Supplemental Figures

Key Roles for Phosphorylation and the Coiled-coil Domain in TRIM56-mediated Positive Regulation of TLR3-TRIF-dependent Innate Immunity

Benjamin M. Liu, Nan L. Li, Ruixue Wang, Xiaofan Li, Z. Alex Li, Tony N. Marion, and Kui Li

Fig. S1. Sequence alignment of murine and human TRIM56 proteins. The predicted RING, B-Box, Coiled-coil, and NHL-like domains are shaded yellow, green, blue, and grey, respectively. Residues that are missing in murine or human TRIM56 are shown in red letters.

Fig. S2. Transient expression of plasmid vectors encoding TRIM56 and its mutants. (A)

Schematic representation of wild-type (WT) TRIM56 and its various deletion mutants. R, B and CC denote RING, B-box, and Coiled-coil domains, respectively. The C-terminal putative NHL-like repeats are depicted as filled blue boxes. **(B)** Immunoblot analysis of the expression of plasmid vectors encoding C-terminally V5-tagged, WT TRIM56 and the indicated mutants, respectively, in transiently transfected HEK293-TLR3 cells using mouse anti-V5 mAb. Actin served as a loading control.

Fig. S3. Impact of mutations of putative phosphorylation site Ser⁷¹⁰ in the C-terminal portion of TRIM56 on activation of the IFN-β promoter downstream of TLR3 signaling.

HeLa cells stably expressing a non-targeting, scrambled control shRNA (HeLa-shCtrl) were transfected with an empty vector ("vector") or a plasmid vector encoding WT or the indicated mutant human TRIM56, along with internal control plasmid pRL-TK and reporter plasmid pIFN- β -Luc, followed by mock stimulation or stimulation by poly-I:C for 8 h. Dual luciferase reporter assay was then performed. Statistical analysis was performed between the indicated groups after poly-I:C stimulation. Single and double asterisks denote that statistical differences exist with a *P* value of < 0.05 and < 0.01, respectively. N.S., not statistically significant. pIC, poly-I:C.

Fig. S4. Hydrophobicity scales assigned for different regions of human TRIM56 protein by ProtScale using the method described by Kyte & Doolittle (56). X-axis denotes as position, while Y-axis values are scores that determine the relative hydrophobicity of as residues. Note that residues 371-484 are predicted to be a disordered region.

Identities = 610/756 (81%), Positives = 659/756 (87%), Gaps = 23/756 (3%)

mouse human	MNSKDSSPTLLEALSSDFLA <mark>CKICLEQLHTPKTLPCLHTYCQDCLAQLDIGGQVRCPEC</mark> R MVSHGSSPSLLEALSSDFLA <mark>CKICLEQLRAPKTLPCLHTYCQDCLAQLADGGRVRCPEC</mark> R * *:.***:******************************	60 60
mouse human	EIVPVPAEGVAAFKTNFFVNGLLDLVKARAPGDVHSGKPTCALCPLVGGKSSGGPATARC ETVPVPPEGVASFKTNFFVNGLLDLVKARACGDLRAGKPACALCPLVGGTSTGGPATARC * ****.****:***************************	120 120
mouse human	LDCADDLCQACADGHRCSRQTHKHRVVDLVGYRAGWYDEEARE <mark>RQASQCPQHPGEALCFL</mark> LDCADDLCQACADGHRCTRQTHTHRVVDLVGYRAGWYDEEARE <mark>RQAAQCPQHPGEALRFL</mark> ************************************	180 180
mouse human	CQPCSQLLCKDCRLGPHIDHPCLPLAEAVRSRKPGLEELLAG <mark>VDSNLVELEATRVAEKEA CQPCSQLLCRECRLDPHLDHPCLPL</mark> AEAVRARRPGLEGLLAG <mark>VDNNLVELEAARRVEKEA</mark> *********::***.**:********************	240 240
mouse human	LALLREQAASVGTQVEEAAERILKSLLAQKQEVLGQLRALVEAAEEATRERLTKIERQEQ LARLREQAARVGTQVEEAAEGVLRALLAQKQEVLGQLRAHVEAAEEAARERLAELEGREQ ** ****** ********** :*::*************	300 300
mouse human	VAKAAAAFARRVLSLGLEAEILSLEGAITQRLRQLQDAPWTSGPTRCVLPQLELHPGLED VARAAAAFARRVLSLGREAEILSLEGAIAQRLRQLQGCPWAPGPAPCLLPQLELHPGLLD **:*************** *******************	360 360
mouse human	KNCHLLRLIFEEPKQSPKDSGKGGAGTQGGDEAQGQGDDRTKIGKQGGAQPLTP KNCHLLRLSFEE-QQPQKDGGKDGAGTQGGEESQSRREDEPKTERQGGVQPQAGDGAQTP ******** *** :*. **.**.*******:*:*:: :** :***.**	414 419
mouse human	KEGKDQNPQEDDGVFIERGNRPNKKKKCKGRGKSVSREPSPILR KEEKAQTTREEGAQTLEEDRAQTPHEDGGPQPHRGGRPNKKKKFKGRLKSISREPSPALG ** .: *.*:**.* .**.****** *** *** ***	458 479
mouse human	PNLEGSGLLPRPVFSWSFPTRMPGDKRSPRITGLCPYGPQEILVADEQNRVLKRFSLNGD PNLDGSGLLPRPIFYCSFPTRMPGDKRSPRITGLCPFGPREILVADEQNRALKRFSLNGD ***:*******:* ************************	518 539
mouse human	YKGTVQVPEGCSPCSVAALQNAVAFSANAKLYLVSPDGEIQWRRSLSLTQSSHAVAAMPC YKGTVPVPEGCSPCSVAALQSAVAFSASARLYLINPNGEVQWRRALSLSQASHAVAALPS ***** *******************************	578 599
mouse human	GDRVAVSVAGHVEVYKKDGSLATRFIPGGKASRGQRALVFLTTSPQGNFVGSDWQQNSVV GDRVAVSVAGHVEVYNMEGSLATRFIPGGKASRGLRALVFLTTSPQGHFVGSDWQQNSVV ***************:::******************	638 659
mouse human	FCDGLGQVIWEYKGPGLHGCQPGSVSVDKKGYIFLTLREVNKVVILDPKGSLLGDFLTAY ICDGLGQVVGEYKGPGLHGCQPGSVSVDKKGYIFLTLREVNKVVILDPKGSLLGDFLTAY :******: *****************************	698 719
mouse human	HGLEKPRVTTMVDGKYLVVSLSNGTIHVFRVRFPDS 734 HGLEKPRVTTMVDGRYLVVSLSNGTIHIFRVRSPDS 755	

