that define the user archetype. 

Digital content Daily consumption Annual consumption Assumptions and data source 

Web surfing 2h 00min 730h Assumed equal to the daily time spent 
reading online media by Internet users 
aged 16 to 64 in 20226. 

Social media 2h 27min 894h Average daily time spent with social 
media by Internet users aged 16 to 64 
in 20226. 

Video streaming 2h 17min 833h According to recent statistics, an 
average person spends 16 hours per 
week on video streaming*. 

Music streaming 1h 33min 566h Average daily time spent with music 
streaming by Internet users aged 16 to 
64 in 20226. 

Video conferencing 0h 34min 207h A recent survey revealed that about 
46% of the respondents spend less 
than 4 hour per week on video 
conferencing, while 37% spend 
between 4 and 12 hours per week†. We 
assume 4 hours per week as 
representative for an average person  

 

 

 
* Duoplus: Online Video Consumption Is Booming (2021) 
† Dialpad: The state of video conferencing 2022 

https://www.duoplus.nz/online-video-consumption-is-booming-statistics-infographic/
https://www.dialpad.com/blog/video-conferencing-report/#time-spent-in-meetings
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Supplementary Table 3. Digital content access by end-user device. The percentages represent the share of the annual consumption that the digital content 
is accessed with each device type. For example, social media is accessed through a smartphone 83% of the time, while tablet, laptop, and desktop computer 
each account for 5.67% of the time. 

Digital content Quality/resolution Smartphone Tablet Laptop 
Desktop 
computer 

TV 720p TV 1080p Assumptions and data source 

Web surfing − 50% 15% 25% 10% − − Based on a survey of the device 
preferences for Internet 
browsing or surfing among 
Internet users in the UK‡. 

Social media − 83% 5.66% 5.66% 5.66% − − Based on a survey carried out 
by Broadband Search about the 
use of mobile device and 
desktop or laptop computers 
for Internet access§. 

Video streaming 720p 15.5% 8% 7% 7% 12.5% − Based on a survey of global 
online video viewers carried out 
in 2019**. The resolution of 
video streaming was assumed 
equally distributed between 
720p and 1080p. 

1080p 15.5% 8% 7% 7% − 12.5% 

Music streaming Standard quality 59% 13.66% 13.66% 13.66% − − Based on a global study held in 
2019 about the Internet users’ 
preference for music listening†† 

Video conferencing Standard quality − − 50% 50% − − We assume that video 
conferencing is equally 
distributed between laptop and 
desktop computer due to the 
lack of data. 

 

 
‡ Statista: Which one of these devices do you use most for surfing or browsing the internet? 
§ Broadband Search: Mobile Vs. Desktop Internet Usage (Latest 2020 Data) 
** Statista: Devices used to watch online video worldwide as of August 2019 
†† Statista: Share of time spent listening to music on selected devices worldwide as of May 2019 

https://www.statista.com/statistics/308449/device-preference-for-internet-browsing-in-the-uk/
https://www.broadbandsearch.net/blog/mobile-desktop-internet-usage-statistics
https://www.statista.com/statistics/784351/online-video-devices/
https://www.statista.com/statistics/1102356/music-device-usage-worldwide/
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Supplementary Table 4. Electricity intensity of end-user devices, customer premise equipment (CPE), data transmission networks, and data centres. The 
electricity intensity of data centres and core network is considered proportional to the load and, consequently, is expressed as amount of electricity per unit 
of data. End-user devices, CPE, and access network are considered agnostic to data load and their electricity intensity is expressed as amount of electricity 
consumed per active hour. TD: triangular distribution represented by the mean, minimum, and maximum values in brackets. 

 Baseline (2050) Distribution Units Assumptions and data source 

Smartphone 0.0015 (0.0006) TD(0.0015, 0.0011, 0.0018) kWh active 
hour−1 

Electricity consumption of a smartphone in 2020 and 2050 was 
extrapolated from 2016 data (average of 3.34 kWh year−1, 
ranging from 2.519 to 4.161 kWh year−1)7 considering an annual 
energy usage improvement of 3%7. Yearly consumption was 
converted to consumption per active hour considering 5h 30min 
of active mode based on a survey prepared by Statista in 2021‡‡. 

Tablet 0.0054 (0.002) TD(0.0054, 0.0037, 0.0063) kWh active 
hour−1 

Electricity consumption of a tablet in 2020 and 2050 was 
extrapolated from 2013 data (average of 6.1 kWh year−1, ranging 
from 4.2 kWh year−1 for a small tablet to 7.2 kWh year−1 for a 
large tablet)8 and considering an annual energy usage 
improvement of 3%7. Yearly consumption was converted to 
consumption per active hour considering 2h and 30min of active 
mode per day8 

Laptop 0.0242 (0.0061) TD(0.0242, 0.0169, 0.0315) kWh active 
hour−1 

Electricity consumption of a laptop in 2020 and 2050 was 
extrapolated from 2012 data (average of 49 kWh year−1)9 and 
considering an annual energy usage improvement of 4%7. Yearly 
consumption was converted to consumption per active hour 
considering 4h of active mode per day7. ±30% around the 
average value was used to define the uncertainty range7 

