Supporting Information for

The Natural Products Discovery Center: Release of the First 8490 Sequenced Strains for Exploring Actinobacterial Biosynthetic Diversity

Edward Kalkreuter,^{1†} Satria A. Kautsar,^{1,9†} Dong Yang,^{1,3†} Chantal D. Bader,^{1†} Christiana N. Teijaro,^{1,10†} Lucas L. Fluegel,^{1,4‡} Christina M. Davis,^{1,4‡} Johnathon R. Simpson,^{1,11‡} Lukas Lauterbach,^{1‡} Andrew D. Steele,¹ Chun Gui,¹ Song Meng,^{1,12} Gengnan Li,^{1,13} Konrad Viehrig,^{1,14} Fei Ye,^{1,15} Ping Su,^{1,16} Alexander F. Kiefer,¹ Angela Nichols,^{1,4} Alexis J. Cepeda,^{1,4} Wei Yan,^{1,17} Boyi Fan,^{1,18} Yanlong Jiang,^{1,19} Ajeeth Adhikari,^{1,4,20} Cheng-Jian Zheng,^{1,21} Layla Schuster,⁵ Tyler M. Cowan,¹ Michael J. Smanski,^{6,7} Marc G. Chevrette,^{5,8} Luiz P. S. de Carvalho,¹ and Ben Shen^{1,2,3,4*}

¹ Department of Chemistry, ² Department of Molecular Medicine, ³ Natural Products Discovery Center, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458

⁴ Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, FL 33458

⁵ Department of Microbiology and Cell Science, ⁸ Genetics Institute, University of Florida, Gainesville, FL 32603

⁶ Department of Biochemistry, Molecular Biology, and Biophysics, ⁷ Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108

⁹ Current address: DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

¹⁰ Current address: Department of Discovery Chemistry, Bristol-Meyers Squibb, Princeton, NJ 08543

¹¹ Current address: Prepaire Labs, Pompano Beach, FL 33060

¹² Current address: State Key Laboratory of Drug Research & Natural Products Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China, Beijing, China 100049

¹³ Current address: Centivax Inc., South San Francisco, CA 94080

¹⁴ Current address: Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal 4450-208

¹⁵ Current address: Department of Biological Chemistry & Molecular Pharmacology, Harvard University, Boston, MA 02115

¹⁶ Current address: State Key Laboratory for Quality Assurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China 100700

¹⁷ Current address: College of Plant Protection, Nanjing Agricultural University, Nanjing, China 210095

¹⁸ Current address: School of Pharmacy, Nantong University, Nantong, China 226001

¹⁹ Current address: Department of Chemistry, Rice University, Houston, TX 77005

²⁰ Current address: Evercrisp Biosciences, San Francisco, CA 94109

²¹ Current address: Faculty of Pharmacy, Naval Medical University, Shanghai, China 200433

* Author to whom correspondence may be addressed.

- [†] These authors contributed equally.
- [‡] These authors contributed equally.
- Email: shenb@scripps.edu

This PDF file includes:

Supplementary Tables 1 to 10 Supplementary Figures 1 to 39 SI References

Table of Contents

Supplementary Tables	5
Supplementary Table 1. Sample collection locations	5
Supplementary Table 2. Breakdown of non-Actinobacteria NPDC genomes	6
Supplementary Table 3. Comparison of morphology- and sequence-based taxonomies	of
sequenced NPDC bacteria	7
Supplementary Table 4. FastANI of strains from new genera	8
Supplementary Table 5. antiSMASH-assigned MIBiG Actinobacteria BGC hits	9
Supplementary Table 6. Comparison of observed bonnevillamide A chemical shifts	25
Supplementary Table 7. Annotation of esp BGC	27
Supplementary Table 8. Comparison of observed esperamicin A ₁ chemical shifts	29
Supplementary Table 9. Strains and plasmids used in this study	31
Supplementary Table 10. Genus abbreviations for Extended Data and SI figures	32
Supplementary Figures	.34
Supplementary Fig. 1. Comparison of the NPDC collection with other Actinobacteria structure	ain
collections	.34
Supplementary Fig. 2. Sample isolation years for sequenced NPDC strains with exist	ing
Supplementary Fig. 3. Sample collection locations for sequenced NPDC strains with exist	ina
metadata	.36
Supplementary Fig. 4. Sample collection general environmental categories for sequence NPDC strains with existing metadata	2ed .37
Supplementary Fig. 5. Number of contigs for the initial 8490 assembled NPDC genomes	.38
Supplementary Fig. 6. N50 values for the initial 8490 assembled NPDC genomes	.39
Supplementary Fig. 7. Genome sizes for the initial 8490 assembled NPDC genomes	.40
Supplementary Fig. 8. NPDC and RefSeq genomes and species by Actinobacteria genus	.41
Supplementary Fig. 9. NPDC Actinobacteria novelty at different taxonomic levels	.44
Supplementary Fig. 10. Mash distance distribution among Actinobacteria within the sail	me
species and across species	.45
Supplementary Fig. 11. Mash distance distribution within Actinobacteria	.46
Supplementary Fig. 12. SEM images of Spongisporangium articulatum NPDC049639	.47
Supplementary Fig. 13. SEM images of Streptodolium elevatio NPDC002781	.48
Supplementary Fig. 14. SEM images of Uniformispora flossi NPDC059280	.49
Supplementary Fig. 15. Analysis of biosynthetic potential of 957 NPDC Actinobacteria	by
ecology	.50
Supplementary Fig. 16. BGC and GCF biosynthetic classes in RefSeq and NPI	DC
Actinobacteria	.51
Supplementary Fig. 17. Distribution of non-RefSeq NPDC GCFs and GCFs observed in be	oth
NPDC and RefSeq genomes across NPDC genera.	.52
Supplementary Fig. 18. Percentages of non-RefSeq NPDC GCFs in RefSeq species, n	ew
Supplementary Fig. 10. The NDDC Dertal englished ND training research and especial	.00
Supplementary Fig. 19. The NPDC Portal enables NP training, research, and associat	E
applications Supplementary Fig. 20 NDDC Portal strain page	50
Supplementary Fig. 20. NFDC Folial sitalli page	60
Supplementary Fig. 22 NPDC Portal BLASTP page	61
Supplementary Fig. 23. Genome mining for potential DnaN-targeting natural products	.62

Supplementary Fig. 24. Chromatogram traces and spectra of bonnevillamide A	63
Supplementary Fig. 25. MS/MS spectra of bonnevillamide A	64
Supplementary Fig. 26. ¹ H spectrum of bonnevillamide A	65
Supplementary Fig. 27. ¹³ C spectrum of bonnevillamide A	66
Supplementary Fig. 28. HSQC spectrum of bonnevillamide A	67
Supplementary Fig. 29. SDS-PAGE analysis of purified DnaN	68
Supplementary Fig. 30. Clinker analysis of NPDC BGCs containing genes responsible	le for N-N
bond formation	69
Supplementary Fig. 31. NPDC enediyne BGC-associated SSN colored by predicted	enediyne
type	70
Supplementary Fig. 32. Comparison of the esperamicin and calicheamicin BGCs	71
Supplementary Fig. 33. Chromatogram traces and spectra of esperamicin A1	72
Supplementary Fig. 34. COSY-correlations and most relevant HMBC correlations	ations in
esperamicin A ₁	73
Supplementary Fig. 35. ¹ H spectrum of esperamicin A ₁	74
Supplementary Fig. 36. ¹³ C spectrum of esperamicin A ₁	75
Supplementary Fig. 37. COSY spectrum of esperamicin A1	76
Supplementary Fig. 38. HSQC spectrum of esperamicin A ₁	77
Supplementary Fig. 39. HMBC spectrum of esperamicin A1	78
Supplementary References	79

Country	Number of strains
Argentina	3
Australia	1
Belgium	1
Canada	57
Central African Republic	22
Chile	33
China	3110
Colombia	13
Comoros	42
Curaçao	1
Fiji	62
France	6
French Guiana	1
India	5
Indonesia	226
Italy	50
Malaysia	6
Paraguay	2
Peru	8
Portugal	7
Russia	44
Singapore	2
Solomon Islands	10
South Africa	4
Saint Lucia	20
Taiwan	13
Thailand	1
Trinidad and Tobago	1
Togo	85
United Arab Emirates	1
United Kingdom	1
United States of America	398
Uruguay	13

Supplementary Table 1. Sample collection locations for sequenced NPDC strains with existing metadata (50% of sequenced strains).

Phylum	Strains	Genera	Species (New)	Largest Genus	Strains	Species (New)
Firmicutes	904	42	132 (45)	Bacillus	427	11 (2)
Bacteroides	25	3	7 (2)	Pedobacter	19	1 (0)
Proteobacteria	419	61	216 (57)	Pseudomonas_E	152	80 (24)

Supplementary Table 2. Breakdown of 1348 non-Actinobacteria NPDC genomes from initial 8490 genomes.

