
nature machine intelligence

https://doi.org/10.1038/s42256-023-00652-2Article

Federated benchmarking of medical 
artificial intelligence with MedPerf

In the format provided by the 
authors and unedited

https://doi.org/10.1038/s42256-023-00652-2


Supplementary Material

Table of Contents

1 Supplementary Method Material 2
1.1 Details of MedPerf Benchmarks 2

1.1.1 Chief use-case: MICCAI FeTS Challenge 2
1.1.2 Pilot Study 1 - Brain Tumor Segmentation 3

1.1.2.1 Participating Institutions 3
1.1.2.2 Clinical Task 3
1.1.2.3 Data Description 3

1.1.3 Benchmark Assets 4
1.1.3.1 Benchmark Results 4
1.1.3.2 Limitations & Observations shared by Pilot Study Participants 5

1.1.4 Pilot Study 2 - Pancreas Segmentation 5
1.1.4.1 Participating Institutions 5
1.1.4.2 Clinical Task 6
1.1.4.3 Data Description 6

1.1.5 Benchmark Assets 6
1.1.5.1 Benchmark Results 7
1.1.5.2 Limitations & Observations shared by Pilot Study Participants 7

1.1.6 Pilot Study 3 - Surgical Workflow Phase Recognition 8
1.1.6.1 Participating institutions 8
1.1.6.2 Clinical Task 8
1.1.6.3 Data description 8
1.1.6.4 Benchmark Assets 9
1.1.6.5 Benchmark Results 9
1.1.6.6 Limitations & Observations shared by Pilot Study Participants 10

1.2 Pilot Study 4 - Cloud Experiments 10
2 Consortia 12

2.1 AI4SafeChole Consortium 12
2.2 BraTS-2020 Consortium 12
2.3 CHAOS Consortium 12
2.4 FeTS Consortium 12

3 Supplementary References 13



1 Supplementary Method Material

1.1 Details of MedPerf Benchmarks

1.1.1 Chief use-case: MICCAI FeTS Challenge

MedPerf was publicly used for the orchestration of the Federated Tumor Segmentation (FeTS,

https://miccai2022.fets.ai) Challenge 1, the results of which were reported at the Annual

Scientific Conference of the Medical Image Computing and Computer Assisted Interventions

(MICCAI) 2022. The FeTS Challenge is the first federated learning challenge ever proposed

across all domains. MedPerf was used to orchestrate the distribution, execution, and

quantitative performance evaluation of AI models in out-of-sample data around the globe (FeTS

challenge task 2, https://www.synapse.org/fets), i.e., sites that have not contributed any patient

data in the dataset used by the model owners to train their AI models.

From a technical point of view, the FeTS Challenge Organizing Committee represented the

Benchmark Committee (according to MedPerf’s terminology), which 1) hosted an instance of the

MedPerf Server on https://fets.medperf.org, 2) provided the benchmark’s reference

implementation (i.e., Data Preparation, Model, Evaluation Metrics), and 3) created a Benchmark

on the MedPerf registry that served as its federated evaluation.

Overall, a total of 41 models were part of the FeTS federated evaluation, 5 of which were

implemented by the challenge participants, and 36 were adapted by the FeTS Organizers from

the BraTS 2021 Challenge 2. All 41 models were submitted via MedPerf by the FeTS Challenge

Organizers. MedPerf facilitated the distribution, execution, and collection of model results from

33 sites from Africa, North America, South America, Asia, Australia, and Europe (Figure 3 in

main text). On each institution the MedPerf client was installed and it was used by local

facilitators to execute on-site all models related to the benchmark. Out of 1,312 benchmark

results, 770 were gathered directly through MedPerf while the remaining ones were not

gathered during the challenge’s lifecycle, either because of time constraints on the

collaborator’s side or issues that couldn’t be covered in the expected amount of time (e.g GPU

incompatibility issues, Singularity MLCubes execution, duplicate dataset identification numbers)