Desktop 
computer 

0.1096 (0.0439) TD(0.1096, 0.0767, 0.1425) kWh active 
hour−1 

Electricity consumption of a desktop computer with LCD monitor 
in 2020 and 2050 was extrapolated from 2012 data (average of 
245 kWh year−1)9 and considering an annual energy usage 
improvement of 1%7. Yearly consumption was converted to 
consumption per active hour considering 4h 48min of active 
mode per day10. ±30% around the average value was used to 
define the uncertainty range7 

 
‡‡ Statista: How much time on average do you spend on your phone on a daily basis? (2021) 

https://www.statista.com/statistics/1224510/time-spent-per-day-on-smartphone-us/#:~:text=According%20to%20a%20survey%20conducted,average%20on%20their%20phone%20daily
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TV 720p 0.0255 (0.0061) TD(0.0255, 0.0150, 0.0650) kWh active 
hour−1 

Electricity consumption based on average market data for year 
2022§§. Electricity used in standby not included (negligible). 
Extrapolation to 2050 considering an annual energy usage 
improvement of 5%11 

TV 1080p 0.0333 (0.0079) TD(0.033, 0.0145, 0.0850) kWh active 
hour−1 

Electricity consumption based on average market data for year 
2022. Electricity used in standby not included (negligible). 
Extrapolation to 2050 considering an annual energy usage 
improvement of 5%11 

TV 4K 0.0800 (0.0190) TD(0.0800, 0.0475, 0.1136) kWh active 
hour−1 

Electricity consumption based on average market data for year 
2022. Electricity used in standby not included (negligible). 
Extrapolation to 2050 considering an annual energy usage 
improvement of 5%11 

CPE 0.0070 (0.0038) TD(0.0070, 0.0040, 0.0100) kWh active 
hour−1 

Modems and WiFi routers used to access the Internet at home 
consumes between 4 and 10 Wh12. An average value of 7 Wh 
was assumed as baseline. Extrapolation to 2050 considering an 
annual energy usage improvement of 2%11 

Access network 0.0028 (0.0015) TD(0.0028, 0.0022, 0.0034) kWh active 
hour−1 

The access network refers to the equipment connecting users to 
Internet Service Provider (ISP). This equipment consumes about 
2.8 Wh12. ±20% around the average value was used to define the 
uncertainty range. Extrapolation to 2050 considering an annual 
energy usage improvement of 2%11 

Core network 0.0177 (0.0097) TD(0.0177, 0.0128, 0.0204) kWh gigabyte−1 The Internet core network includes mainly routers and fiber 
optic equipment. The core network consumed 0.02 kWh GB−1 in 
2014 (25th and 75th percentiles from a Monte Carlo simulation 
were used to define the uncertainty range)13. In order to 
extrapolate these values to 2020 and 2050, we assumed an 
annual energy usage improvement of 2%11. This improvement 
can be considered as a conservative assumption as previous 
works used values as high as 12.5%13 or 20%14 

Data centres 0.0414 (0.0266) TD(0.0414, 0.0310, 0.0517) kWh gigabyte−1 Electricity consumption of global data centres in 2020 equal to 
196.2 TWh15. Electricity intensity was calculated by dividing 
global electricity consumption by the outbound data traffic. 
According to projections developed by Cisco, only 28% of all 

 
§§ Ecocostsavings: TV Wattage – 2022’S Most Efficient TVs Revealed [With Data] 

https://ecocostsavings.com/tv-wattage/#:~:text=Modern%20TVs%20use%2C%20on%20average,to%20run%20in%20the%20US.%20
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data centres data traffic in 2020 (17.1 ZB) goes to other data 
centres and users, while 72% is data traffic within the data 
centres16. This gives a reference value of 4.74 ZB outbound 
traffic in 2020. The lower and upper bounds equal ±25% around 
the average value, based on the 95% confidence interval 
obtained by Koot and Wijnhoven17. Extrapolation to 2050 
considering an annual energy usage improvement of 2%11 
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Supplementary Table 5. Unit of infrastructure allocated per active hour over end-user devices and customer premise equipment (CPE) operating lifetime. 
TD: triangular distribution represented by the mean, minimum, and maximum values in brackets. 

