SUPPLEMETARY MATERIAL

A CAG repeat threshold for therapeutics targeting somatic instability in Huntington's disease.

Sarah G. Aldous¹, Edward J. Smith¹, Christian Landles¹, Georgina F. Osborne¹,
Maria Cañibano-Pico¹, Iulia M. Nita¹, Jemima Phillips¹, Yongwei Zhang²,
Bo Jin², Marissa B. Hirst³, Caroline L. Benn⁴, Brian C. Bond⁵,
Winfried Edelmann², Jonathan R. Greene³, Gillian P. Bates¹

Supplementary Figure 1 Schematic showing the position of the QuantiGene probes across the *Htt* **gene.** The *Htt*_intron1_polyA1 and *Htt*_intron1_polyA2 probes are located before the activated polyA sites and detect the *Htt1a* transcript. The Htt_intron1_3' and Htt_intron3 probes detect unspliced pre-mRNA. The Htt_exons50-53 and Htt_short3'UTR probes detect the full-length processed mRNA. UTR = untranslated region, bp = base pairs.

<i>Htt</i> plex	Accession number	Specific location	Target	
Htt_intron1_pA1	GS03082	521-983		
Htt_intron1_pA2	GS03084	1104-1465		
<i>Htt_</i> intron1_3'	GS03085	16339-16922		
Htt_intron3	GS03083	30195-30846	Huntingtin	
Htt_exons 50-53	NM_010414	6901-7433]	
<i>Htt_</i> short 3'UTR	NM_010414	9553-9993		
Eif4a2	NM_013506	710-1271		
Rpl13a	NM_009438	2-467	Housekeeping gene	
Canx	NM_007597	1195-1720		
Atp5b	NM_016774	22-406		

Supplementary Table 1. The multiplex QuantiGene assay for the detection of *Htt* transcripts.

Supplementary Table 2. The multiplex QuantiGene assay for the detection of DNA mis-match repair transcripts.

MMR plex	Accession number	Specific location	Target
Msh3 4_7	NM_010829.2	582-1140	
Msh2	NM_008628.3	2260-2727	
Msh6	NM_010830.2	3638-4124	
Exol*	NM_012012.4	4041-4496	Gene of interest
Mlh1	NM_026810.2	1715-2065	
Mlh3	NM_175337.2	3393-3864	
Pms1	NM_153556.2	2464-2878	
Pms2	NM_008886.2	1660-2043	
Fanl	NM_177893.4	2437-2585	
Eif4a2	NM_013506	710-1271	
Rpl13a	NM_009438	2-467	Housekeeping gene
Canx	NM_007597	1195-1720	
Atp5b	NM_016774	22-406	

**Exo1* not detected above background in any region analysed.

Supplementary Figure 2. Comparison of the transcriptional dysregulation signature in zQ175 mice with that in knock-in models published previously. (A) Heatmap for dysregulated genes in the zQ175 striatum in this 'current study' at 6 months of age compared to dysregulated data sets, for zQ175, Q140 and Q111 knock-in models at 6 and 10 months of age, using data from Langfelder et al. (2016).¹ There is significant overlap in the dysregulation detected in the current study with that in the previous datasets. (B) Gene set overrepresentation of the total 2,486 genes dysregulated in the zQ175 striatum analysed against the GOBP to identify biological pathways that are dysregulated. Of the 227gene sets that had q < 0.01, the top 10 ranked by the GeneRatio, which is the number of dysregulated genes in the given gene set divided by the number of dysregulated genes present overall in the GOBP (gene ontology biological process) gene set collection.