Genus	Sequenced	Historical	Matched	Percent
Actinoplanes	32	56	16	28.6%
Actinosynnema	23	1	1	100.0%
Amycolatopsis	62	19	8	42.1%
Bacillus	609	4	1	25.0%
Catenuloplanes	2	3	2	66.7%
Dactylosporangium	12	15	5	33.3%
Glycomyces	5	2	2	100.0%
Kibdelosporangium	1	1	1	100.0%
Kitasatospora	213	3	1	33.3%
Kribbella	37	1	1	100.0%
Lentzea	15	1	1	100.0%
Microbispora	24	35	13	37.1%
Micromonospora	317	173	135	78.0%
Nocardia	194	113	21	18.6%
Nocardioides	14	3	1	33.3%
Nocardiopsis	41	1	1	100.0%
Nonomuraea	125	3	2	66.7%
Paenibacillus	52	1	1	100.0%
Promicromonospora	12	1	1	100.0%
Pseudonocardia	9	8	3	37.5%
Rhodococcus	56	3	2	66.7%
Saccharomonospora	5	4	2	50.0%
Saccharopolyspora	14	11	7	63.6%
Streptomyces	5386	842	774	91.9%
Streptosporangium	50	50	10	20.0%

Supplementary Table 3. Comparison of historical morphology-based and sequence-based taxonomies of sequenced NPDC bacteria.

NPDC	2781	48946	49639	59210	59280
2781	-	-	-	-	-
48946	98.23%	-	-	-	-
49639	< 80%	< 80%	-	-	-
59210	82.66%	82.64%	< 80%	-	-
59280	82.70%	82.60%	< 80%	99.97%	-

Supplementary Table 4. FastANI of strains from new genera.¹

MIBiG name	100% hits	80% hits	50% hits
(-)-δ-cadinene	36	36	39
(+)-T-muurolol	0	0	21
10,11-dihydro-8-deoxy-12,13-deepoxy-12,13-	0	2	59
dihydrochalcomycin	0	2	00
1-heptadecene	11	11	11
1-nonadecene	8	8	8
2-methylisoborneol	1263	1263	1597
3,7-dihydroxytropolone	0	0	85
4-hexadecanoyl-3-hydroxy-2-(hydroxymethyl)-2H-furan-	31	48	445
5-one	0	0	40
4-nydroxy-3-nitrosobenzamide	0	0	19
4-2-annimycin	0	0	179
5-acetyl-5,10-dinydrophenazine-1-carboxylic acid	25	34	166
5-isoprenyiindole-3-carboxylate β-D-giycosyl ester	0	0	486
67-121C	0	0	103
6-methylsalicyclic acid	1	1	1
7-prenylisatin	41	52	111
9-methylstreptimidone	0	0	73
A33853	3	19	266
A40926	0	0	410
A-47934	1	5	31
A-74528	0	1	11
A-90289 A	0	1	2
A-94964	0	1	74
aborycin	80	86	105
AbT1	2	2	2
abyssomicin C	0	0	41
abyssomicin M	0	2	18
acarviostatin 103	0	0	151
achromosin	21	21	23
aclacinomycin	0	1	74
actagardine	0	0	44
actinoallolide A	0	0	135
actinokineosin	0	1	42
actinomycin D	0	17	29
actinonin	1	1	2
actinorhodin	23	31	86
actinospectacin	1	4	38
aculeximycin	0	0	51
aerobactin	1	1	2
A-factor	67	67	67

Supplementary Table 5. Number of antiSMASH-assigned MIBiG Actinobacteria BGC hits by threshold.

MIBiG name	100% hits	80% hits	50% hits
ajudazol A	0	0	18
alanylclavam	1	3	336
albachelin	11	37	144
albaflavenone	2190	2190	2190
albonoursin	0	3	449
albusnodin	121	121	156
aldgamycin J	0	0	120
alkyl-O-dihydrogeranyl-methoxyhydroquinones	11	43	384
alkylresorcinol	2083	2083	2173
allocyclinone	0	0	194
alnumycin A	7	17	121
altemicidin	0	0	147
althiomycin	11	35	101
AmfS	595	773	821
amicetin	0	0	2
amipurimycin	0	22	171
amonabactin P 750	0	0	3
amychelin	0	36	717
amycolamycin A	0	1	3
amycomicin	13	35	93
anabaenopeptin NZ857	48	48	48
anantin B1	0	0	80
anantin C	31	31	199
angolamycin	5	11	8
anisomycin	11	14	33
ansamitocin P-3	0	2	45
anthrabenzoxocinone	6	6	9
anthracimycin	0	0	54
anthramycin	0	11	42
antibiotic HKI 10311129	0	7	132
antimycin	380	499	595
apoptolidin	0	0	381
apramycin	0	0	18
aranciamycin	0	1	102
arenimycin A	0	1	34
arimetamycin B	0	1	42
arixanthomycin A	0	0	168
arsono-polyketide	5	42	306
arylomycin	10	24	198
ashimides	20	20	475
atratumycin	0	0	950

MIBiG name	100% hits	80% hits	50% hits
aurantimycin A	1	1	67
aureothin	7	13	17
auricin	12	33	165
auroramycin	0	0	210
avermectin	0	2	4
avermitilol	265	265	265
avilamycin A	0	2	2
avoparcin	0	0	25
azalomycin F3a	4	6	94
azinomycin B	0	1	33
azomycin	0	10	26
bacillibactin	8	9	33
bacillomycin D	1	1	275
bacilysin	0	0	21
bafilomycin B1	57	111	228
bagremycin A	0	0	193
balhimycin	0	1	327
BD-12	0	2	79
BE-14106	9	16	114
BE-24566B	3	3	5
BE-43547A1	0	6	104
BE-54017	0	2	12
belactosin A	0	0	338
benastatin A	5	7	15
berninamycin A	4	11	155
bezastatin derivates	60	69	75
bicornutin A1	10	10	10
bicyclomycin	31	33	33
bisucaberin B	0	0	47
blasticidin S	0	0	190
bleomycin	0	3	28
borrelidin	0	0	2
bottromycin A2	1	2	74
bottromycin D	0	0	9
branched-chain fatty acids	24	24	49
butyrolactol A	0	27	1
C-1027	0	0	34
caboxamycin	28	70	105
cacibiocin B	0	0	19
cadaside A	0	0	114
caerulomycin A	0	0	57

MIBiG name	100% hits	80% hits	50% hits
calicheamicin	0	0	21
candicidin	50	160	407
caniferolide A	0	0	1616
capreomycin IA	0	0	305
carbapenem MM4550	0	0	31
carotenoid	64	66	1332
catenulipeptin	0	0	165
catenulisporolides	0	0	331
cathomycin	36	41	59
cattlecin	0	0	8
CDA1b	0	33	136
celesticetin	1	1	1
cephamycin C	0	0	82
chartreusin	1	1	19
chaxapeptin	0	0	108
chloramphenicol	21	38	212
chlorizidine A	0	0	3
chlorothricin	0	0	84
chlortetracycline	0	14	767
chromomycin A3	8	9	45
chrysomycin	0	1	95
chuangxinmycin	0	0	34
cinerubin B	32	42	226
cinnamycin	0	0	484
citrulassin A	0	0	59
citrulassin B	33	42	66
citrulassin D	363	408	440
citrulassin E	4	4	10
citrulassin F	12	12	33
clavulanic acid	0	0	20
clifednamide A	0	1	1
coelibactin	278	314	418
coelichelin	892	1594	1855
coelimycin P1	0	0	271
colabomycin E	0	1	13
collinomycin	0	31	143
collismycin A	0	33	6
combamide	2	2	47
concanamycin A	0	2	440
cosmomycin D	3	3	83
coumermycin A1	1	11	69

MIBiG name	100% hits	80% hits	50% hits
cremimycin	0	0	61
curacomycin	1	1	115
curacozole	0	2	7
curamycin	21	23	39
cyclizidine	0	2	185
cycloheximide	0	4	143
cyclomarin D	0	0	284
cyclooctatin	11	11	16
cyclothiazomycin	0	0	174
cyclothiazomycin b1	2	2	8
cyclothiazomycin C	12	12	12
cylindrospermopsin	0	0	37
cypemycin	27	36	138
cyphomycin	0	0	209
cyslabdan	1	57	80
cystargolide A	0	3	75
cysteoamide	2	2	215
cytorhodin	0	28	191
dactylocycline A	1	1	535
decaplanin	1	2	38
dehydrophos	0	10	147
deimino-antipain	0	3	344
desferrioxamin B	1730	4106	4339
desferrioxamine	1	173	10
desferrioxamine E	452	452	522
desosamine	0	1	13
desotamide	11	13	38
diazaquinomycin A	2	2	4
diazaquinomycin H	0	16	82
diazepinomicin	0	0	481
difficidin	0	0	309
diisonitrile antibiotic SF2768	0	0	25
divergolide A	1	9	60
dynemicin A	0	0	19
E-837	12	18	54
ebelactone	0	0	25
ebelactone A	0	0	12
echinomycin	0	19	362
echoside A	24	69	406
ECO-02301	0	1	40
ectoine	5106	5106	5586

MIBiG name	100% hits	80% hits	50% hits
elaiophylin	0	12	49
elloramycin	1	1	22
endophenazine A	0	0	78
enduracidin	0	0	105
enterocin	9	30	114
epilancin 15x	0	0	2
eponemycin	0	0	99
epoxomicin	0	0	26
erdacin	0	0	3490
erdasporine A	0	0	8
Ery-9	33	33	77
erythrochelin	0	19	615
erythromycin A	0	0	14
esmeraldin	1	4	111
esperamicin	0	0	41
ethylenediaminesuccinic acid hydroxyarginine (EDHA)	29	37	67
FD-594	0	5	281
FD-891	0	1	35
feglymycin	1	20	321
fengycin	0	5	1073
filipin	17	27	56
flaviolin	1	1	235
fluostatin	1	1	49
fluostatins M-Q	0	3	68
fluvirucin B2	0	1	64
fogacin A	1	8	11
formicamycins A-M	0	3	369
fosfazinomycin A	3	46	168
fosfomycin	0	5	36
fostriecin	0	0	56
foxicins A-D	0	0	1
FR-900098	0	1	11
FR900359	0	0	3
FR-900520	0	0	76
frankiamicin	0	0	508
fredericamycin A	0	26	2
frenolicin B	0	7	91
frigocyclinone	0	0	88
friulimicin A	0	0	353
frontalamide B	0	25	66
funisamine	0	0	1