 Lifetime 
(years) 

Active mode 
(active hours day−1) 

Infrastructure requirement 
(unit active hour−1) 

Assumptions and data source 

Smartphone 3 TD(5h 30min, 3h 30min, 7h 00min) TD(1.66E-04, 1.22E−04, 2.61E−04) Operating lifetime from Clément et al.18 and 
active mode per day based on a survey 
prepared by Statista in 2021 for the U.S.*** 

Tablet 3 TD(2h 30min, 1h 30min, 3h 30min) TD(3.65E−04, 2.61E−04, 6.08E−04) Operating lifetime from Clément et al.18 and 
active mode per day from Urban et al.10 
(assuming ±1 hour around the average value to 
define the uncertainty range) 

Laptop 4 TD(4h 00min, 3h 24min, 4h 36min) TD(1.71E−04, 1.49E−04, 2.01E−04) Operating lifetime from Malmodin and 
Lundén19 and active mode per day from Urban 
et al.10 

Desktop 
computer 

5 TD(4h 48min, 4h 06min, 4h 30min) TD(1.14E-04, 9.96E-05, 1.34E-04) Operating lifetime from Malmodin and 
Lundén19 and active mode per day from Urban 
et al.10 

TV (720p, 
1080p, 4K) 

10 TD(2h 46min, 2h 00min, 3h 00min) TD(9.90E-05, 9.13E-05, 1.37E-04) Operating lifetime consistent with the 
Ecoinvent 3.8 database3 and active mode per 
day based on a survey prepared by Statista in 
2020††† (assuming 2 and 3 hours to define the 
uncertainty range) 

CPE 5 24h 00min 2.28E-05 Operating lifetime from Ruiz et al.20. The CPE is 
normally always on and ready to use since 
people in general do not turn off the 
modem/routers10. Therefore, we considered 
24 hours per day of active mode 

  

 
*** Statista: How much time on average do you spend on your phone on a daily basis? (2021) 
††† Statista: Daily time spent watching TV worldwide from 2011 to 2021 

https://www.statista.com/statistics/1224510/time-spent-per-day-on-smartphone-us/#:~:text=According%20to%20a%20survey%20conducted,average%20on%20their%20phone%20daily
https://www.statista.com/statistics/730428/tv-time-spent-worldwide/
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Supplementary Table 6. Unit of data centre infrastructure allocated per gigabyte (GB) of data transferred over the equipment lifetime. To calculate the 
unit of infrastructure required per GB, we divided the total infrastructure value by the global data centres outbound traffic in 2020 (4.74 zettabytes; see data 
centres in Supplementary Table 4). TD: triangular distribution represented by the mean, minimum, and maximum values in brackets. 

 Stock in global data 
centres (units) 

Lifetime 
(years) 

Infrastructure requirement 
(unit gigabyte−1) 

Assumptions and data source 

Servers 47,556,816 TD(5.5, 3, 10) TD(1.82E-06, 1.00E-06, 3.34E-06) Stock of servers in global data centres in 2020 based on 
Masanet et al.15 and operating lifetime from Fuchs et al.21.  

Storage 178,700,000 TD(5.5, 3, 10) TD(6.85E-06, 3.77E-06, 1.26E-05) Masanet et al.15 estimated that the storage capacity installed in 
global data centres in 2020 equals 1,787 EB. This capacity is 
distributed between solid state drives (31%) and hard disk 
drives (69%). However, since the Ecoinvent database only 
provides an inventory for hard disk drives, we consider that 
100% of the capacity is of this type. We estimated the stock in 
global data centres from the total capacity (1,787 EB) and an 
average specific capacity of 10 TB/hard disk drive15. 

Rack* 1,132,305 TD(5.5, 3, 10) TD(5.43E-06, 2.99E-06, 9.95E-06) To calculate the stock of racks in global data centres, we 
assume 1U servers and 42U, meaning that each rack can hold 
42 servers‡‡‡. The same lifetime as for servers was assumed. An 
average weight of 125 kg was assumed for a 42U rack§§§. 

* Infrastructure requirement expressed in kg of rack per GB of data transferred 
 

  

 
‡‡‡ RackSolutions: How many servers does a data center have? 
§§§ 42U: APC 42U Server Racks 

https://www.racksolutions.com/news/blog/how-many-servers-does-a-data-center-have/
https://www.42u.com/apc-42u-rack.htm
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Supplementary Table 7. Data traffic demand of digital content. TD: triangular distribution represented by the mean, minimum, and maximum values in 
brackets. 

Digital content Baseline Distribution Units Assumptions and data source 

Web surfing 0.105 TD(0.105, 0.060, 0.150) gigabyte hour−1 Data obtained from different sources**** 

Social media 0.309 TD(0.309, 0.090, 0.840) gigabyte hour−1 Data obtained from different sources††††, ‡‡‡‡, §§§§ 

Video streaming, 480p 0.652 TD(0.652, 0.450, 0.800) gigabyte hour−1 Data obtained from top video streaming platforms, 
including YouTube*****, Netflix†††††, Amazon Prime‡‡‡‡‡, 

Disney+§§§§§, Hulu******, and Vimeo†††††† 
Video streaming, 720p 1.267 TD(1.267, 1.000, 1.688) gigabyte hour−1 

