iScience, Volume 27

Supplemental information

Experimentally validated inverse

design of multi-property Fe-Co-Ni alloys

Shakti P. Padhy, Varun Chaudhary, Yee-Fun Lim, Ruiming Zhu, Muang Thway, Kedar Hippalgaonkar, and Raju V. Ramanujan

S1. Distribution of the properties

Figure S1 shows the distribution of M_s (T), H_c (A/m), T_c (K), ρ ($\mu\Omega \cdot cm$), σ (MPa), σ_y (MPa), δ (%), H_V (HV) and *Cost* (USD/kg). It can be observed that the reported M_s , H_c , T_c , ρ , and δ values are more concentrated to values in the range 2-2.5 T, 0-500 A/m, 1150-1250 K, 0-20 $\mu\Omega \cdot cm$, and 0-10%, respectively. σ , σ_y , H_V , and *Cost* have a uniform distribution over large range of values but have comparative less data for respective higher values. From the perspective of the machine learning process for designing alloys, both attractive and unattractive property values are beneficial and reduce the bias in model building and prediction.

Figure S1. Distribution of (a)-(c) magnetic properties (M_s , H_c , T_c), (d) electrical resistivity (ρ), (e)-(h) mechanical properties (σ , σ_y , δ , H_v), and (w) Cost in the database. The solid continuous lines are kernel density estimations which show the probability density function of the data entries for each property.

S2. Hyperparameter optimization and model building for imputation strategy

The 12 types of ML models used in the imputation strategy, as explained in Section 3, are:

- (i) Linear Regression (Linear),
- (ii) Ridge Regression (Ridge),

- (iii) Lasso Regression (Lasso),
- (iv) K-Nearest Neighbors Regression (KNNR),
- (v) Support Vector Regression (SVR),
- (vi) Decision Tree Regression (DTR),
- (vii) Gradient Boosting Regression (GBR),
- (viii) Random Forest Regression (RFR),
- (ix) Extra Trees Regression (ETR),
- (x) XGBoost Regression (XGBR),
- (xi) Deep Neural Network Regression with same number of units in all the hidden layers(DNNR_rectangle), and
- (xii) Deep Neural Network Regression with different number of units in all the hidden layers (DNNR_random).

A 5-fold cross validation hyperparameter optimization for all the models, except Linear and DNN models, was performed. For Lasso and Ridge, LassoCV and RidgeCV was used from *Scikit-Learn* respectively to optimize hyperparameters. By default, LassoCV and RidgeCV incorporate 5-fold cross validation to find the optimized alpha and for this training data (80% of total no. of data points) was used. For DNN models, the Hyperband¹ algorithm was used from *KerasTuner*² to obtain optimized hyperparameters. For other models, *gp_minimize* (Bayesian Optimization algorithm based on Gaussian process) from *Scikit-Optimize*³ was used for hyperparameter optimization with a target to minimize the objective function of average of mean absolute error (MAE) for 5-fold cross validation on training data set (80% of total no. of data points). The BO algorithm followed in this function is described in **Table S1** below. According to the imputation strategy narrated in *Section 2.2*, the list of various ML regression models used and their selected hyperparameters for optimization is shown in **Table S2**. In **Table S3**, optimized hyperparameters value for each step of the imputation strategy is reported.

- Table S1. BO algorithm followed in gp_minimize from Scikit-Optimize³
- 1. The gains are initialized, $g_i = 0$
- 2. for $t = 1, 2, 3, \dots$ do

4. Out of 10000 candidates, the next X_{best} is chosen using *softmax*(ηg_i).

^{3.} Each acquisition functions is optimized independently to propose a candidate X_i. A total of 10000 candidates are proposed.