MIBiG name	100% hits	80% hits	50% hits
fuscachelin A	3	10	58
fusilassin	0	0	13
GE2270	0	0	72
GE37468	2	5	13
geldanamycin	1	1	78
geosmin	4323	4323	4354
germicidin	589	589	589
gilvocarcin V	0	20	68
gilvusmycin	0	4	32
glycinocin A	0	0	165
glycopeptidolipid	0	3	1
gobichelin A	0	0	31
granaticin	0	4	256
grincamycin	0	6	6
griseochelin	1	48	27
griseorhodin A	29	37	74
griseoviridin	0	0	121
grixazone	0	0	67
guadinomine	0	0	29
guangnanmycin	9	29	200
halstoctacosanolide A	1	1	371
hatomarubigin A	0	1	101
heat-stable antifungal factor	0	0	10
hedamycin	0	39	306
herbimycin A	0	0	23
herboxidiene	0	0	15
heronamide A	0	0	369
heterobactin A	9	20	43
himastatin	0	0	94
hiroshidine	2	5	100
hitachimycin	0	1	84
holomycin	0	13	167
hopene	249	1889	6353
hormaomycin	0	0	395
huanglongmycin A	0	0	44
hydroxystreptomycin	0	2	36
hygrocin A	0	3	185
hygromycin A	0	5	44
α,β-epoxyketone	3	4	30
a-lipomycin	1	1	305
β-D-galactosylvalidoxylamine-A	0	0	2

MIBiG name	100% hits	80% hits	50% hits
ibomycin	0	0	66
icosalide A	104	104	104
ikarugamycin	0	8	164
ilamycins	0	6	120
indigoidine	15	135	330
informatipeptin	398	480	2089
isatropolone A	4	8	45
ishigamide	37	76	349
isocomplestatin	24	86	131
isofuranonaphthoquinone	6	7	21
isoindolinomycin	1	2	47
iso-migrastatin	21	22	25
isorenieratene	1648	2142	3676
jadomycin	3	25	45
jawsamycin	0	1	109
JBIR-06	0	0	174
JBIR-100	0	4	2
JBIR-126	72	148	300
JBIR-34	0	6	332
JBIR-76	0	2	339
JBIR-78	0	3	166
jinggangmycin	5	5	5
julichrome Q3-3	1	1	11
kanamycin	0	1	11
kasugamycin	0	0	3
kedarcidin	0	0	29
kendomycin	0	1	262
keratinimicin A	0	1	45
ketomemicin B3	6	34	60
keywimysin	436	446	449
kiamycin	0	1	68
kijanimicin	1	1	35
kinamycin	0	5	104
kirromycin	0	0	747
kistamicin A	0	0	425
kitasetaline	0	0	8
komodoquinone B	15	19	136
kosinostatin	0	0	28
labyrinthopeptin A2	2	2	119
lactazole	1	1	232
lactimidomycin	0	0	10

MIBiG name	100% hits	80% hits	50% hits
laidlomycin	0	0	38
landomycin A	3	14	90
lankacidin C	5	5	7
lankamycin	2	3	11
lasalocid	0	0	121
lavendiol	0	1	159
lazarimide A	0	0	1
legonaridin	0	0	84
leinamycin	0	3	261
lichenysin	0	1	6
lidamycin	4	21	242
limazepine C	0	0	240
lincomycin	0	0	35
linfuranone B	0	0	421
lipopeptide 8D1-1	0	7	35
liposidomycin B	0	7	20
lipstatin	1	1	551
lividomycin	0	1	90
livipeptin	87	87	156
LL-D49194α1 (LLD)	0	2	141
LL-F28249a	0	0	27
lobophorin A	0	0	636
lobophorin B	0	0	174
lobosamide A	0	1	150
Iomaiviticin A	0	0	730
lomofungin	0	3	1886
LP2006	15	15	23
lugdunomycin	0	6	7
luminmide	5	5	5
lydicamycin	4	14	173
lysolipin I	0	19	1355
macbecin	1	2	175
macrotermycins	0	5	687
macrotetrolide	0	1	48
maduropeptin	0	0	1234
maklamicin	0	0	266
malonomycin	2	9	45
mannopeptimycin	0	10	114
marformycin A	0	0	270
marineosin A	9	23	161
marinopyrrole A	0	0	82

MIBiG name	100% hits	80% hits	50% hits
matlystatin A	0	0	110
mayamycin	2	6	125
medermycin	0	1	549
mediomycin A	0	2	161
melanin	1392	1483	3687
mensacaricin	0	1	8
meoabyssomicin	0	0	94
meridamycin	0	1	161
merochlorin A	0	5	62
mersacidin	0	1	1
metatricycloene	0	0	88
methylenomycin A	8	8	155
methylpendolmycin	0	0	3
methymycin	0	0	27
michiganin A	0	1	2
microansamycin	0	0	101
microbisporicin A2	0	0	14
microtermolide A	0	0	577
miharamycin A	3	30	17
mirubactin	0	1	66
mithramycin	0	11	100
mitomycin	0	0	30
ML-449	0	0	209
moenomycin	2	2	5
monensin	0	2	459
monobactam	0	1	2
moomysin	0	0	906
MS-271	39	41	72
murayaquinone	0	1	589
muraymycin C1	0	0	75
mycinamicin II	0	0	85
mycobactin	0	3	43
mycotrienin I	0	0	346
myxochelin A	0	0	59
myxothiazol	0	0	6
nanchangmycin	1	5	288
naphthomycin A	0	0	188
naphthyridinomycin	23	48	190
napsamycin A	0	12	143
napyradiomycin	0	0	138
nargenicin	0	0	110

MIBiG name	100% hits	80% hits	50% hits
naseseazine C	1	1	8
natamycin	0	1	131
nataxazole	0	1	488
nenestatin	0	0	4
neoantimycin	0	1	86
neocarazostatin A	18	28	39
neocarzilin A	6	28	135
neocarzinostatin	0	3	90
neomycin	0	1	219
neopolyoxin C	16	16	33
neothioviridamide	12	14	26
netropsin	19	44	96
niddamycin	0	0	1
nigericin	5	58	147
niphimycins C-E	0	2	309
nocamycin	0	0	130
nocardicin A	1	1	5
nocobactin NA	19	120	192
nogabecin	0	0	11
nogalamycin	0	0	357
nonactin	0	2	32
nosiheptide	0	7	29
nostopeptolide A2	0	0	182
nucleocidin	0	1	630
nybomycin	0	0	23
nystatin	0	0	417
nystatin A1	0	16	100
nystatin-like Pseudonocardia polyene	3	3	39
ochronotic pigment	2	2	92
oligomycin	8	15	127
olimycin A	8	19	137
oronofacic acid	1	1	1
oviedomycin	0	6	71
oxalomycin B	0	1	160
oxazolepoxidomycin A	0	7	168
oxytetracycline	0	25	111
pacidamycin 1	0	0	61
pactamides	4	5	122
pactamycin	0	1	45
paenibactin	0	235	21
paerucumarin	0	0	60

MIBiG name	100% hits	80% hits	50% hits
paromomycin	0	11	335
paulomycin	0	0	33
pellasoren	0	0	56
pentalenolactone	17	24	286
pentamycin	16	37	98
pepticinnamin E	34	51	338
perquinoline A	1	8	95
petrobactin	2	2	3
pheganomycin	0	4	29
phenalamide	0	0	9
phenalamide A2	0	0	7
phenalinolactone A	0	11	510
phoslactomycin B	5	9	42
phosphinothricintripeptide	0	4	119
phosphonoacetic Acid	3	6	34
physostigmine	0	1	1
piericidin A1	9	32	126
pimaricin	0	0	210
pladienolide B	0	0	37
planosporicin	76	81	122
polyketomycin	0	2	268
polyoxin A	0	0	403
polyoxypeptin	0	9	160
porothramycin A	0	0	25
prejadomycin	0	7	137
PreQ0 Base	6	6	6
pristinol	161	161	161
pseudomonine	1	1	1
pseudouridimycin	0	1	367
purincyclamide	11	11	43
puromycin	4	12	16
putisolvin	0	0	2
pyocyanine	7	7	13
pyralomicin 1a	0	1	303
pyridomycin	0	0	318
pyrrolizixenamide A	3	3	3
qinichelins	0	8	1
quartromicin A1	0	0	122
quinocarcin	0	0	120
radamycin	3	25	91
raimonol	33	138	152