Video streaming, 1080p 2.422 TD(2.422, 1.800, 3.150) gigabyte hour−1 

Video streaming, 4K 7.624 TD(7.624, 6.000, 9.900) gigabyte hour−1 
Music streaming, low quality 0.027 TD(0.027, 0.011, 0.043) gigabyte hour−1 Data obtained from top music streaming platforms, 

including YouTube Music‡‡‡‡‡‡ and Spotify§§§§§§ Music streaming, standard quality 0.058 TD(0.058, 0.043, 0.072) gigabyte hour−1 

Music streaming, high quality 0.113 TD(0.113, 0.072, 0.144) gigabyte hour−1 

Video conferencing, audio only 0.036 TD(0.036, 0.030, 0.045) gigabyte hour−1 Data obtained from top online meeting platform, 
including Zoom*******, Microsoft Teams†††††††, and 

Skype‡‡‡‡‡‡‡ 
Video conferencing, standard quality 0.600 TD(0.600, 0.360, 0.840) gigabyte hour−1 

Video conferencing, high quality 1.384 TD(1.384, 1.238, 1.530) gigabyte hour−1 

 

 

 
**** amaysim: Internet Data Usage Guide: What uses most data? 
†††† Wirefly: How Much Data Does The Facebook App Use? 
‡‡‡‡ whatsabyte: How Much Data Does Tik Tok Use Per Hour? 
§§§§ CanstarBlue: How much data does Twitter use? 
***** YouTube Help: Choose live encoder settings, bitrates, and resolutions 
††††† Netflix: How to control how much data Netflix uses 
‡‡‡‡‡ MUO: How Much Data Does Streaming Video Use? 
§§§§§ Disney+: Data usage and streaming quality on Disney+ 
****** Hulu: Video quality on Hulu 
†††††† vimeo Help Center: Determining playback resolution 
‡‡‡‡‡‡ Smart Home Starter: https://smarthomestarter.com/how-much-data-does-youtube-music-really-use/ 
§§§§§§ Spotify: Audio quality 
******* Zoom Support: Zoom system requirements: Windows, macOS, Linux 
††††††† Microsoft Teams: Bandwidth requirements 
‡‡‡‡‡‡‡ Skype: How much bandwidth does Skype need? 

https://www.amaysim.com.au/blog/stuff-made-simple/internet-data-usage-guide
https://www.wirefly.com/guides/how-much-data-does-facebook-app-use
https://whatsabyte.com/internet/data-tik-tok-use-per-hour/#:~:text=Under%20default%20settings%2C%20Tik%20Tok,to%20360MB%20in%20an%20hour.
https://www.canstarblue.com.au/phone/twitter-data-usage/
https://support.google.com/youtube/answer/2853702?hl=en#zippy=
https://help.netflix.com/en/node/87
https://www.makeuseof.com/tag/how-much-data-does-streaming-video-use/
https://help.disneyplus.com/csp?id=csp_article_content&sys_kb_id=70013447db3fb018db5ed404ca961906
https://help.hulu.com/s/article/video-quality
https://vimeo.zendesk.com/hc/en-us/articles/224820827-Determining-playback-resolution#h_01FZGYMJZM6QW6MC6PA03T9XMQ%20
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3 Earth’s carrying capacity 

This section documents the approach and assumptions to determine the global carrying capacity in each 

impact category. We define the Earth’s carrying capacity in each of the 16 impact categories included in the 

Environmental Footprint (EF) framework of the European Commission22. An overview of the impact categories, 

impact assessment methods and their quality level and global carrying capacity is presented in Supplementary 

Table 8. 

Supplementary Table 8. Overview of the assessed impact categories, impact assessment methods and their 
quality level, and carrying capacities. 

Impact category 
Assessment 

method 

Quality 

level 

Carrying 

capacity 
Unit 

Climate change IPCC 20211 I 400 Gt CO2 over 2020-2100 

Acidification EF 3.0 II 1·1012 mol H+-eq year−1 

Eutrophication, freshwater EF 3.0 II 5.81 Mt P-eq year−1 

Eutrophication, marine EF 3.0 II 23 Mt N-eq year−1 

Eutrophication, terrestrial EF 3.0 II 6.13·1012 mol N-eq year−1 

Photochemical ozone formation EF 3.0 II 407 Mt NMVOC-eq year−1 

Particulate matter formation EF 3.0 I 7.48·10−5 disease incidence per 

person per year 

Ozone depletion EF 3.0 I 0.36 Mt CFC-11-eq year−1 

Ecotoxicity, freshwater EF 3.123 II/III 1.30·1014 CTUe year−1 

Human toxicity, carcinogenic EF 3.123 II/III 1.39·10−4 CTUh per person per year 

Human toxicity, non-carcinogenic EF 3.123 II/III 5.93·10−4 CTUh per person per year 

Ionising radiation EF 3.0 II 7.62·104 kBq U235-eq per person per 

year 

Resource use, fossils EF 3.0 III 224 EJ year−1 

Resource use, mineral and metals EF 3.0 III 219 kt Sb-eq year−1 

Land use, soil erosion LANCA v2.524 III 12.7 Gt soil loss year−1 

Freshwater use Inventory 

entries for 

water 

withdrawal 

N.A. 4,000 km3 year−1 

Impact assessment methods are classified according to their quality level into: I: recommended and satisfactory, II: 

recommended but further improvements are needed, and III: recommended but should be applied with caution25. 