- 5. The surrogate model (Gaussian Process regression to model the defined objective function) is fitted with (X_{best}, Y_{best}) .
- 6. The gains are updated, $g_i = \mu(X_i)$
- 7. end for

 Table S2. Different ML regression models and their hyperparameters used for optimization for imputation strategy

ML Regression Models	Hyperparameters for optimization			
Linear	_			
Ridge	alpha			
Lasso	alpha			
KNNR	n_neighbors, algorithm, leaf_size, p			
SVR	kernel, gamma, C			
DTR	criterion, splitter, max_depth			
GBR	learning_rate, loss, n_estimators, max_depth, alpha			
RFR	n_estimators, max_depth			
ETR	n_estimators, max_depth			
XGBR	eta, n_estimators, max_depth, subsample, colsample_bytree			
DNND matter als	num_dense_layers, units (same for all dense layers), activation,			
DINNK_rectangle	learning_rate, optimizer, batch_size, epochs			
	units (for each dense layer), activation, learning_rate, optimizer,			
DININK_raildoin	batch_size, epochs			

Table S3. Optimized hyperparameters value for different ML regression	n models for imputation strategy
---	----------------------------------

Mapping	ML Regression Models	Optimized Hyperparameters value		
	Linear	-		
	Ridge	alpha = 7.478		
	Lasso	alpha = 0.0024		
Composition	KNNRn_neighbors = 9, algorithm = 'auto', leaf_size = 1			
to M_s	SVR	kernel = 'rbf', gamma = 0.0051, C = 100		
(no. of data	DTR	criterion = 'absolute_error', splitter = 'random', max_depth = 21		
points = 907)	GBR	learning_rate = 0.094, loss = 'quantile', n_estimators = 677,		
	ODK	$max_depth = 50$, $alpha = 0.55$		
	RFR	n_estimators = 2000, max_depth = 18		
	ETR	n_estimators = 1337, max_depth = 26		

	VCPD	eta = 0.149, n_estimators = 139, max_depth = 20, subsample = 1,		
	AODK	$colsample_bytree = 0.794$		
		num_dense_layers = 2, units (same for all dense layers) = 73,		
	DNNR_rectangle	activation = 'relu', learning_rate = 0.0262, optimizer = 'Adam',		
		$batch_size = 43$, $epochs = 100$		
		num_dense_layers (same as DNNR_rectangle) = 2, units (for		
	DNNR_random	each dense layer) = (156, 34), activation = 'relu', learning_rate =		
		0.008, optimizer = 'RMSprop', batch_size = 8, epochs = 100		
	Linear	_		
	Ridge	alpha = 5.719		
	Lasso	alpha = 0.102		
	KNNR	n_neighbors = 3, algorithm = 'brute', leaf_size = 50, p = 1		
	SVR	kernel = 'rbf', gamma = 0.194, C = 90.414		
	DTR	criterion = 'absolute_error', splitter = 'random', max_depth = 18		
	CDD	learning_rate = 0.036, loss = 'huber', n_estimators = 95,		
Composition	UDK	$max_depth = 7$, $alpha = 0.012$		
to log H	RFR	n_estimators = 227, max_depth = 11		
$(n_{c}, of data)$	ETR	n_estimators = 347, max_depth = 12		
(10.01 data)	XGBR	eta = 0.022, n_estimators = 179, max_depth = 20, subsample =		
points = 002)	AUDK	0.433 , colsample_bytree = 1		
		num_dense_layers = 9, units (same for all dense layers) = 138,		
	DNNR_rectangle	activation = 'tanh', learning_rate = 0.00065, optimizer =		
		'RMSprop', batch_size = 56, epochs = 100		
		num_dense_layers (same as DNNR_rectangle) = 9, units (for		
		each dense layer) = (686, 837, 456, 609, 987, 493, 749, 423, 71),		
	DININK_random	activation = 'elu', learning_rate = 0.000084, optimizer =		
		'RMSprop', batch_size = 71, epochs = 100		
	Linear	-		
	Ridge	alpha = 48.901		
Commonition	Lasso	alpha = 0.078		
Composition to $log_{10}T_c$ (no. of data points = 874)	KNNR	n_neighbors = 9, algorithm = 'kd_tree', leaf_size = 1, p = 1		
	SVR	kernel = 'rbf', gamma = 0.132, C = 100		
	DTR	criterion = 'squared_error', splitter = 'best', max_depth = 48		
	GBR	learning_rate = 0.0086, loss = 'huber', n_estimators = 1000,		
		$max_depth = 41$, $alpha = 0.9$		
	RFR	n_estimators = 1, max_depth = 37		