. Local facilitators from multiple institutions (i.e., Data Owners according to MedPerf’s

https://miccai2022.fets.ai
https://sciwheel.com/work/citation?ids=11704295&pre=&suf=&sa=0
https://www.synapse.org/fets
https://sciwheel.com/work/citation?ids=4069788&pre=&suf=&sa=0


terminology) expressed their improved experience during the FeTS 2022 challenge when using

MedPerf compared to the FeTS 2021 iteration, which did not use MedPerf but a custom

evaluation platform. Specific improvements included substantial reduction of their time and effort

in facilitating model retrieval, experiment execution, and results submission.

1.1.2 Pilot Study 1 - Brain Tumor Segmentation

1.1.2.1 Participating Institutions

● University of Pennsylvania, Philadelphia, USA

● Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA

● University of San Francisco, San Francisco, CA, USA

1.1.2.2 Clinical Task

Gliomas are highly heterogeneous across their molecular, phenotypical, and radiological

landscape. Their radiological appearance is described by different sub-regions comprising 1) the

“enhancing tumor” (ET), 2) the gross tumor, also known as the “tumor core” (TC), and 3) the

complete tumor extent also referred to as the “whole tumor” (WT). ET is described by areas that

show hyper-intensity in T1Gd when compared to T1, but also when compared to ”healthy” white

matter in T1Gd. The TC describes the bulk of the tumor, which is what is typically resected. The

TC entails the ET, as well as the necrotic (fluid-filled) parts of the tumor. The appearance of the

necrotic (NCR) tumor core is typically hypo-intense in T1Gd when compared to T1. The WT

describes the complete extent of the disease, as it entails the TC and the peritumoral

edematous/infiltrated tissue (ED), which is typically depicted by abnormal hyper-intense signal

in T2-FLAIR. These scans, with accompanying manually approved labels by expert

neuroradiologists for these sub-regions, are provided in the International Brain Tumor

Segmentation (BraTS) challenge data2.

1.1.2.3 Data Description

The BraTS 2020 challenge dataset is a retrospective collection of 2,640 brain glioma

multi-parametric magnetic resonance imaging (mpMRI) scans, from 660 patients, acquired at 23

geographically-distinct institutions under routine clinical conditions, i.e., with varying equipment

and acquisition protocols 2,3

(https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=24282666) . The exact

mpMRI scans included in the BraTS 2020 challenge dataset are a) native (T1) and b)

https://sciwheel.com/work/citation?ids=4069788&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4730772,4069788&pre=&pre=&suf=&suf=&sa=0,0


post-contrast T1-weighted (T1Gd), c) T2-weighted (T2), and d) T2-weighted Fluid Attenuated

Inversion Recovery (T2-FLAIR). Notably, the BraTS 2020 dataset was utilized in the first

instance of the first ever federated learning challenge, namely the FeTS 2021 challenge

(https://miccai.fets.ai/) that ran in conjunction with the MICCAI 2021 conference. Standardized

pre-processing has been applied to all the BraTS mpMRI scans. This includes conversion of the

DICOM files to the NIfTI file format, co-registration to the same anatomical template (SRI24) 4,

resampling to a uniform isotropic resolution (1mm3), and finally skull-stripping 5. The

pre-processing pipeline is publicly available through the Cancer Imaging Phenomics Toolkit

(CaPTk) 4,6 and the FeTS tool 7. The detailed pre-processing steps and annotation protocol for

the BraTS dataset are available in 8

1.1.3 Benchmark Assets

A Data Preparation MLCube container is generated to structure the input sample data the way

the Model MLCube containers of this benchmark are able to ingest. The Data Preparation

MLCube reads input data and converts it into a folder structure where each subject is defined by

a folder, and checks for required inputs. For the current pilot study these inputs were the 4

structural modalities as well as the ground truth annotation. Twenty cases from the BraTS2020

validation cohort were used in this pilot experiment: 5 cases x 4 hospitals. The cases are

provided along with the code (more information in the Data and Code Availability sections).