CTUe: Comparative Toxic Unit for ecosystems. CTUh: Comparative Toxic Unit for humans. DALY: Disability Adjusted 

Life Years. NMVOC: non-methane volatile organic compounds. 

Climate change 

The climate change impact category captures the warming potential of the climate system due to greenhouse 

gas (GHG) emissions linked to human activity (i.e., anthropogenic GHG emissions). To define a carrying 

capacity for climate change, we follow the Paris Agreement goal of limiting global warming to well below 2 °C, 

preferably to 1.5 °C, above the pre-industrial level. Following the precautionary principle adopted in the 

planetary boundary framework26,27, we choose the 1.5 °C limit as well as a stringent carbon budget that would 

allow reaching this target with a high likelihood. Hence, we define the carrying capacity base on the 

Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6) estimates of the remaining 
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carbon budget from the beginning of 2020 until global net zero CO2 emissions are reached with a high 

probability (67%) of limiting global warming to 1.5 °C by 21001. This carbon budget corresponds to the 

cumulative emission of 400 Gt CO2 over the period 2020-2100. Moreover, the influence of different carbon 

budgets corresponding to different temperature limit targets and likelihoods of reaching these targets is 

tested in Section 1.1. 

Acidification 

The acidification category quantifies the impacts on terrestrial ecosystems due to the emission of acidifying 

substances (e.g., NOx, NH3 and SO2). Björn and Hauschild28 proposed a threshold for terrestrial acidification 

based on the critical load concept, i.e., “the highest deposition of acidifying compounds that will not cause 

chemical changes leading to long-term harmful effects on ecosystem structure and function”. They estimated 

an average global critical load of 1,170 mol H+-eq per ha per year, from which natural depositions (90 mol H+-

eq per ha per year) have to be subtracted. Based on the final threshold (1,080 mol H+-eq per ha per year) and 

using the global terrestrial area (1.49·1010 ha), the authors derived a global carrying capacity of 1.59·1013 mol 

H+-eq year−1. This carrying capacity was further refined in Sala et al.29 in order to adapt it to the EF’s method 

for acidification, resulting in a new global carrying capacity of 1·1012 mol H+-eq year−1. Other works have 

estimated the acidification’s threshold and carrying capacity. For example, Björn et al.30 found a threshold 

ranging from 100 to 4,000 mol H+-eq per ha per year, with a median value of 500 mol H+-eq per ha per year. 

Based on the median value and considering the global ice-free land area (1.21·1010 ha), Gebara and Laurent31 

derived a global carrying capacity of 6.05·1012 mol H+-eq year−1. We consider the carrying capacity as calculated 

in Sala et al in order to be consistent with the EF method. 

Eutrophication, freshwater 

The freshwater eutrophication impact category quantifies the fraction of phosphorus (P) compounds released 

to water and soil that reaches freshwater ecosystems. Björn and Hauschild28 derived a carrying capacity based 

on a generic threshold of 0.3 mg Ptot L−1 as “concentrations above this value are considered a potential cause 

of encroachment of aquatic life due to nutrient enrichment”. The authors translated this concentration 

threshold to a carrying capacity by linking a marginal emission increase to a steady state concentration 

increase and subtracting the natural background level. The reported global carrying capacity is 5.81 Mt P-eq 

year−1. 

Eutrophication, marine 

The marine eutrophication impact category quantifies the fraction of nitrogen (N) compounds released to 

water (e.g., N and NO3
-) and air (e.g., NOx and NH3) that reaches marine ecosystems. Gebara and Laurent31 

estimated a global carrying capacity for marine eutrophication equal to 23 Mt N-eq year−1. They used a 

spatially-resolved dataset of O2 concentration for the reference state and the limit across the 66 large marine 

ecosystems32 to quantify the annual N emissions to sea that would allow staying below the concentration 

threshold. 

Eutrophication, terrestrial 

As for terrestrial acidification, Björn and Hauschild28 proposed a threshold for terrestrial eutrophication based 

on the critical load concept, which here is defined as “the highest deposition of nitrogen as NHx and/or NOy 

below which harmful effects in ecosystem structure and function do not occur according to present 

knowledge”. The global critical load was estimated at 1,340 mol N-eq per ha per year after subtracting natural 

depositions. Based on this threshold and using the global terrestrial area (1.49·1010 ha), the authors derived a 

global carrying capacity of 1.94·1012 mol N-eq year−1. This carrying capacity was further refined in Sala et al.29 

in order to adapt it to the EF’s method for terrestrial eutrophication, resulting in a new global carrying capacity 
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of 6.13·1012 mol N-eq year−1. In the current work, we consider the carrying capacity as calculated in Sala et al. 

in order to be consistent with the EF method. 