	ETR n_estimators = 282, max_depth = 44			
	XGBR	eta = 0.456, n_estimators = 148, max_depth = 20, subsample = 1,		
		$\frac{1}{1} = \frac{1}{1} = \frac{1}$		
	DNND vestovala	num_dense_nayers = 4, units (same for an dense nayers) = 48,		
	DININK_rectangle	activation – refu, learning_rate – 0.0027 , optimizer – Adam,		
		batch_size = 47, epochs = 100		
		num_dense_layers (same as DNNR_rectangle) = 4, units (for		
	DNNR_random	each dense layer) = $(389, 111, 139, 249)$, activation = 'tanh',		
	_	learning_rate = 0.0022, optimizer = 'Adam', batch_size = 95,		
		epochs = 100		
	Linear	-		
	Ridge	alpha = 21.868		
	Lasso	alpha = 0.012		
	KNNR	n_neighbors = 4, algorithm = 'ball_tree', leaf_size = 1, p = 1		
	SVR	kernel = 'rbf', gamma = 0.574, C = 28.092		
	DTR	criterion = 'squared_error', splitter = 'random', max_depth = 39		
	GBR	learning_rate = 0.0175, loss = 'absolute_error', n_estimators =		
Composition		924, max_depth = 39, alpha = 0.248		
to $log_{10}\rho$ (no.	RFR	n_estimators = 2000, max_depth = 25		
of data points	ETR	n_estimators = 383, max_depth = 16		
= 421)	VCDD	eta = 0.082, n_estimators = 200, max_depth = 8, subsample =		
	XGBR	0.403 , colsample_bytree = 1		
		num_dense_layers = 2, units (same for all dense layers) = 469,		
	DNNR_rectangle	activation = 'tanh', learning_rate = 0.00019, optimizer = 'Adam',		
		$batch_size = 22$, $epochs = 100$		
		num_dense_layers (same as DNNR_rectangle) = 62units (for		
	DNNR random	each dense layer) = (828, 118), activation = 'tanh', learning rate =		
		0.00036, optimizer = 'Adam', batch size = 18, epochs = 100		
	Linear	_		
	Ridge	alpha = 21.868		
Composition	Lasso	alpha = 0.000001		
to $log_{10}\delta$ (no.	KNNR	n neighbors = 3, algorithm = 'auto', leaf size = 50, $p = 1$		
of data points	SVR	kernel = 'rbf', gamma = 0.013 , C = 100		
= 246)	DTR	criterion = 'absolute error'. splitter = 'random'. max depth = 16		
,		learning rate = 0.024 , loss = 'absolute error', n estimators = 354		
	GBR	$\max \text{ denth} = 7. \text{ alpha} = 0.028$		
		_ · · r · · · · · r · · · · c · · · c · · · · c · · · · · · · · · · · · · · · · · · ·		