MIBiG name	100% hits	80% hits	50% hits
ralsolamycin	0	0	42
rapamycin	0	0	93
ravidomycin	0	4	63
reductasporine	3	5	86
resistomycin	0	36	236
rhizomide A	237	237	237
rhodochelin	13	13	14
rifamorpholine A	0	0	74
rifamycin	0	0	253
rimocidin	0	2	71
rimosamide	13	21	742
rishirilide B	10	12	55
ristocetin	1	1	6
ristomycin A	4	5	19
rosamicin	0	0	131
RP-1776	0	42	66
rubradirin	1	1	11
rubrolone A	0	0	97
rufomycin	0	0	9
s56-p1	0	1	87
saalfelduracin	0	1	2
saframycin A	0	0	60
SAL-2242	105	106	234
salinamide A	10	13	173
salinichelins	0	0	662
salinilactam	0	2	184
salinipostin G	0	0	2
salinomycin	8	8	562
salinosporamide A	0	0	49
SapB	926	926	1176
saprolmycin E	0	5	407
saquayamycin A	0	0	107
saquayamycin Z	0	2	91
sarpeptin A	3	26	13
SBI-06990 A1	45	45	128
scabichelin	252	301	414
sceliphrolactam	3	137	633
Sch 18640	5	5	44
Sch-47554	0	2	118
scleric acid	0	3	18
SCO-2138	1	134	29

MIBiG name	100% hits	80% hits	50% hits
setomimycin	11	12	36
SF2575	0	0	14
SGR PTMs	928	969	979
showdomycin	0	0	349
siamycin	0	0	3
siamycin I	0	17	102
sibiromycin	0	6	14
simocyclinone D8	0	2	23
siomycin A	3	6	64
sipanmycin	0	0	377
spectinabilin	2	12	42
spectinomycin	0	0	9
sphaericin	0	0	2
spicamycin	0	0	19
spiramycin	0	0	90
spore pigment	9	2204	3679
sporolide A	0	0	276
SRO15-2005	0	2	24
SRO15-3108	64	64	71
SSV-2083	0	2	34
stambomycin A	3	3	133
staphyloferrin A	3	3	3
staurosporine	19	36	59
steffimycin D	0	0	266
stenothricin	0	11	14
streptazone E	0	18	361
streptobactin	54	392	1083
streptolydigin	0	22	802
streptomonomicin	0	7	21
streptomycin	0	1	1230
streptophenazine B	14	35	115
streptothricin	30	110	168
streptovaricin	0	0	414
surugamide A	61	100	454
SWA-2138	0	0	16
syringopeptin 25A	1	1	3
tacrolimus	0	0	4
tallysomycin A	0	0	110
tautomycetin	0	1	82
tautomycin	0	0	10
teichomycin	0	11	690

MIBiG name	100% hits	80% hits	50% hits
telomestatin	23	40	92
telomycin	0	0	318
tetracenomycin C	10	11	15
tetrocarcin A	0	0	92
thiazostatin	16	29	148
thiocoraline	0	0	59
thioholgamide A	3	3	64
thiolactomycin	0	2	17
thiomuracin	0	0	13
thiomuracin A	5	6	9
thioplatensimycin	0	0	399
thiostrepton	2	2	4
thiotetroamide	0	3	9
thiovarsolin A	2	3	20
tiacumicin B	0	0	73
tiancilactone	1	6	43
tiancimycin	0	11	232
tirandamycin	1	25	168
TLN-05220	0	1	58
tolaasin I	0	0	6
tomaymycin	30	44	56
totopotensamide A	0	1	96
toxoflavin	0	0	97
toyocamycin	18	57	244
TP-1161	0	0	71
trehangelin	0	0	4
triacsins	0	0	25
triostin A	2	2	58
tubercidin	7	32	57
tunicamycin B1	0	13	82
tylactone	0	0	317
tyrobetaine	0	35	57
ulleungmycin	0	4	757
uncialamycin	0	1	51
undecylprodigiosin	77	128	184
valclavam	0	3	161
validamycin A	0	0	205
valinomycin	0	53	25
vancosamine	2	3	3
vazabitide A	0	0	70
venemycin	2	3	32

MIBiG name	100% hits	80% hits	50% hits
versipelostatin	0	0	15
vicenistatin	0	5	40
viguiepinol	4	4	165
violapyrone B	0	0	48
viomycin	34	46	74
virginiamycin S1	0	38	689
warkmycin CS1	0	84	11
weishanmycin	0	10	127
WS79089A	1	10	616
WS9326	0	31	46
X-14547	0	0	56
xantholipin	0	2	1031
xanthothricin	0	0	6
xenematide	8	8	8
xenotetrapeptide	10	10	10
xiamycin A	0	0	520
zorbamycin	1	3	46
zwittermicin A	0	0	7

Supplementary Table 6. Comparison of observed bonnevillamide A chemical shifts in MeOD- d_4 (¹H NMR at 600 MHz and ¹³C NMR at 151 MHz) in comparison to values previously reported in DMSO- d_6 . Optical rotation was determined as $[\alpha]_D^{23}$ -5 ° g⁻¹ mL dm⁻¹ (c = 0.1, DMSO) compared to the literature reported $[\alpha]_D^{20}$ -30 ° g⁻¹ mL dm⁻¹ (c = 0.1, CHCl₃).²

	-	¹ H	¹ H	¹³ C	¹³ C		
Amino-acid	#	observed	literature ²	observed	literature ²	Δ¹Η	Δ ¹³ C
		[ppm]	[ppm]	[ppm]	[ppm]		
BVA	1			166.8	163.1		3.7
	2	0.74		151.8	149.5		2.3
	3	6.74	6.66	119.5	115.9	0.08	3.6
	4	7.07	7 70	128.4	127.0	0.00	1.4
	5/5	1.67	1.13	131.0	129.8	0.03	1.8
	0/0			124.3	122.7		1.0
	/ 7 OMo	2 72	2.67	100.7	149.4	0.06	1.3
Thr	1	5.75	3.07	172.0	170.2	0.00	27
1111	ו ס	4 60	1 26	61 1	50 1	0.24	2.7
	2	4.00	4.20	69.4	67.2	0.34	2.0
	J Л	4.10	1.05	21 3	20.8	0.24	0.5
	1	1.13	1.05	176.3	173.8	0.14	2.5
Leu	2	5.09	4 98	50.7	48	0.13	2.5
	3	1.56	1.37 1.52	42	40 1	0.10	19
	4	1 79	1.66	26.7	24.4	0.01	2.3
	5	0.94	0.83	22.8	22.1	0.12	0.7
	6	0.98	0.83	24.7	22.4	0.15	2.3
HMPro	1			173.5	170.7		2.8
	2	4.41	4.43	60.8	58.4	0.02	2.4
	3	2.35	2.15	33.9	32.1	0.20	1.8
	4	4.98	4.88	80.7	78.5	0.10	2.2
	5	4.66	4.49	62.8	60.1	0.17	2.7
	6	1.34	1.18	20.2	19.1	0.16	1.1
	7			173.3	170.5		2.8
	8	2.08	1.99	22	21.3	0.09	0.7
Leu ₂	1			173.8	171.2		2.6
	2	4.64	4.49	51	48.6	0.15	2.4
	3	1.50, 1.77	1.31, 1.62	42.7	41.3	0.19,	1.4
						0.15	
	4	1.75	1.62	26.6	24.7	0.13	1.9
	5	0.95	0.82	22.4	21.5	0.13	0.9
	6	0.98	0.88	24.6	23.7	0.10	0.9
N-OH-Val	1	4 53	4.40	1/1./	168.3	0.40	3.4
	2	4.57	4.43	03.5	01.Z	0.12	2.3
	3	2.40	2.31	28.2	20.1 19.0	0.15	Z. I
	4 5	0.92	0.77	20.2	10.9	0.15	1.3
MACME	3 1	0.90	0.04	20.3	171.6	0.14	0.0
WACIVIE	ו ס	161	4.40	1/4.0 50 5	171.0 56.0	0.15	J.∠ D D
	2	4.04	4.49	58.5	50.2	0.15	2.3
	3	1.84, 2.77	1.72, 2.69	29.6	27.9	0.08, 0.08	1./
	4	4.59	4.36	60.1	57.3	0.23	2.8
	5	1.59	1.47	23.5	22.4	0.12	1.1
	6	3.75	3.67	53.6	52.4	0.08	1.2