Photochemical ozone formation 

Ozone (O3) has been recognized as a potential risk for human health. The photochemical ozone formation 

impact category quantifies the increase in tropospheric ozone concentration due to the emission of precursors 

(e.g., NOx, CO, and volatile organic compounds (VOC)) that can react in the presence of UV light to form O3. 

Björn and Hauschild28 derived a global carrying capacity for photochemical ozone formation based on an ozone 

concentration threshold of 3 ppm per hour AOT40 for daylight hours during May-July (AOT40 is an “effect 

measure calculated as the accumulated ozone exposure during daylight hours above a concentration of 40 

ppb”). The authors translated the concentration threshold into annual emissions of non-methane VOC 

(NMVOC) by applying the average European fate factor for ozone (5.8·10−14 kg O3 per m3 per kg NMOVC per 

day) and the global land area. The calculated carrying capacity equals 26 Mt NMVOC-eq year−1. However, in a 

subsequent work, Vargas-Gonzalez et al.33 argued that the used fate factor for ozone is outdated. Thus, the 

authors performed the calculations using a new fate factor (2.4·10−15 kg O3 per m3 per kg NMOVC per day) and 

resulting in a substantially higher carrying capacity of 407 Mt NMVOC-eq year−1, which was also adopted in 

the work of Sala et al.29 and in the current work. 

Particulate matter formation 

Particulate matter (PM) represents a major risk for human health. The impact category quantifies the disease 

incidence due to PM formation as both direct PM emissions (including particles with diameter <2.5 μg, 

between 2.5 and 10 μg, and >10 μg) and secondary PM formed from NOx, NH3 and SOX emissions. The World 

Health Organization (WHO)34 recommends annual average PM concentration levels below 10 μg of PM2.5 m−3. 

Based on this concentration threshold and considering the average breathing rate (13 m3 per person per day) 

and human health burden of PM2.5 (78 Disability Adjusted Life Years (DALY) kg−1), Vargas-Gonzalez et al.33 

derived an acceptable environmental burden of 0.0016 DALY per person per year. The method recommended 

in the EF for the assessment of particulate matter formation quantifies disease incidence instead of DALY. 

Hence, we apply the corresponding conversion factor (21.4 DALY disease incidence−1)29 to arrive at a global 

threshold of 7.48·10−5 disease incidence per person per year. 

Ozone depletion 

The depletion of stratospheric ozone results in less absorption of solar radiation and an increased UV radiation 

at the Earth’s surface. The impact category quantifies the ozone depletion potential. The planetary boundary 

for ozone depletion has been proposed in Steffen et al.27 at 5% reduction of stratospheric ozone concentration 

compared to the pre-industrial level, with an uncertainty range from 5% to 10%. Björn and Hauschild28 

translated the average concentration threshold to a carrying capacity expressed in kg CFC-11-eq year−1 based 

on a model that calculates the sustained CFC-11-eq emissions that would result in a 7.5% decrease in ozone 

levels at steady state. In a subsequent work, Gebara and Laurent31 applied the same model to the entire 

uncertainty range, resulting in a carrying capacity ranging from 360 kt CFC-11-eq year−1 for a 5% reduction to 

720 kt CFC-11-eq year−1 for a 10% reduction. Here we adopt the carrying capacity for the lower bound of 5% 

following the planetary boundaries framework27. 

Ecotoxicity, freshwater 

Björn and Hauschild28 derived a carrying capacity for freshwater ecotoxicity based on the threshold 

HC5(NOEC), which is defined as “the concentration at which maximum 5% of species in an ecosystem are 

affected”. The authors calculated a global carrying capacity of 1.30·1014 Comparative Toxic Unit for ecosystems 



27 
 

(CTUe) year−1, which has been also adopted in Sala et al.29 and in the current work. Moreover, we use the 

updated method available in EF 3.123 to evaluate the freshwater ecotoxicity impact. 

Human toxicity (carcinogenic and non-carcinogenic) and ionising radiation 

A threshold for human toxicity and ionising radiation has been proposed in Vargas-Gonzalez et al.33 based on 

the acceptable environmental burden also applied to particulate matter formation (i.e., 0.0016 DALY per 

person per year). The authors propose the same acceptable burden across all the impact categories related to 

human health in order to have a consistent approach. The conversion factors to EF units are 11.5 DALY 

Comparative Toxic Unit for humans−1 (CTUh) for carcinogenic human toxicity, 2.7 DALY CTUh−1 for non-

carcinogenic human toxicity, and 2.10·10-8 DALY kBq U235-eq−1 for ionising radiation29. Just as for ecotoxicity, 

we use the updated method available in EF 3.123 to evaluate the human toxicity impacts. 