	DED	200 1 1 40				
	RFR	$n_{estimators} = 390, max_{depth} = 40$				
	ETR	$n_{estimators} = 7, max_{depth} = 12$				
	XGBR	eta = 0.0848, n_estimators = 168, max_depth = 16, subsample =				
		0.405 , colsample_bytree = 0.213				
		num_dense_layers = 6, units (same for all dense layers) = 431,				
	DNNR_rectangle	activation = 'elu', learning_rate = 0.000084, optimizer = 'Adam',				
		$batch_size = 9$, $epochs = 100$				
		num_dense_layers (same as DNNR_rectangle) = 6, units (for				
	DNNR random	each dense layer) = (579, 627, 291, 431, 410, 877), activation =				
	DIVIN_Tandom	'tanh', learning_rate = 0.00027, optimizer = 'Adam', batch_size =				
		32, epochs $= 100$				
	Linear	-				
	Ridge	alpha = 0.000001				
	Lasso	alpha = 0.000001				
	KNNR	n_neighbors = 5, algorithm = 'auto', leaf_size = 1, p = 1				
$log_{10}\sigma$ to	SVR	kernel = 'rbf', gamma = 0.022, C = 96.342				
$log_{10}H_V$ (no.	DTR	criterion = 'squared_error', splitter = 'random', max_depth = 7				
of data points	GBR	learning_rate = 0.021, loss = 'squared_error', n_estimators = 947,				
= 106)		$max_depth = 1$, $alpha = 0.9$				
	RFR	n_estimators = 596, max_depth = 4				
	ETR	n_estimators = 49, max_depth = 4				
	VCDD	eta = 0.205, n_estimators = 92, max_depth = 1, subsample =				
	AODK	0.161 , colsample_bytree = 0.005				
	Linear	-				
	Ridge	alpha = 0.391				
	Lasso	alpha = 0.000001				
	KNNR	n_neighbors = 12, algorithm = 'ball-tree', leaf_size = 45, p = 5				
$log_{10}\sigma_y$ to	SVR	kernel = 'sigmoid', gamma = 0.05, C = 100				
$log_{10}H_V$ (no.	DTR	criterion = 'squared_error', splitter = 'random', max_depth = 9				
of data points	CDD	learning_rate = 0.058, loss = 'quantile', n_estimators = 521,				
= 89)	GBK	$max_depth = 34$, $alpha = 0.211$				
	RFR	$n_{estimators} = 7, max_{depth} = 41$				
	ETR	n_estimators = 2000, max_depth = 6				
		eta = 1, n_estimators = 104, max_depth = 1, subsample = 1,				
	AGBK	$colsample_bytree = 0.005$				
	Linear	-				

	Ridge	alpha = 37.395		
	Lasso	alpha = 0.035		
	KNNR	n_neighbors = 4, algorithm = 'kd_tree', leaf_size = 50, p = 1		
	SVR	kernel = 'rbf', gamma = 0.085 , C = 100		
	DTR	criterion = 'absolute_error', splitter = 'random', max_depth = 17		
	GBR	learning_rate = 0.052, loss = 'quantile', n_estimators = 280,		
	ODIC	$max_depth = 50$, $alpha = 0.373$		
Composition	RFR n_estimators = 135, max_depth = 10			
to $log_{10}H_V$	ETR	$n_{estimators} = 1424, max_{depth} = 15$		
(no. of data	XGBR	eta = 0.033, n_estimators = 86, max_depth = 14, subsample =		
points = 331)	AODA	0.858 , colsample_bytree = 1		
		num_dense_layers = 8, units (same for all dense layers) = 385,		
	DNNR_rectangle	activation = 'tanh', learning_rate = 0.0021, optimizer = 'SGD',		
		$batch_size = 48$, $epochs = 100$		
	DNNP random	num_dense_layers (same as DNNR_rectangle) = 8, units (for		
		each dense layer) = (345, 623, 985, 170, 251, 416, 473, 858),		
		activation = 'elu', learning_rate = 0.00028, optimizer = 'Adam',		
		$batch_size = 59$, $epochs = 100$		

S3. Hyperparameter optimization and performance of multi-property models

After filling the empty spaces in database using the imputation strategy, the filled database of 1208 data points was used to build multi-property predictive models as described in *Section 2.3*. Table S4 describes the ML regression models used and their selected hyperparameters for optimization. The optimization of hyperparameters is performed in a similar way as narrated in Section S2. For each of the ML regression models, the optimized hyperparameters value for the models RFR, ETR, DNNR_rectangle and DNNR_random and set hyperparameters value for the models NNR_3layers and NNR_4layers in Table S5.

 Table S4. Different multi-property ML regression models and their hyperparameters used for optimization

ML Regression Models	Hyperparameters for optimization
RFR	n_estimators, max_depth, min_samples_split, min_samples_leaf

n_estimators, max_depth, min_samples_split, min_samples_leaf			
num_dense_layers, units (same for all dense layers), activation,			
learning_rate, optimizer, batch_size, epochs			
units (for each dense layer), activation, learning_rate, optimizer,			
batch_size, epochs			

Table S5. Optimized hyperparameters value for different multi-property ML regression models