0.025

0.030

GeneRatio

0.035

0.040

learning or memory

learning

memory-

0.020

в

Supplementary Figure 3. Ablation of MSH3 has no effect on the expression levels of mis-match repair gene transcripts. QuantiGene analysis of the levels of DNA mis-match repair transcripts measured in cortex, striatum, and brainstem. The $Msh34_7$ assay is located in deleted region of the genetically modified Msh3 gene and levels were reduced in Msh3+/- and zQ175:Msh3+/- mice and ablated in Msh3+/- and zQ175:Msh3+/- mice, as expected. The other mis-match repair transcripts show no consistent change in expression level. One-way ANOVA with Tukey's correction. Error bars = SEM. $*P \le 0.05$, $**P \le 0.01$, $***P \le 0.001$. N = 6 /genotype. The test statistic, degrees of freedom and p values are summarised in Supplementary Table 6. WT = wild-type, MFI = mean fluorescence intensity HK = housekeeping genes.

Supplementary Figure 4 Ablation of MSH3 has no effect on the expression levels or processing of *Htt* transcripts. QuantiGene analysis of full-length *Htt* and *Htt1a* transcripts in the striatum, cortex, and brainstem. *Htt1a* was detected in zQ175 mice at 6 months of age by *Htt_*intron1_polyA1 and *Htt_*intron1_polyA2 assays. The *Msh3* genotype had no consistent effect on *Htt1a* levels or full-length *Htt* levels. The *Htt_*intron1_3' and *Htt_*intron3 probes acted as pre-mRNA controls. One-way ANOVA with Tukey's correction. Error bars = SEM. $*P \le 0.05$, $**P \le 0.01$, $***P \le 0.001$. N = 6 /genotype. The test statistic, degrees of freedom and *p* values are summarised in Supplementary Table 7. WT = wild-type, MFI = mean fluorescence intensity HK = housekeeping genes.

Supplementary Figure 5. Full-length western blots for Figure 1C. (A) membrane was probed with the MSH3 antibody and the expected band of ~130 kDa was detected. X indicates likely bubble/transfer issue. (B) MSH3 band intensity was quantified using BioRad ImageLab volume tool, using rectangles of same size across all lanes. (C) Blot was then probed with the α -tubulin antibody and (D) quantified with ImageLab. (E) Image of molecular weight sizing ladders and band sizes.

Supplementary Table 3. The test statistic, degrees of freedom and p values for the one-way ANOVA of data presented in Figure 1B and 1C

Cortex, Msh3 quantification				
RNA	F (2, 13) = 32.03	P<0.001		
Protein	F (2, 10) = 15.29	P<0.001		

Supplementary Table 4. The mixed effects analysis of data presented in Figure 3A and 3B.

	Instability index		Change in mode	
Row Factor (Tissue)	F(5.1, 103.0) = 291.2	P<0.0001	F(5.9, 117.4) = 270.6	P<0.0001
Column Factor (Genotype)	F(2, 21) = 375.1	P<0.0001	F(2, 21) = 103.2	P<0.0001
Row Factor	F(26, 264) = 32.02	P<0.0001	F(26, 260) = 18.63	P<0.0001
(Tissue x Genotype)				
Random effects	SD	Variance	SD	Variance
Subject (Mouse)	0.3914	0.1532	0.4406	0.1942
Residual	0.8791	0.7728	0.8198	0.6721

SD = standard deviation

Supplementary Table 5. The test statistic, degrees of freedom and *p* values for the data presented in Figure 7

Two-way ANOVA for the comparison of wild-type and zQ175 mice at 2 and 6 months of age.

	4C9- MW8						
	Striatum		Cortex		Brain stem		
Age*Genotype	F (1, 35) = 635.9	P<0.001	F (1, 35) = 1893	P<0.001	F (1, 35) = 121.6	P<0.001	
Age	F (1, 35) = 682.9	P<0.001	F (1, 35) = 1825	P<0.001	F (1, 35) = 115.4	P<0.001	
Genotype	F (1, 35) = 1663	P<0.001	F (1, 35) = 3000	P<0.001	F (1, 35) = 305.7	P<0.001	
	2B7– MW8	2B7-MW8					
	Striatum		Cortex		Brain stem		
Age*Genotype	F (1, 35) = 462.0	P<0.001	F (1, 35) = 232.4	P<0.001	F (1, 33) = 1.928	P<0.001	
Age	F (1, 35) = 462.0	P<0.001	F (1, 35) = 251.0	P<0.001	F (1, 33) = 5.730	P<0.001	
Genotype	F (1, 35) = 4046	P<0.001	F (1, 35) = 2345	P<0.001	F (1, 33) = 104.5	P<0.001	

One-way ANOVA for the comparison of the six genotypes at 6 months of age.