Resource use (fossils and mineral and metals) 

In contrast to the previous impact categories, defining a physical threshold for resource use is rather 

challenging as these indicators typically quantify the depletion of valuable materials33. Several attempts have 

been made to estimate resource budgets. For example, Sala et al.29 followed a more normative approach by 

applying the concept of Factor 235,36, according to which global resource use needs to be reduced by 50% to 

achieve environmental sustainability. Accordingly, they estimate that the global thresholds should be 224 EJ 

year−1 for fossil resource use and 219 kt Sb-eq year−1 for mineral and metal resources depletion. Vargas-

Gonzalez et al.33 proposed the optimal extraction rate, which is the ration between the available stock of a 

given resource and the number of years necessary to adapt to the lack of that resource. Based on this 

approach, they estimate that the resource depletion reduction factor should be 4.08. Gebara and Laurent31 

further applied the optimal extraction rate concept to estimate an aggregated global threshold for oil, coal, 

and natural gas of 5.7 Gtoe year−1 or 239 EJ year−1, very similar to the value proposed by Sala et al. Moreover, 

Desing et al.37 proposed a method to estimate resource budgets based on the hypothesis that resources are 

not limited by their availability but rather by the environmental impacts caused. In this way, the authors 

estimate that the budget for major metals that would keep the sector within its share of the Earth’s system 

boundaries is 40 times smaller than production volumes in 2016. 

In the current work, we use the resource budgets derived by Sala et al.29 based on the Factor 2 concept. This 

is done in order to be consistent with the EF methods for fossil and mineral and metal resources use. This 

assumption results in a lower bound for the carrying capacity share consumed by digital content consumption, 

since the other studies suggest more stringent budgets. 

Land use, soil erosion 

The land use impact category evaluated in this study captures the impact on soil erosion due to land 

occupation and transformation. This approach is preferred over a more simplistic land accounting method 

(i.e., quantifying the amount of land occupied and/or transformed over the life cycle of a product or service) 

since it considers changes in soil properties and functions38. Björn and Hauschild28 defined the threshold based 

on the tolerable soil erosion, defined as the “soil erosion rate at which a deterioration or loss of one or more 

soil functions does not occur”. This threshold is equal to 0.85 t per ha per year on average, with an interval 

ranging from 0.3 to 1.4 t per ha per year.  The authors multiplied the average soil erosion threshold with the 

global terrestrial area (1.49·1010 ha), resulting in a global carrying capacity of 12.7Gt soil loss year−1. To quantify 

the land use impacts, we use the characterization factors for soil erosion due to land occupation and 

transformation as provided in the LANCA v2.5 model24. 
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Freshwater use 

The freshwater use category quantifies water withdrawals, i.e., volume of freshwater taken from ground 

and/or surface water sources. The planetary boundary for freshwater use has been proposed in Rockström et 

al.26 at 4,000 km3 year−1 (uncertainty range of 4,000-6,000 km3 year−1), which refers to the maximum 

consumptive use of blue water. 
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4 Methodological assumptions, limitations, and future work 

Here we extend the discussion presented in the main manuscript around the major assumptions and 

limitations of our study and their implications, and provide an outline of potential future research directions. 

• Our analysis focuses on the environmental impacts of digital content consumption, including web surfing, 

social media, video and music streaming, and video conferencing. It is worth mentioning that the Internet 

plays a role in many other aspects of our daily life. For example, the Cisco's estimates show that there are 

around 30 billion connected devices41, most of which are Internet of Things (IoT) devices such as various 

kinds of sensors used for automation in smart homes. Online gaming is another example of activity not 

considered in our analysis. Addressing these other activities that rely on Internet connection possesses 

serious challenges, particularly in terms of data availability (e.g., one would need to know the daily activity 

of a range of gadgets used in smart homes). The five digital services assessed in our work encompass the 

primary reasons for Internet usage among users6. Furthermore, the inclusion of additional activities would 

not alter the insights derived from our study, as it would further increase the impacts. 

• The definition of user’s consumption patterns requires specific information about the annual number of 

hours spent on each digital content as well as the user’s preference regarding quality/resolution settings 

and the devices used to access digital content. It is worth noting that this type of information is scarce and 

not commonly found in official reports or peer-reviewed papers. Hence, we obtained this data from the 

grey literature and online platforms specialized in market and consumer data, such as Statista (as 

documented in Supporting Section 2). We addressed the issue of variability in user’s consumption pattern 

by exploring two alternative user archetypes that differ in their preferences (e.g., regarding the type of 

device used). These results show that users’ preferences can largely influence the environmental outcome 

(Supplementary Fig. 6 and Supplementary Fig. 7). Improving the availability of data on user consumption 

patterns would enable more comprehensive studies, including, e.g., LCAs that consider the geographical 

variation of digital content consumption patterns. 

• The system boundaries are defined as cradle-to-grave, thereby including all the relevant impacts 

throughout the manufacturing, distribution, operation, and end-of-life management of each system’s 

component. Nevertheless, we omit the infrastructure of the data transmission network (e.g., routers and 

undersea cables) due to the lack of data and the substantially higher environmental importance of the use 

stage19,42,43. Moreover, we omit the energy required for the creation and upload of online content (e.g., 

videos)44,45. These are, arguably, minor elements of the Internet infrastructure and that their impacts are 

deemed negligible compared with, e.g., the manufacture and operation of end-user devices and data 

centres. 