Gene	AA	Putative function	CAL homologue	% Identity/ Similarity	Protein homologue	% Identity/ Similarity
espU1	400	Hypothetical protein	CalU10	70/82	WP_185024253.1	100/100
espE1	294	SAM-dependent methyltransferase	CalE3	63/72	MBB6394621.1	97/98
espU2	222	Hypothetical protein	CalU9	43/63	WP_089315999.1	96/99
espR1	444	AarF/UbiB kinase family protein	CalR3	63/74	WP_185024256.1	95/96
espR2	119	DNA-binding ArsR family transcriptional regulator	CalR8	67/82	MBB6394624.1	95/97
espG1	383	Glycosyltransferase	CalG3	51/66	WP_185024258.1	98/98
espC	159	Hypothetical protein			MCR3742863.1	92/95
espU3	162	Hypothetical protein			WP_179834670.1	92/98
espT1	278	ABC transporter permease	CalT4	58/73	GGQ36575.1	97/98
espA1	303	Arylamine N-acetyltransferase			WP_185024261.1	90/92
espS1	351	Glucose-1-phosphate thymidylyltransferase	CalS7	38/54	WP_179834673.1	93/96
espS2	197	NDP-sugar epimerase	CalS1	45/59	WP_258943028.1	92/94
espU4	242	FkbM family methyltransferase			WP_185024624.1	96/97
espS3	500	B12-binding domain-containing radical SAM protein	CalU22	79/89	WP_185024265.1	94/97
espR3	216	DNA-binding HxIR family transcriptional regulator	CalU8	52/64	MBB6394634.1	98/99
espU5	155	Hypothetical protein			WP_185024267.1	92/96
espR4	411	AarF/UbiB kinase family protein	CalR3	42/55	MBB6394636.1	89/93
IS	136	Transposase			GGQ36627.1	93/93
espR5	181	LmbU family transcriptional regulator			MCR3742851.1	97/98
espE3	318	Enediyne biosynthesis protein	CalU15	42/54	WP_185024270.1	94/96
espE4	648	Enediyne biosynthesis protein	CalU14	46/57	WP_258943020.1	93/95
espE5	337	Enediyne biosynthesis protein	CalT3	60/71	WP_185024272.1	95/96
espE	1864	Enediyne polyketide synthase	CalE8	45/54	MBB6394642.1	90/92
espE10	156	Enediyne biosynthesis thioesterase	CalE7	50/64	WP_179834686.1	94/96
espE2	228	F420-dependent oxidoreductase	CalS6	37/50	WP_258943016.1	91/93
espA2	407	Cytochrome P450	CalE10	34/49	WP_185024276.1	97/97
espA3	361	SAM-dependent methyltransferase	CalO6	41/53	WP_229810767.1	93/93
espA4	529	Aryl-CoA transferase			WP_179834689.1	95/97
espR6	498	TldD/PmbA family protein	CalR6	53/64	MBB6394648.1	95/97
espR7	468	TldD/PmbA family protein	CalR5	52/62	MBB6394649.1	92/93
espS4	337	NDP-sugar dehydratase	CalS3	62/72	WP_185024280.1	98/98
espA5	421	Acyltransferase			WP_244993777.1	95/95
espS5	333	Oxidoreductase	CalS12	72/83	WP 179834693.1	96/96
, espS6	257	NDP-sugar O-methyltransferase	CalS11	63/77		96/98
espS7	245	SAM-dependent methyltransferase	CalS10	62/71	WP 179834695.1	92/95
esnS8	476	NDP-hexose 2.3-dehvdratase	CalS14	64/73	GG036729 1	95/96
esnT2	275	ABC transporter permease	CalT4	56/73	WP 185024285 1	96/97
05p12	337	ABC transporter ATP-binding protein	CalT5	58/75	MBB6394657 1	96/96
copC2	412			50/75	WD 090216021 1	01/05
espos	413			52/09	WP 000340000 4	31/30
esp59	305		0-1110	01/74	WP_069316032.1	90/97
espU6	218	Hypotnetical protein	CalU13	20/22	vvP_185024288.1	96/98
espB	223	DNA alkylation repair protein			NDU71393.1	94/96
espU7	233	Hypothetical protein	CalU12	68/77	WP_179834702.1	94/95

Supplementary Table 7. Annotation of *esp* BGC from *Spirillospora* sp. NPDC050156.

Gene	AA	Putative function	CAL homologue	% Identity/ Similarity	Protein homologue	% Identity/ Similarity
espS10	407	Cytochrome P450	CalE10	60/69	WP_179834703.1	96/97
espG4	377	Glycosyltransferase	CalG3	60/75	WP_179834704.1	96/98
espR8	412	Hypothetical Protein	CalR9	64/74	WP_185024293.1	93/96
espT4	590	ABC transporter substrate-binding protein	CalT6	48/61	WP_179834705.1	92/95
espE6	441	Cysteine desulfurase	CalE9	74/87	MBB6394667.1	98/99
espT5	567	ABC transporter substrate-binding protein	CalT6	70/79	MCR3742820.1	97/99
espA6	334	SAM-dependent methyltransferase	CalO1	64/76	WP_185024296.1	96/97
espS11	253	SAM-dependent methyltransferase	CalS10	47/64	WP_089316042.1	92/97
espG2	399	Glycosyltransferase	CalG2	55/65	GGQ36818.1	92/94
espS12	382	Sugar aminotransferase	CalS13	73/83	WP_185024299.1	97/97
espS13	91	Sulfur carrier protein	CalU18	29/47	WP_179848726.1	95/95
espU8	295	Formylglycine-generating enzyme sulfatase	CalU17	58/67	MBB6394674.1	93/97
espS14	450	NDP-sugar dehydrogenase	CalS8	65/73	NDU71379.1	92/96
espU9	265	Type III CoA transferase	CalU11	56/66	WP_185024302.1	95/96
espE7	436	Cysteine desulfurase	CalE4	71/80	WP_258942986.1	93/95
espE8	352	Methionine γ-lyase	CalE6	62/72	WP_179834715.1	96/97
espE9	317	SAM-dependent methyltransferase	CalE2	54/62	WP_179834716.1	90/94
espS15	328	NDP-sugar dehydratase	CalS3	68/77	WP_179848732.1	97/98
espE11	290	SAM-dependent methyltransferase	CalE5	48/61	WP_179834718.1	91/93

Supplementary Table 8. Comparison of observed esperamicin A₁ chemical shifts in CDCl₃ (¹H NMR at 600 MHz and ¹³C NMR at 151 MHz) in comparison to previously reported values in MeOD- d_4 for ¹H shifts (360 MHz) and in CDCl₃ for ¹³C shifts (90 MHz).³ Optical rotation was determined as $[\alpha]_D^{23}$ -113 ° g⁻¹ mL dm⁻¹ (c = 0.37, CHCl₃) compared to the literature reported $[\alpha]_D^{27}$ -191 ° g⁻¹ mL dm⁻¹ (c = 0.5, CHCl₃).^{3, 4} nd = not detected.

		¹ H	¹ H	¹³ C	¹³ C		
Moiety	#	observed	literature	observed	literature ²	Δ ¹ Η	Δ ¹³ C
•		[ppm]	[ppm]	[ppm]	[ppm]		
Core	1	4.17, 3.78	4.11, 3.85	40.0	39.5	0.06, 0.07	0.5
	2	6.70	6.66	131.4	130.1	0.04	1.3
	3			133.0	135.0		2.0
	4			77.8	76.8		1.0
	5			97.5	98.2		0.7
	6			83.8	83.3		0.5
	7	5.93	6.06	123.4	123.1	0.13	0.3
	8	5.82	5.94	125.2	124.9	0.12	0.3
	9			87.1	88.3		1.2
	10			98.3	97.5		0.8
	11	6.18	6.17	70.9	68.0	0.01	2.9
	12			130.5	131.0		0.5
	13			145.9	147.0		1.1
	14			190.8	191.3		0.5
	15	4.28	4.31	88.3	86.0	0.03	2.3
	16			155.2	155.0		0.2
	17	3.88	3.71	56.3	52.5	0.17	3.8
	1-S-S-S-Me	2.56	2.54	23.1	22.6	0.02	0.5
4-deoxy-	1	4.99	4.98	99.8	99.5	0.01	0.3
4-methyl	2	2.16, 1.52	1.96, 1.56	35.2	35.1	0.20, 0.04	0.1
thio-α-D-	3	4.12	4.20	64.6	64.5	0.08	0.1
digitoxose	4	2.52	2.37	55.8	55.6	0.15	0.2
(Dig)	-	4.00	0.07		<u> </u>	0.40	0.0
	5	4.06	3.87	/1.5	69.Z	0.19	2.3
	0 4 S Mo	1.41	1.38	19.9	19.8	0.03	0.1
1.6	4-3-IVIE	2.11	<u>Z.14</u>	14.0	13.7	0.03	0.3
4,0- didooxy 4	1	4.07	4.37	100.4 70.7	99.5 70.7	0.00	0.9
bydroxylami	2	3.09	3.00	19.1 60.5	19.1 60.5	0.13	0.0
nguloxylailli no-a-D-	<u>л</u>	2.00	2.95	68.2	68 1	0.13	0.0
alucose	4 5	2.29	2.20	71 5	71 7	0.03	0.1
(Glu)	6	1.31	1.30	17.8	17.5	0.01	0.3
Amino-	1	5.36	5 54	98.8	97.2	0.18	1.6
pentose	2	2 34 1 63	2 47 1 60	33.5	34.0	0.13 0.03	0.5
(Pen)	3	nd	3 74	73.1	75.8	0.10, 0.00	27
()	4	3 15	3 15	58.8	57 1	0.00	17
	- -	4 17 3 90	3 84 3 70	58.9	62.3	0.33 0.20	34
	6	3.48	3.30	49.8	47.2	0.18	2.6
	7	1.46	1.23	18.5	22.2	0.23	3.7
	8	1.37	1.21	20.2	23.4	0.16	3.2
	3-O-Me	3.43	3.42	56.6	56.0	0.01	0.6
2-Desoxv-	1	5.36	5.48	99.7	99.0	0.12	0.7
Fucose	2	2.38, 2.30	2.32. 2.15	29.2	29.0	0.06, 0.15	0.2
(Fuc)	3	5.51	5.48	70.0	70.2	0.03	0.2
/	4	4.03	3.90	68.9	66.7	0.13	2.2
	5	4.57	4.62	67.6	68.8	0.05	1.2