This pilot benchmark included 3 state-of-the-art segmentation models: DeepMedic 9, DeepScan
10, and nnU-Net 11. Each model was trained on the 369 patients from the BraTS2020 training

dataset, in a central fashion, and containerized to Model MLCube. The training data was not

included in the evaluation dataset.

1.1.3.1 Benchmark Results

For each Model MLCube predictions were generated across 4 Data Owners (hereafter

referenced as H1, H2, H3 and H4) from BraTS2020, 2 containing 5 cases, 1 containing 4 and

the last one containing 6, for a total of 20 cases. These predictions are compared with the

ground truth annotations through the Evaluation Metrics MLCube. In this task, metrics such as

the Dice Similarity Coefficient (DSC), the 95th percentile of the Hausdorff distance, as well as

Precision were measured. Each Data Owner was set up as a separate Google Cloud Provider

(GCP) Virtual Machine instance (specifications: 16 CPU cores, 128GB of RAM and 1 NVIDIA

https://miccai.fets.ai/
https://sciwheel.com/work/citation?ids=23853&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12801097&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=23853,12801592&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=13747306&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11704297&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2600312&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12801595&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10130540&pre=&suf=&sa=0


Tesla T4) and a MedPerf client was installed to execute the benchmarks. Aggregated DSC

results for this pilot study included the Supplementary Table 1:

Dice Similarity Coefficient

Testing Hospital DeepMedic nnU-Net DeepScan

H1 0.8935 0.9150 0.9249

H2 0.9614 0.9703 0.7401

H3 0.9532 0.9672 0.9626

H4 0.8440 0.9570 0.8649
Supplementary Table 1. Benchmarking popular segmentation models on Brain Tumor

Segmentation (BraTS) 2020 data corresponding to 4 different hospitals (H1, H2, H3, and H4).

1.1.3.2 Limitations & Observations shared by Pilot Study Participants

● The BraTS data have been well-curated. This preprocessing step is an additional effort

that needs to be undertaken by operators interested in executing such algorithms on

their own local data. This is a major common challenge that needs to be considered

carefully due to time and budget constraints.

● The BraTS preprocessing pipeline requires manual quality checks at multiple steps (i.e.,

after multimodality co-registration, brain extraction, and generation of automated

segmentations). The current MedPerf MLCube interfaces did not provide a way to

extract outputs from different steps of a computational pipeline to enable such manual

quality checking, thereby relying completely on fully-automated processes.

● Higher level limitations: Use-inspired Quality Control (QC) tools are needed to contribute

in the automation of data inclusion, based on their quality.

1.1.4 Pilot Study 2 - Pancreas Segmentation

1.1.4.1 Participating Institutions

● Harvard School of Public Health, Boston, USA

● Dana-Farber Cancer Institute, Boston, USA



1.1.4.2 Clinical Task

Precise organ segmentation using computed tomography (CT) images is an important step for

medical image analysis and treatment planning. Pancreas segmentation involves important

challenges due to the small volume and irregular shapes of the areas of interest. In this pilot

study the goal was to perform federated evaluation across two different sites using MedPerf for

the task of pancreas segmentation, to test the generalizability of a model trained on only one of

these sites

1.1.4.3 Data Description

Two separate datasets were utilized in this pilot experiment. The first of which is the Multi-Atlas

Labeling Beyond the Cranial Vault (BTCV) dataset, which is publicly available through synapse

platform( https://www.synapse.org/#!Synapse:syn3193805). Abdominal CT images from 50

metastatic liver cancer patients and the postoperative ventral hernia patients were acquired at

the Vanderbilt University Medical Center( https://www.synapse.org/#!Synapse:syn3193805). The

abdominal CT images were registered using NiftyReg 12,13. In addition to the BTCV dataset,

another publicly available dataset from TCIA (The Cancer Imaging Archives) was utilized

(https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT); the National Institute of

Health Clinical Center curated this dataset with 80 abdominal scans, from 53 male and 27

female subjects. Of which 17 patients had known kidney donations that confirmed healthy

abdominal regions, and the remaining patients were selected after examination confirmed that

the patients had neither pancreatic lesions nor any other significant abdominal abnormalities.