• The consumption-based perspective used in this work implies that the impacts generated throughout the 

life cycle of Internet provision are assigned to the user who consumes digital services. It is worth 

mentioning that some digital services may be shared among multiple users. For example, two people can 

watch video streaming together on a TV. Ideally, the impacts should be distributed among the two people. 

However, implementing such allocation procedures would require additional information about 

consumption patterns, such as the proportion of time an average user watches video streaming alone or 

with others. In light of this, we chose to allocate all impacts to the average user, which is equivalent to 

assuming that the user does not share digital services with others. 

• We follow common recommendations in the literature to model electricity usage during the operation of 

the Internet infrastructure46. Accordingly, we considered that the electricity intensity of data centres and 

the core network is proportional to data load, while the electricity intensity of end-user devices, CPE, and 
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access network is proportional to the active hours. We acknowledge that the way of measuring the energy 

consumption of network devices is subject to debate, and could be a source of uncertainty46,47. 

• We provide the environmental impacts of digital content consumption for a range of user locations (Figure 

2 in the main manuscript). To obtain these results, we adapted the electricity mix that powers electronic 

devices to the user location. Most of the other inventories remain unchanged across countries. For 

example, the same inventories were considered for data centres or electronic devices manufacturing, 

regardless of the user location. This assumption is based on the fact that these inventories represent 

products/services that are sourced from global markets. For example, data centres are spread all over the 

globe, while electronic devices manufacturing primarily takes place in China to be distributed worldwide. 

• We used 2020 as the reference year for LCI data whenever possible. If the electricity intensity of electronic 

devices was not available for 2020, we extrapolated the most recent values by applying an annual energy 

usage improvement rate based on the literature. For the manufacturing of electronic devices, we have 

retrieved the corresponding LCI data from the ecoinvent database v3.8. We acknowledge that some of the 

data in the ecoinvent database may not capture the latest developments due to the rapid pace of change 

in the manufacturing industry. For example, the LCI data for the production of a smartphone included in 

the latest version of ecoinvent is based on a 2014 LCA report. We assessed the robustness of our 

conclusions under uncertainties in the LCI data via the Monte Carlo sampling method (Error! Reference s

ource not found.), finding that despite the large uncertainty in some impact categories, the general 

outcome of our analysis likely remains largely valid. 

• We considered that the electricity required by data centres is supplied by an average electricity mix 

weighted according to the share of data centres in each region. We acknowledge that ICT companies are 

procuring an increasing amount of renewable electricity, leading to potential reductions in operational 

emissions and an increased contribution of embodied emissions to the overall environmental footprint. In 

2021, Apple, Google, and Meta acquired or generated renewable electricity equivalent to 100% of their 

operational electricity demand48. However, it is important to note that this does not mean that their data 

centres are supplied exclusively by renewable electricity, largely due to the variability of renewable 

energies48,49. Moreover, not all ICT companies are transparent in reporting disaggregated electricity 

consumption and sources50, making it very challenging to accurately determine the proportion of global 

data traffic attributed to data centres powered by renewable electricity. We conducted a sensitivity 

analysis to explore the impact of an increased renewable electricity procurement by data centres. We 

found that if global data centres were entirely powered by wind or solar PV, the most critical impacts 

would be reduced by ca. 30% for climate change, 24% for freshwater eutrophication, 15% for marine 

eutrophication, 21% for particulate matter formation, 11% for freshwater ecotoxicity, and <2% for mineral 

and metal resources depletion (Supplementary Fig. 4). 

• We computed the annual per capita carbon budget following the approach proposed by Dao et al.39. 

Hence, we divided the cumulative carbon budget over the period 2020-2100 by the cumulative global 

population over the same period. Other studies have distributed the cumulative carbon budget over a 

shorter timeframe, typically until 2050 under the assumption that net-zero emissions would be achieved 

by then51. A shorter timeframe would result in a higher annual per capita carbon budget, since the same 

cumulative carbon budget is distributed over a less years. However, we argue that a timeframe until 2100 

is a reasonable and commonly used approach which aligns with IPCC scenarios39,52,53. 

• We omit the time dimension when quantifying emissions and environmental impacts. Notably, previous 

studies have demonstrated that users primarily watch video streaming in the evenings/nights and on 

weekends44. This pattern could affect emissions and impacts, as the electricity generation mix during these 

times may differ from the annual average mix used in our analysis. Future research could focus on 
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analysing video streaming at an hourly resolution, in combination with hourly electricity generation data, 

to provide more accurate estimates. 

• The environmental consequences of further Internet expansion in the next decades will depend on other 

factors omitted in this study. Notably, per capita demand for digital content could further increase due to 

rebound effects, i.e., cheaper or more performant Internet access might result in higher data traffic54. Such 

effects were omitted due to lack of data, yet we acknowledge their potential role in a study of this type.  
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