		¹ H	¹ H	¹³ C	¹³ C		
Moiety	#	observed	literature	observed	literature ²	Δ¹H	Δ ¹³ C
		[ppm]	[ppm]	[ppm]	[ppm]		
	6	1.39	1.25	16.8	16.5	0.14	0.3
Amino-	1			166.7	166.4		0.3
veratric acid	2			107.6	107.6		0.0
(Ver)	3	7.49	7.63	112.7	112.5	0.14	0.2
	4			144.3	144.0		0.3
	5			154.3	153.8		0.5
	6	8.60	8.44	104.1	103.7	0.16	0.4
	7			137.2	136.7		0.5
	4-O-Me	3.88	3.91	56.3	56.0	0.03	0.3
	5-O-Me	3.96	3.85	56.3	56.0	0.11	0.3
2-Methoxy-	1			161.1	160.7		0.4
acrylic acid	2			154.7	154.4		0.3
(Acr)	3	5.46, 4.54	5.38, 4.67	91.0	90.5	0.08, 0.13	0.5
	2-O-Me	3.81	3.79	56.3	56.0	0.03	0.3

Name	Description	Reference or source
Strains		
Turbo	E. coli strain for general cloning	Life Technologies
BL21(DE3)	E. coli host for protein overproduction	Life Technologies
SB24001	BL21(DE3) cells containing pBS24001 for protein production	This study
Kocuria rhizophila	Strain for testing antibacterial activity	(⁵)
ATCC 9341		
Micrococcus luteus	Strain used for cloning dnaN from	This study
NPDC049463		
Mycobacterium	Strain for testing antibacterial activity	(⁶)
smegmatis ATCC 607	Strain for testing antibacterial activity	
Streptomyces	Strain for testing antibacterial activity	(7)
albidoflavus J1074	Strain for testing anabacterial activity	
Mycobacterium		(8)
tuberculosis R37a	Strain for testing antibacterial activity	
ATCC 25177		
Mycobacterium		(⁹)
intracellulare DSM	Strain for testing antibacterial activity	
43223		
Mycobacterium		(10)
abscessus ATCC	Strain for testing antibacterial activity	
19977		
Plasmids		
pBS3080	pRSFDuet-1 derived plasmid containing a <i>Bsm</i> FI site	(11)
	for ligation-independent cloning (LIC) and encodes a	
500/00/	I EV protease site after the <i>N</i> -terminal His6-tag	
pBS24001	dnaN _{M.luteus} cloned into pBS3080	I his study

Supplementary Table 9. Strains and plasmids used in this study.

Supplementary Table 10. Genus abbreviations for Extended Data and SI figures.

Genus	Abbreviation
Actinoallomurus	AAM
Actinocorallia	ACO
Actinocrispum	ACR
Actinokineospora	AKS
Actinomadura (B)	ACM
Actinophytocola	APY
Actinoplanes	ACP
Actinopolymorpha	APM
Actinosynnema	ASY
Aeromicrobium	AEM
Agrococcus	AGC
Agromyces	AGR
Amycolatopsis	AMY
Arthrobacter (B,D,E,F,G,I,K)	ART
Asanoa	ASN
Brachybacterium	BRB
Brevibacterium	BRE
Catellatospora	CAS
Catenuloplanes	CAP
Cellulomonas	CEL
Cellulosimicrobium	CLM
Citricoccus	CIT
Corynebacterium	COR
Cryptosporangium	CRP
Curtobacterium	CRB
Dactylosporangium	DCT
Dietzia	DTZ
Embleya	EMB
Enteractinococcus	EAC
Frigoribacterium	FRG
Glutamicibacter	GMB
Glycomyces	GLY
Gordonia	GOR
Hamadaea	HAM
Isoptericola	ITC
Janibacter	JAN
Kibdelosporangium	KIB
Kitasatospora	KTS
Kocuria	KOC
Kribbella	KRB
Kutzneria	KTZ

Supplementary Table 10. (cor	nt.)
Genus	Abbreviation
Leifsonia	LFS
Lentzea	LTZ
Leucobacter	LEU
Longispora	LGS
Microbacterium	MCB
Microbispora	MBP
Micrococcus	MCC
Micromonospora (G)	MCM
Microtetraspora	MTS
Modestobacter	MOD
Mycobacterium	MYC
Nesterenkonia	NEK
Nocardia	NCD
Nocardioides	NCS
Nocardiopsis	NCP
Nonomuraea	NMU
Oerskovia	OER
Paenarthrobacter	PAE
Patulibacter	PAT
Polymorphospora	PMS
Promicromonospora	PMC
Pseudarthrobacter	PAC
Pseudonocardia	PSN
Rhodococcus (B,C)	RHD
Rhodoglobus	RHG
Rothia	RTH
Saccharomonospora	SMS
Saccharopolyspora (C)	SPS
SCUT-3	SCU
Specibacter	SPB
Sphaerisporangium	SSG
Spirillospora	SPL
Spongisporangium	SSP
Streptodolium	SDM
Streptomyces (D)	STR
Streptosporangium	STS
Terrabacter	TER
Tsukamurella	TSU
Umezawaea	UMZ
Uniformispora	UFS

Supplementary Fig. 1. Comparison of the NPDC collection with other Actinobacteria strain collections. (A) The number of Actinobacteria strains listed on websites of major worldwide strain collections range from less than 2000 strains to just over 7000 strains, in comparison to more than 102,000 predicted Actinobacteria in the NPDC collection based on current sequencing ratios (84.0% Actinobacteria) and a total NPDC collection size of 122,449 strains. (B) Using data in the NCBI genome database and any genomic information stored on collection websites, published genomes were totaled. Any overlaps between collections were counted for each collection, so the total number of sequenced strains between collections is lower than the sum. All data collected May 2023. ¹²⁻¹⁵ NRRL = Agricultural Research Service Culture Collection; NBRC = NITE Biological Resource Center; ATCC = American Type Culture Collection; DSMZ = German Collection of Microorganisms and Cell Cultures; NPDC = Natural Products Discovery Center.

Supplementary Fig. 2. Sample isolation years for sequenced NPDC strains with existing metadata. 34.6% of NPDC strains have associated isolation dates. The spike in strains isolated during the 2010s is exaggerated in this subset of sequenced strains and is not representative of the entire collection. ¹⁶

Supplementary Fig. 3. Sample collection locations for sequenced NPDC strains with existing metadata. Color intensity correlates with the number of strains. 6.7% of NPDC strains have associated isolation locations. See Supplementary Table 1 for exact values. The spike in strains isolated from China is exaggerated in this subset of sequenced strains and is not representative of the entire collection. ¹⁶

Supplementary Fig. 4. Sample collection general environmental categories for sequenced NPDC strains with existing metadata. 7.1% of NPDC strains have associated isolation environments.

Supplementary Fig. 5. Number of contigs for the initial 8490 assembled NPDC genomes. Distributions of contig numbers were plotted for all strains, all Actinobacteria, and all non-Actinobacteria. Lower values indicate higher quality genomes. Non-Actinobacteria genomes are typically smaller than Actinobacteria genomes (Supplementary Fig. 7), leading to improved assembly criteria.

Supplementary Fig. 6. N50 values for the initial 8490 assembled NPDC genomes. Distributions of N50 values were plotted for all strains, all Actinobacteria, and all non-Actinobacteria. Non-Actinobacteria genomes are typically smaller than Actinobacteria genomes (Supplementary Fig. 7), leading to improved assembly criteria.

Supplementary Fig. 7. Genome sizes for the initial 8490 assembled NPDC genomes. Distributions of genome sizes were plotted for all strains, all Actinobacteria, and all non-Actinobacteria.

Supplementary Fig. 8. NPDC and RefSeq genomes and species by Actinobacteria genus. Actinobacteria genomes from genera in the NPDC (red bars) are compared to genomes from RefSeq (grey bars). Total number of species per genus based on a 0.05 Mash distance cut-off are indicated by black lines. Numbers of new species in NPDC lacking a closely related representative in GTDB are indicated by teal lines. Also see Fig. 1D. See Supplementary Table 10 for abbreviations. Genera are grouped based on the total number of genomes.

Supplementary Fig. 9. NPDC Actinobacteria novelty at different taxonomic levels. Known indicates genera, species, or strains belonging to species that have non-NPDC genomes in GTDB. 'New' indicates these genera, species, or strains could not be assigned to a previously assigned genus or species using GTDB.

Supplementary Fig. 10. Mash distance distribution among Actinobacteria within the same species and across species. Mash distances between 0 and 0.05 were used to delineate species cut-offs for this study.

Supplementary Fig. 11. Mash distance distribution within Actinobacteria. Mash distances less than 0.05 indicate same strains within the same species. Most *Mycobacterium* belong to a single species, in contrast to most *Streptomyces*, which display far greater genomic diversity.

Supplementary Fig. 12. SEM images of *Spongisporangium articulatum* NPDC049639. (A) The strain presents characteristic spherical conglomerates, which were used as a basis for the genus name (*"sporangium"* = deriving from the Greek $\sigma\pi\sigma\rho\dot{\alpha}$ (*sporá*) *"seed"* and $\dot{\alpha}\gamma\gamma\epsilon$ iov (*angeion*) *"vessel"*). (B) Fractured edge of a colony surface highlighting the uniform, spongelike structure inside and on the surface of the conglomerates. (C) Biofilm covering hyphae and spores. (D) Segmented aerial hyphae on colony surface. The longest segments observed display lengths of up to 2.17 µm and widths of 505 to 541 nm. (E) Kinked hyphae forming arched structures connecting the surfaces of two spherical conglomerates. (F) Aerial hypha with alternating small segments and large segments with up to 90° angled junctions, which were used as a basis for the species name (*"articulatum"* = Latin for "joint"). Also see Fig. 3B.