Visual inspection of both datasets confirmed that they were appropriate and complementary

candidates for the pancreas segmentation task. Out of the 130 total cases, 10 subjects were

used for inference, 5 from each dataset. Patients with IDs 1 to 5 were randomly chosen from

each dataset.

1.1.5 Benchmark Assets

In this pilot study benchmark the Data Preparation MLCube processed CT images and saved

them as numpy arrays. In general, 3D volumes of abdominal CT scans can have different

spatial orientation based on the type of acquisition tool used and how it was placed. So the Data

Preparation MLCube applied a set of preprocessing steps (i.e. rotations, scaling) to the BTCV

volumes to become aligned with the TCIA volumes. The Data Preparation MLCube converted

https://www.synapse.org/#!Synapse:syn3193805
https://www.synapse.org/#!Synapse:syn3193805).
https://sciwheel.com/work/citation?ids=12801605,3904766&pre=&pre=&suf=&suf=&sa=0,0
https://secure-web.cisco.com/1OdLwT0DJkfXPdHWoqPBzUNiLkEVwz9CZs2-zQFnXrfQ4x1YNQxzjTFCSItoUCCdv4dLLGAOcyT8Lm-6NF7sSzvErSVdJa2bIoxcSyheSzg2Y0pYVjUevkMeXOH3MZZmyAjEH-CvbxXU0Mdtbq5agQGsVJwo5cf10fO8oREsSNHOxLaX_9VsLPytNDEkEFZZGMrhwK1GW9-eiligqUmYEsIlAihEd2BWOQcuypLlTlzxivuYu_sq3JRPstMCuYsrsMa5YjYsINPFT1x0p9SBhriyqCOJgXtK9UBn5C3DyHWPN6EcPo_lLR9YeJM7zNBQkFYICjnQdYxRtPFLOPXGfAw/https%3A%2F%2Fwiki.cancerimagingarchive.net%2Fdisplay%2FPublic%2FPancreas-CT


labels into NIfTI data format. Since the BTCV dataset is a multi-organ dataset, its labels were

altered such that all organs other than the pancreas are regarded as background.

The Model MLCube utilized Recurrent Saliency Transformation Network (RSTN) model 14 for

pancreas segmentation in CT images whose codebase is publicly available in PyTorch

(https://github.com/twni2016/OrganSegRSTN_PyTorch). The model was already pretrained on

the TCIA dataset on patients subjects with IDs 21 to 82 (60 subjects), as described in their

GitHub repository

(https://github.com/twni2016/OrganSegRSTN_PyTorch#5-pre-trained-models-on-the-nih-dataset

).

The RSTN model is a 2-stage model: in coarse stage, inference is done on each 2D slice of the

three possible planar views, and in the fine stage, previous stage predictions are fused together

and processed. The Model MLCube implemented saved all the predictions as compressed

numpy arrays in a unified structure ready for evaluation.

The Evaluation Metrics MLCube finally evaluated the output segmentations generated from the

Model MLCube to produce scores using the DSC metric.

1.1.5.1 Benchmark Results

To simulate the Data Owners hosting the TCIA and BCTV datasets, two virtual instances were

setup on GCP (specifications of each: 8 CPU cores, 40GB of RAM, and 1 NVIDIA Tesla T4)

each one with the MedPerf client installed. The pretrained model was evaluated using the

default MedPerf server on the two virtual instances. Coarse inference DSC was recorded at

68.01% (TCIA) and 50.44% (BTCV), while the fine inference DSC resulted in 81.30% (TCIA)

and 67.27% (BTCV).