ML Regression Models	Optimized/Set Hyperparameters value		
REB	n_estimators = 139, max_depth = 72, min_samples_split = 2,		
KI K	min_samples_leaf = 1		
ETP	n_estimators = 230, max_depth = 81, min_samples_split = 2,		
LIK	min_samples_leaf = 1		
	num_dense_layers = 3, units = (128,64,32), activation = 'relu', initially		
NNR_3layers	learning_rate is 0.0001 but it is adaptive, optimizer = 'Adam',		
	$batch_size = 32$, epochs = 96		
	num_dense_layers = 4, units = (256,128,64,32), activation = 'relu',		
NNR_4layers	initially learning_rate is 0.0001 but it is adaptive, optimizer = 'Adam',		
	$batch_size = 32$, epochs = 96		
	num_dense_layers = 11, units (same for all dense layers) = 356,		
DNNR_rectangle	activation = 'tanh', learning_rate = 0.000092, optimizer = 'Adam',		
	$batch_size = 27$, $epochs = 100$		
	num_dense_layers (same as DNNR_rectangle) = 12, units (for each		
DNNR random	dense layer) = (1057, 936, 805, 1320, 954, 46, 705, 1173, 1474, 752,		
Divivic_landom	259, 808), activation = 'tanh', learning_rate = 0.0063, optimizer = 'SGD',		
	$batch_size = 72$, $epochs = 100$		

The same hyperparameters value was used for multi-property ML regressors with composition and Wen alloy physical descriptors as input features except for epochs in NNR_3layers_Wen and NNR_4layers_Wen models which was set to 128.

As mentioned in *Section 3.3.1*, the predicted vs. experimental values along with the performance metrics of each property for both training and testing set for the 4 models – ETR, ETR_Wen, NNR_4layers, and NNR_4layers_Wen, are shown in Figure S2, Figure S3, Figure S4, and Figure S5, respectively.

Figure S2. Predicted vs. Experimental values and performance metrics (RMSE, MAE, R^2) of M_s , $log_{10}H_c$, $log_{10}T_c$, $log_{10}\rho$, $log_{10}\delta$, $log_{10}H_V$, and $log_{10}Cost$ (in series from top to bottom) for training (all plots on left) and testing (all plots on right) sets for ETR model.

Figure S3. Predicted vs. Experimental values and performance metrics (RMSE, MAE, R^2) of M_s , $log_{10}H_c$, $log_{10}T_c$, $log_{10}\rho$, $log_{10}\delta$, $log_{10}H_V$, and $log_{10}Cost$ (in series from top to bottom) for training (all plots on left) and testing (all plots on right) sets for ETR_Wen model.

Figure S4. Predicted vs. Experimental values and performance metrics (RMSE, MAE, R^2) of M_s , $log_{10}H_c$, $log_{10}T_c$, $log_{10}\rho$, $log_{10}\delta$, $log_{10}H_V$, and $log_{10}Cost$ (in series from top to bottom) for training (all plots on left) and testing (all plots on right) sets for NNR_4layers model.

Figure S5. Predicted vs. Experimental values and performance metrics (RMSE, MAE, R^2) of M_s , $log_{10}H_c$, $log_{10}T_c$, $log_{10}\rho$, $log_{10}\delta$, $log_{10}H_V$, and $log_{10}Cost$ (in series from top to bottom) for training (all plots on left) and testing (all plots on right) sets for NNR_4layers_Wen model.

S4. Experimental Validation of Forward Design Model

The forward design model was experimentally validated using 40 compositions. Based on the predictions of the ETR model, absolute error between the predicted property value and experimental property value for each experimental composition and finally the MAE of the predictions were calculated and tabulated in **Table S6**, **Table S7**, **Table S8**, **Table S9**, **Table S10**, and **Table S11** for M_s , $log_{10}H_c$, $log_{10}T_c$, $log_{10}P_v$, and $log_{10}Cost$ respectively. Similarly, the absolute errors and MAE were calculated and tabulated in Tables below for M_s , $log_{10}H_c$, $log_{10}T_c$, $log_{10}T_c$, $log_{10}P_v$, and $log_{10}Cost$, respectively, based on NNR_4layers_Wen model predictions. The deviation percentage of predictions from experimental values are calculated by the following formula:

$$Deviation \% = \frac{Predicted - Actual}{Predicted} \times 100$$

Using this formula, for each property the number of compositions within the ± 10 % deviation range is estimated and mentioned after each table.