Supplementary Fig. 13. SEM images of *Streptodolium elevatio* NPDC002781. (A) The strain, isolated from a forest soil sample in Qinhai, China, presents characteristic conglomerates on an otherwise flat bacterial lawn, serving as inspiration for the species name ("*elevatio*" = Latin for "raising" or "elevation"). (B) Colony surface with long protruding aerial hyphae. (C) Typical aerial hyphae and spores on the colony surface similar to those found in *Streptomyces*, which inspired the first part of the genus name. (D) Protruding aerial hyphae on the conglomerate presented in (A). (E) Zoomed view of (C) highlighting the fibrous sheath coating aerial hyphae and spores. (F) Barrel-shaped spores inspiring the second half of the genus name ("*dolium*" = Latin for "large jar" or "vessel"). Spores display widths between 560 and 590 nm with lengths of 1.06 to 1.16 μm. Also see Fig. 3D.

Supplementary Fig. 14. SEM images of *Uniformispora flossi* NPDC059280. (A) The strain grows as a relatively flat bacterial lawn with slight mounds on the surface. (B) and (C) Uniform spores are presented as long chains on the colony surface, which were used as inspiration for the genus name. (D) Zoomed view of spore chains containing nearly spherical terminal spores (786 x 865 nm) with elongated adjacent spores (538 x 901 nm) and otherwise almost cubical spores displaying widths comparable to the elongated spores of 545 to 561 nm but lengths between 481 and 535 nm. The species name was assigned in honor of Professor Heinz Floss and his contributions to the field of natural products and natural product biosynthesis. Also see Fig. 3E.

Supplementary Fig. 15. Analysis of biosynthetic potential of 957 NPDC Actinobacteria by environment. The 957 sequenced NPDC Actinobacteria with environmental metadata were categorized into seven major categories (65 'Plant', 651 'Soil', 32 'Marine', 28 'Freshwater', 63 'Root', 24 'Dung', and 94 'Other'). (A) The average number of BGCs was calculated for each category as well as for all 957 strains ('Total'). While plant-associated Actinobacteria had the highest number of BGCs, marine- and dung-associated Actinobacteria had the lowest. (B) For each environment, the percent of GCFs that were only identified in a single environment ('Unique') varies especially between 'Soil' (66.7%) and other environments, e.g., 'Dung' (13.8%). This trend does not correlate with the frequency of non-RefSeq GCFs, which are found in an environment-independent manner. Note: many strains have more detailed environmental metadata than presented here, but for simplicity, related environments have been grouped together into these general categories.

Supplementary Fig. 16. BGC and GCF biosynthetic classes in RefSeq and NPDC Actinobacteria. PKS = polyketide synthase; RiPPs = ribosomally synthesized and post-translationally modified peptides; NRPS = non-ribosomal peptide synthetase; TPS = terpene synthase; Hybrid = PKS + NRPS.

D

Supplementary Fig. 17. Distribution of non-RefSeq NPDC GCFs (red) and GCFs observed in both NPDC and RefSeq genomes (grey) across NPDC genera. Also see Fig. 4B. Genera are grouped based on the total number of GCFs. See Supplementary Table 10 for abbreviations.

D

Supplementary Fig. 18. Percentages of non-RefSeq NPDC GCFs in RefSeq species (grey), new species (red), and shared between them (teal) across NPDC genera. Also see Fig. 4C. See Supplementary Table 10 for abbreviations.

Supplementary Fig. 19. The NPDC Portal enables NP training, research, and associated applications. The NPDC provides a strain collection containing more than 122,000 bacterial strains, a database with more than 8000 genomes and 220,000 BGCs, and an online portal with BGC-centric bioinformatics tools for exploring the collection. Strains can be requested, and genomes, BGCs, and SSN/GNN input files can be downloaded. The NPDC is expected to have a broad, multi-disciplinary impact.

NPDC ID: 2289		Download Genome
Strain name: <i>Streptomyces gr</i>	iseus	Request Strain
General Characteristics		^
Collection Date Collection Country Collection Region Collection Ecology Produces	: n/a : China : n/a : : n/a	NPDC002289
Media for Growth: TSB, TRACE+TSB		^
Genome Quality: good		^
Sequencing Method Cleaned-up genome? Number of Contigs Genome Size N50 %GC	: Illumina : No : 66 : 8.525.383 nt (8.5 Mb) : 384,959 nt (0.4 Mb) : 72.3%	

Supplementary Fig. 20. NPDC Portal strain page. For each strain, any associated metadata can be found on its individual webpage. If the strain has been sequenced, genome assembly statistics, BGCs, and related genomes are provided.

BGC ID: from Strain	IGC ID: NPDC001928.ctg-0001.region001 and a start of the										Deserfead BGC
General Infe	Casada Information										
Avenue (signame) 1987 Gamme 199 Long 19 Margin 194 Margin 194 Margine 194 Margine 194 Margine 194 Margine 194 Margine 194			: anti - <u>NSC</u> - 1 (r - 50.9 - <u>8007</u> - NRP - NRP - Yes	SNASH v5.11 52-1920 rglen H1, 1-5056Ht) 77 b ccellen(81.0%) %							
Genes: 34 0	Cenes 100/s										
2439	end 2654	length (AA)	CDS_00002	Copper chaperone CopZ		sequence					
2844	3806	321	CD5,00003	hypothetical protein							
3812	4873	354	CD5,00004	Ferric enterobactin transport system	permease protein FepG	copy					
4870	5925	352	CD5,00005	Ferric enterobactin transport system	permease protein FepD	copy					
5915	7543	50	CD5,00006	2,3-dihydroxyberzoate-AMP ligase		сору					
Showing 1 to 5 of 34 entries											Previous 1 2 1 4 5 6 7 Next
BGC Family:	GCF-8746										~
Related BGC	s: 22										
	Genome	Name			Mash cluster	BGC	GCF	BGC quality	BGC class	Size (kb)	Num. of genes MIBiG hit
	NPDC-6115 Streptore		sptomyces sp003320845		Streptomyces mc-205	NFDC-6135y2c3	GCF-8746		NRPS	64.993	48 arrychalin (81%)
	NPDC-6140 Streptomyces sp003330845			Streptomyces mc-205	NPDC-6140x2c4	GCF-8746	complete	NRPS	64.356	47 armychalin (81%)	
	NPDC-65932 Streptomyces sp002237655			Streptomyces mc-104	NPOC-8593214c2	GCF-8746	Complete	NRPS	65.579	47 armychalin (81%)	
	NPDC-877	Strept	omyces sp003330845		Streptomyces mc-205	NPOC-877/r5x2	GCF-8746	Complete	NRPS	65.117	48 <u>annechslin</u> (81%)
	NPDC-5901	0 Strept	omyces ap013362785		Streptomyces mc-1111	NPDC-5901075c2	GCF-8746	Complete	NRPS	65.15	48 anychelin (75%)
Showing 1 to	5 of 22 entries	s (filtered from 224,899 to	tal entries)								Previous 1 2 3 4 5 Next

Supplementary Fig. 21. NPDC Portal BGC page. Each BGC has a dedicated page from which the antiSMASH-generated .gbk file can be downloaded. Further, the genes within the BGC can be viewed directly in the browser, and links to related BGCs at the bottom of each page are provided.

Note: The hits were limited to the top 1,000 genomes. If your results exceeded that limit, try using a more specific query (additional proteins, longer sequences).												
Results selection												
Show hits: Genomes Biosynthetic Gene Clusters (BGCs)						To protein(s): All (will find genomes and BGCs with all of the protein hits present) Generic						
Current selected inputs: Biosynthetic Gene Clusters (BGCs) / All Update												
Download V												
	Results											
Your query is found in 426 BGC(s), forming a total of 79 GCF(s). The main biosynthetic class of the BGCs is phosphonate (30%). These BGCs were coming from 416 genome(s) of 160 different Mash cluster(s). Most of the BGCs, 82%, were coming from the genus Streptomyces.												
how 25 entries										5	Search:	
Avg. %identity 斗	Genome	Name		Mash cluster	BG	∎ ^{†1}	GCF ¹¹	BGC quality 11	BGC class	Size (kb) $^{\uparrow\downarrow}$	MIBiG hit	
100.0%	NPDC-55710	Streptomyces decoyicus		Streptomyces mc-359	NPDC-5	5710:r4c1	GCF-12021	fragmented	phosphonate	36	thioplatensimycin (39%)	
100.0%	NPDC-127130	Streptomyces decoyicus		Streptomyces mc-359	NPDC-12	7130:r33c1	GCF-12021	complete	phosphonate	41	thioplatensimycin (53%)	
99.2%	NPDC-55563	Streptomyces decoyicus		Streptomyces mc-359	NPDC-55	563:r16c1	GCF-12021	fragmented	phosphonate	41	thioplatensimycin (51%)	
99.2%	NPDC-55564	Streptomyces decoyicus		Streptomyces mc-359	NPDC-55	564:r17c1	GCF-12021	fragmented	phosphonate	36	<u>thioplatensimycin</u> (39%)	
99.2%	NPDC-58692	Streptomyces decoyicus		Streptomyces mc-359	NPDC-58	692:r19c1	GCF-12021	complete	phosphonate	41	thioplatensimycin (53%)	
97.1%	NPDC-48128	Streptomyces decoyicus		Streptomyces mc-359	NPDC-48	128:r50c1	GCF-12021	fragmented	phosphonate	36	thioplatensimycin (39%)	

Supplementary Fig. 22. NPDC Portal BLASTP page. Users can utilize the DIAMOND-BLASTP tool to query up to five simultaneous protein sequences in either the full NPDC genome database or limit their searches to the NPDC BGC database. The results are saved for each user, and results can be sorted based on identity, taxonomy, GCF, BGC quality, BGC class, BGC size, or relatedness to MIBiG hits. The results page directly links each hit with genomes and BGCs. Under the 'Downloads' section, users can download a standard BLAST tabular result, a multiFASTA file containing all protein hits, and a multiFASTA file containing all protein sequences from BGCs encoding hits.