1.1.5.2 Limitations & Observations shared by Pilot Study Participants

Similar to the previous pilot study observation, in real world scenarios where pancreas

segmentation benchmarks are carried out, the Benchmark Committee must provide a

preprocessing reference implementation to avoid data preparation issues that may arise due to

the image orientation and scale so that input data are harmonized across all participating Data

Owners and submitted models can be correctly evaluated. For now, it seems that the MedPerf

ecosystem can be a solution for the mentioned concerns. The Benchmark Committee will have

the authority to provide instructions for Model MLCube authors to prepend the necessary data

https://sciwheel.com/work/citation?ids=14401584&pre=&suf=&sa=0
https://github.com/twni2016/OrganSegRSTN_PyTorch
https://github.com/twni2016/OrganSegRSTN_PyTorch#5-pre-trained-models-on-the-nih-dataset


preprocessing logic to their models, and ensure the compatibility between the possibly variable

models input and the unified benchmark data preparation output.

1.1.6 Pilot Study 3 - Surgical Workflow Phase Recognition

1.1.6.1 Participating institutions

● University Hospital of Strasbourg, France

● Policlinico Universitario Agostino Gemelli, Rome, Italy

● Azienda Ospedaliero-Universitaria Sant’Andrea, Rome, Italy

● Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy

● Monaldi Hospital, Naples, Italy

1.1.6.2 Clinical Task

Surgical phase recognition is a classification task in which each video frame from a recorded

surgery is assigned to a predefined phase that gives a coarse description of the surgical

workflow 15. This task is a building block for context-aware systems that help in assisting

surgeons for better Operating Room (OR) safety 16.

1.1.6.3 Data description

In this pilot study data from Multichole2022 17 was used. Multichole2022 is a multicentric dataset

comprising videos of recorded laparoscopic cholecystectomy surgeries, annotated for the task

of surgical phase recognition. The dataset consists of 180 videos in total, of which 56 videos

were used as the evaluation dataset while the rest of the videos (i.e., 124) were used to train a

centralized model. The videos were acquired from 5 hospitals: 32 videos from the University

Hospital of Strasbourg, France (part of public dataset Cholec80 18 ), and 6 videos were taken

from each of the following Italian hospitals: Policlinico Universitario Agostino Gemelli, Rome;

Azienda Ospedaliero-Universitaria Sant’Andrea, Rome; Fondazione IRCCS Ca’ Granda

Ospedale Maggiore Policlinico, Milan; and Monaldi Hospital, Naples. These data is private.

Videos were annotated according to the Multichole2022 annotation protocol described in 17 on 6

separate surgical phases: Preparation, Hepatocytic Triangle Dissection, Clipping and Cutting,

Gallbladder Dissection, Gallbladder Packaging, and Cleaning and Coagulation.

https://sciwheel.com/work/citation?ids=13839357&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11664447&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14536963&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7954454&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14536963&pre=&suf=&sa=0


1.1.6.4 Benchmark Assets

In this study the Data Preparation MLCube transformed raw data (ie. videos and labels) into a

standard format to be used by the Model MLCube subsequently. Specifically, the Data

Preparation MLCube extracted video frames at a rate of 1 frame per second, cropped them into

250x250 images, and associated each frame with the ground truth label.

The Model MLCube implemented the TeCNO model 19, which consists of two inference stages:

feature extraction by a ResNet50 model, and prediction by a multi-stage temporal convolutional

network model. The Model MLCube generated predictions for each frame of each video, which

were used by the Evaluation Metrics MLCube for model performance evaluation. Unlike in 19 ,

Multichole2022 has no tool labels, and thus the model in this pilot experiment involved only

phase classification training. The model was trained beforehand separately on each hospital's

dataset, generating 5 models. Model weights are private for now. Unlike the other pilot studies,

this benchmark used the same model architecture trained separately on data from each different

hospital (i.e., Data Owner). Moreover, compared to the other pilot studies, this study utilized

privately owned data demonstrating how MedPerf can operate in privacy-constrained

environments.