4C9- MW8								
Striatum		Cortex		Brain stem				
F (5, 54) = 295.3	P<0.001	F (5, 53) = 1805	P<0.001	F (5, 54) = 295.3	P<0.001			
2B7- MW8								
Striatum		Cortex		Brain stem				
<i>H</i> =45.1, df=57	P<0.001	F (5, 54) = 462.8	P<0.001	F (5, 50) = 30.75	P<0.001			

	Cortex		Striatum		Brain stem	
Msh3 4_7	F (5, 30) = 124.8	P<0.001	F (5, 30) = 31.98	P<0.001	F(5, 30) = 164.2	P<0.001
Msh2	F (5, 30) = 3.751	P=0.009	F (5, 30) = 0.7020	P=0.63	F (5, 29) = 0.9925	P=0.44
Msh6	F (5, 30) = 1.994	P=0.11	F(5, 30) = 1.421	P=0.25	F (5, 30) = 0.5684	P=0.72
Mlh1	F (5, 30) = 2.580	P=0.05	F (5, 29) = 1.586	P=0.20	F(5, 30) = 0.3694	P=0.87
Mlh3	F (5, 30) = 0.4578	P=0.80	F (5, 30) = 2.219	P=0.08	F (5, 30) = 1.612	P=0.19
Pms1	F (5, 30) = 0.9195	P=0.48	F (5, 30) = 1.975	P=0.11	F (5, 30) = 0.4686	P=0.80
Pms2	F (5, 30) = 1.359	P=0.27	F (5, 29) = 0.5190	P=0.76	F (5, 30) = 0.3698	P=0.87
Fan1	F (5, 30) = 1.202	P=0.33	F (5, 30) = 2.497	P=0.05	F (5, 30) = 1.017	P=0.43

Supplementary Table 6. The test statistic, degrees of freedom and p values for the one-way ANOVA presented in Supplementary Figure 3

Supplementary Table 7. The test statistic, degrees of freedom and p values for the one-way ANOVA presented in Supplementary Figure 4

Assay	Cortex		Striatum		Brain stem	
Htt_intron1_pA1	F(5, 30) = 17.55	P<0.0001	F(5, 30) = 23.04	P<0.0001	F (5, 30) = 8.143	P<0.0001
<i>Htt_</i> intron1_pA2	F (5, 30) = 47.24	P<0.0001	F(5, 30) = 25.17	P<0.0001	F (5, 30) = 4.575	P=0.0032
<i>Htt_</i> intron1_3'	F (5, 30) = 2.613	P=0.0446	F(5, 30) = 2.649	P=0.0425	F(5, 30) = 2.208	P=0.0796
Htt_intron3	F (5, 30) = 12.43	P<0.0001	F(5, 30) = 11.14	P<0.0001	F (5, 30) = 6.694	P=0.0003
<i>Htt_</i> exons50_53	F (5, 30) = 6.632	P=0.0003	F(5, 30) = 4.240	P=0.0049	F(5, 30) = 0.6347	P=0.6748
<i>Htt_</i> short3'UTR	F(5, 30) = 1.094	P=0.3842	F(5, 30) = 0.2239	P=0.9493	F(5, 30) = 1.233	P=0.3185

References

1. Langfelder P, Cantle JP, Chatzopoulou D, et al. Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice. *Nat Neurosci*. Apr 2016;19(4):623-33. doi:10.1038/nn.4256