Supplementary Fig. 23. Genome mining for potential DnaN-targeting natural products. (A) *griR*-homologue containing BGCs identified in the NPDC with strain identifiers and taxonomy. (B) SSN of DnaN and GriR homologues (e-value e⁻¹⁹⁰) highlights the differences in protein sequence for distinguishing between primary metabolism proteins from potential resistance mediating copies. DnaN (black) and BGC-associated GriR (teal) homologues from strains highlighted in (A) are color-coded. Grey nodes represent DnaN sequences identified with the DIAMOND-BlastP search using the NPDC portal. Grey nodes not clustering with the two most well represented clusters potentially encode resistance-associated proteins but could not be associated with BGCs most often due to fragmentation of the genome in their vicinity.

Supplementary Fig. 24. Chromatogram traces and spectra of bonnevillamide A purified from NPDC056627. (A) HPLC-UV/Vis chromatogram from 210-600 nm with corresponding UV/Vis spectrum at peak maximum. UV/Vis_{max} are observed at 222 and 294 nm. (B) HPLC-MS base peak chromatogram from 300-1500 m/z with corresponding MS spectrum summed up over the peak. The two most abundant ions are the [M+H]⁺ at 985.40836 (C₄₅H₆₇O₁₄N₆Cl₂ calc. 985.40868, Δ 0.33 ppm) and [M+Na]⁺ at 1007.39029.

Supplementary Fig. 25. MS/MS spectra of bonnevillamide A purified from NPDC056627 with observed fragments of the y and b-series. The detected fragments match the ones described in literature.²

Supplementary Fig. 26. ¹H spectrum of bonnevillamide A in MeOD-*d*₄ at 600 MHz.

Supplementary Fig. 27. ¹³C spectrum of bonnevillamide A in MeOD-*d*₄ at 151 MHz.

Supplementary Fig. 28. HSQC spectrum of bonnevillamide A in MeOD-*d*₄ at 600/151 MHz.

Supplementary Fig. 29. SDS-PAGE analysis of purified DnaN from *Micrococcus luteus* NPDC049463.

Supplementary Fig. 30. Clinker analysis of NPDC BGCs containing genes responsible for *N-N* bond formation. (A) BGCs related to the kinamycin MIBiG BGC are aligned. (B) BGCs related to the lomaiviticin MIBiG BGC are aligned. (C) BGCs in an unexplored GCF expected to encode for *N-N*-containing NPs are aligned.

Supplementary Fig. 31. NPDC enediyne BGC-associated SSN colored by predicted enediyne type. Proteins encoded by NPDC enediyne BGCs mined from the NPDC BGC database were clustered using the EFI SSN tool (e-value e⁻¹⁰⁰) and color-coded by predicted enediyne subclass. ¹⁷ The protein sequences were obtained via the downloadable BGC multiFASTA file after querying the NPDC BGC database using TnmE4 and TnmE from tiancimycin A biosynthesis. CAL-type = calicheamicin-type enediynes; AFE-type = anthraquinone-fused enediynes; 9-membered = 9-membered enediynes. In this case, all proteins can be associated with BGCs expected to lead to NPs with the enediyne moiety, but the different enediyne-associated scaffolds require different—and difficult to predict—sets of biosynthetic enzymes.

Supplementary Fig. 32. Comparison of the esperamicin and calicheamicin BGCs. There are substantial similarities both structurally and biosynthetically between the two enediyne NPs, as is highlighted through this color-coded Clinker analysis.¹⁸

Supplementary Fig. 33. Chromatogram traces and spectra of esperamicin A₁ purified from NPDC048032. (A) HPLC-UV/Vis chromatogram from 210-600 nm with corresponding UV/Vis spectrum at peak maximum. UV/Vis_{max} are observed at 222, 258, 278 and 322 nm. (B) HPLC-MS base peak chromatogram from 200-2000 m/z with corresponding MS spectrum summed up over the peak. The two most abundant ions are the [M+H]⁺ at 1325.42234 ($C_{59}H_{81}O_{22}N_4S_4$ calc. 1325.42198, Δ 0.36 ppm) and [M+2H]²⁺ at 663.21445.

Supplementary Fig. 34. COSY-correlations and most relevant HMBC correlations in esperamicin A₁. COSY correlations are depicted as bolded bonds, and HMBC correlations are depicted as teal arrows.

Supplementary Fig. 35. ¹H spectrum of esperamicin A₁ in CDCl₃ at 600 MHz.

Supplementary Fig. 36. ¹³C spectrum of esperamicin A₁ in CDCl₃ at 151 MHz.

Supplementary Fig. 37. COSY spectrum of esperamicin A1 in CDCl3 at 600 MHz.

Supplementary Fig. 38. HSQC spectrum of esperamicin A₁ in CDCI₃ at 600/151 MHz.

Supplementary Fig. 39. HMBC spectrum of esperamicin A₁ in CDCI₃ at 600/151 MHz.

SI References

- 1. Jain, C., Rodriguez-R, L.M., Phillippy, A.M., Konstantinidis, K.T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. *Nat. Commun.* **9**, 5114 (2018).
- 2. Wu, G., Nielson, J., Peterson, R. & Winter, J. Bonnevillamides, Linear Heptapeptides Isolated from a Great Salt Lake-Derived Streptomyces sp. *Mar. Drugs* **15**, 195 (2017).
- 3. Golik, J. et al. Esperamicins, a novel class of potent antitumor antibiotics. 3. Structures of esperamicins A₁, A₂, and A_{1b}. J. Am. Chem. Soc. **109**, 3462-3464 (1987).
- 4. Konishi, M. et al. Esperamicins, a novel class of potent antitumor antibiotics. I. Physico-chemical data and partial structure. *J. Antibiot. (Tokyo)* **38**, 1605-1609 (1985).
- 5. Tang, J.S. & Gillevet, P.M. Reclassification of ATCC 9341 from *Micrococcus luteus* to *Kocuria rhizophila. Int. J. Syst. Evol. Microbiol.* **53**, 995-997 (2003).
- 6. Gordon, R.E. & Smith, M.M. Rapidly growing, acid fast bacteria. I. Species' descriptions of Mycobacterium phlei Lehmann and Neumann and Mycobacterium smegmatis (Trevisan) Lehmann and Neumann. *J. Bacteriol.* **66**, 41-48 (1953).
- 7. Sánchez, C. et al. Combinatorial biosynthesis of antitumor indolocarbazole compounds. *Proceedings of the National Academy of Sciences* **102**, 461-466 (2005).
- 8. McMurray, D.N., Carlomagno, M.A. & Cumberland, P.A. Respiratory infection with attenuated *Mycobacterium tuberculosis* H37Ra in malnourished guinea pigs. *Infect. Immun.* **39**, 793-799 (1983).
- 9. Castejon, M., Menéndez, M.C., Comas, I., Vicente, A. & Garcia, M.J. Wholegenome sequence analysis of the *Mycobacterium avium* complex and proposal of the transfer of *Mycobacterium yongonense* to *Mycobacterium intracellulare* subsp. *yongonense* subsp. nov. *Int. J. Syst. Evol. Microbiol.* **68**, 1998-2005 (2018).
- 10. Kusunoki, S. & Ezaki, T. Proposal of *Mycobacterium peregrinum* sp. nov., nom. rev., and elevation of *Mycobacterium chelonae* subsp. *abscessus* (Kubica et al.) to species status: *Mycobacterium abscessus* comb. nov. *Int. J. Syst. Bacteriol.* **42**, 240-245 (1992).
- 11. Lohman, J.R., Bingman, C.A., Phillips, G.N., Jr. & Shen, B. Structure of the bifunctional acyltransferase/decarboxylase LnmK from the leinamycin biosynthetic pathway revealing novel activity for a double-hot-dog fold. *Biochemistry* **52**, 902-911 (2013).
- 12. ATCC. American Type Culture Collection. [cited 2023 05/10] Available from: https://www.atcc.org/
- 13. DSMZ. Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH. [cited 2023 05/10] Available from: https://www.dsmz.de/dsmz
- 14. NRRL. Collection Manager ARS Culture Collection (NRRL). [cited 2023 05/10] Available from: https://nrrl.ncaur.usda.gov/
- 15. NITE. Biological Resource Center (NBRC). [cited 2023 05/10] Available from: https://www.nite.go.jp/en/nbrc/cultures/nbrc/online/index.html

- 16. Steele, A.D., Teijaro, C.N., Yang, D. & Shen, B. Leveraging a large microbial strain collection for natural product discovery. *J. Biol. Chem.* **294**, 16567-16576 (2019).
- 17. Gerlt, J.A. et al. Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST): a web tool for generating protein sequence similarity networks. *Biochim. Biophys. Acta Proteins Proteom.* **1854**, 1019-1037 (2015).
- 18. Gilchrist, C.L.M. & Chooi, Y.H. Clinker & clustermap.js: automatic generation of gene cluster comparison figures. *Bioinformatics* **37**, 2473-2475 (2021).