Following the most common metrics used for assessing surgical phase recognition

performance, the Evaluation Metrics MLCube contained measurement of the following metrics:

Accuracy, F1-score, Precision, Recall, and Jaccard Score.

1.1.6.5 Benchmark Results

Testing Hospitals

Training
Hospital H1 H2 H3 H4 H5

H1 78.2 62.52 38.94 61.19 59.92

H2 41.98 76.06 44.47 27.01 42.43

H3 49.65 65.15 63.42 67.74 56.97

H4 41.72 50.5 40.62 66.17 56.88

H5 39.42 51.15 30.93 41.49 75.94

https://sciwheel.com/work/citation?ids=12801627&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12801627&pre=&suf=&sa=0


Supplementary Table 2. F1-score results for Pilot 3. In this pilot the overall F1-score metric was
reported for each performed inference experiment. Rows correspond to the model used, and

columns correspond to the data on which inference was run. H1 to H5 correspond to the 5

hospital sub-datasets in Multichole2022; for further details on the data acquisition, consult

reference 17 from the main text.

1.1.6.6 Limitations & Observations shared by Pilot Study Participants

● Data preparation is a very important step in surgical videos. Valid datasets need to be

processed accordingly, and invalid ones should be identified and rejected during the

dataset registration process. The Benchmark Committee is the ultimate authority to

make sure that the Data Preparation MLCube is imposed strictly across Data Owners.

This is a necessary but not trivial task and tools that make this task easier (e.g., Quality

Control) should be further investigated.

● Data annotation is also a major challenge. In particular when it comes to a benchmark

an annotation protocol consensus is required. Perhaps multiple annotation protocols can

be explored within a single benchmark depending on the group’s requirements.

1.2 Pilot Study 4 - Cloud Experiments

We proceeded to further validate MedPerf on the cloud. Towards this end, we executed various

parts of the MedPerf architecture across different cloud providers. Google Cloud Platform (GCP)

was used across all experiments for hosting the MedPerf server. The Brain Tumor

Segmentation (BraTS) Benchmark (Pilot 1), as well as part of the Pancreas Segmentation

Benchmark (Pilot 2), were executed inside a GCP Virtual Machine with 128GB of RAM and an

Nvidia T4. The Surgical Workflow Phase Recognition Benchmark (Pilot 3) was executed on

internal servers due to privacy concerns.

Lastly, we ran a Chest X-Ray Pathology Classification Benchmark to demonstrate the feasibility

of running federated evaluation across different cloud providers. We used the CheXpert dataset

(https://stanfordmlgroup.github.io/competitions/chexpert/) and a Densenet pre-trained model

from the TorchXRayVision library (https://github.com/mlmed/torchxrayvision). For this, the

CheXpert 20 small validation dataset was partitioned into 4 splits, and executed inside Virtual

https://sciwheel.com/work/citation?ids=14536963&pre=&suf=&sa=0
https://stanfordmlgroup.github.io/competitions/chexpert/
https://github.com/mlmed/torchxrayvision
https://sciwheel.com/work/citation?ids=8108993&pre=&suf=&sa=0


Machines provisioned within AWS, Alibaba, Azure, and IBM. As with the other pilot experiments,

all results were uploaded to the MedPerf server hosted on GCP.

Supplementary Figure 1 summarizes which cloud provider each MedPerf component (i.e.,

server, client) and dataset was executed on, and in the bottom part we present where the data

was collected for all pilots. The code for this pilot is available inside MedPerf’s repository

(https://github.com/mlcommons/medperf#pilot-4---cloud-experiments)

Supplementary Figure 1. Execution of pilot benchmarks on multiple cloud providers. Details
are provided in our repository: https://github.com/mlcommons/MedPerf.

https://github.com/mlcommons/medperf#pilot-4---cloud-experiments
https://github.com/mlcommons/medperf
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