C N	E ((0/)			Experimental	Predicted	Absolute
5. NO.	Fe (at.%)	U0 (at.%)	N1 (at.%)	M_s (T)	$M_{s}\left(\mathrm{T} ight)$	error
1	10.47	39.7	49.83	1.37	1.297	0.073
2	10.47	29.76	59.77	1.18	1.212	0.032
3	10.47	19.83	69.7	1.08	1.103	0.023
4	10.46	9.91	79.63	0.95	0.967	0.017
5	20.82	9.86	69.32	1.31	1.179	0.131
6	31.07	9.81	59.12	1.29	1.404	0.114
7	41.22	9.76	49.02	1.41	1.595	0.185
8	34.49	32.69	32.82	1.6	1.91	0.31
9	41.28	48.9	9.82	1.97	2.154	0.184
10	31.13	59	9.87	1.91	2.204	0.294
11	20.87	69.2	9.93	1.88	2.025	0.145
12	10.49	79.53	9.98	1.87	1.882	0.012
13	10.49	69.55	19.96	1.69	1.85	0.16
14	10.48	59.6	29.92	1.6	1.567	0.033

Table S6. Prediction, absolute error, and MAE of M_s by the ETR model for 40 experimental compositions

15	10.48	49.64	39.88	1.5	1.394	0.106
16	51.32	38.91	9.77	2.12	2.215	0.095
17	61.26	29.03	9.71	2.09	2.261	0.171
18	71.09	19.25	9.66	2.03	2.271	0.241
19	80.82	9.57	9.61	1.92	2.268	0.348
20	71.06	9.62	19.32	1.69	2.192	0.502
21	61.21	9.67	29.12	1.43	1.95	0.52
22	51.26	9.72	39.02	1.47	1.737	0.267
23	71.08	14.43	14.49	2	2.229	0.229
24	61.24	19.34	19.42	1.94	2.175	0.235
25	51.3	24.3	24.4	1.83	2.132	0.302
26	41.25	29.32	29.43	1.77	2.051	0.281
27	31.1	34.38	34.52	1.65	1.9	0.25
28	20.84	39.5	39.66	1.51	1.578	0.068
29	41.27	39.1	19.63	1.8	2.05	0.25
30	36.19	34.29	29.52	1.75	1.999	0.249
31	31.1	29.46	39.44	1.58	1.721	0.141
32	25.97	24.61	49.42	1.44	1.456	0.016
33	20.82	19.73	59.45	1.35	1.257	0.093
34	15.65	14.83	69.52	1.17	1.144	0.026
35	41.23	19.54	39.23	1.64	1.72	0.08
36	36.18	29.39	34.43	1.71	1.864	0.154
37	31.1	39.3	29.6	1.71	2.051	0.341
38	25.99	49.27	24.74	1.73	2.082	0.352
39	20.86	59.29	19.85	1.73	1.826	0.096
40	15.69	69.38	14.93	1.76	1.952	0.192
		Mean Abso	lute Error (MA	AE)		0.183

The ETR model was able to predict the M_s of 22 compositions within ±10% deviation range compared to experimental values.

S.	Fe	Со	Ni	Experimental Predicted <i>log₁₀H_c</i>		Absolute
No.	(at.%)	(at.%)	(at.%)	$log_{1\theta}H_c$ ($log_{1\theta}(A/m)$)	$(log_{1\theta}(A/m))$	error
1	10.47	39.7	49.83	3.144	2.771	0.373
2	10.47	29.76	59.77	2.98	2.567	0.413
3	10.47	19.83	69.7	2.961	2.353	0.608
4	10.46	9.91	79.63	2.874	1.719	1.155
5	20.82	9.86	69.32	2.591	1.605	0.986
6	31.07	9.81	59.12	2.679	1.103	1.576
7	41.22	9.76	49.02	2.223	1.089	1.134
8	34.49	32.69	32.82	2.793	2.58	0.213
9	41.28	48.9	9.82	3.062	3.494	0.432
10	31.13	59	9.87	2.758	3.485	0.727
11	20.87	69.2	9.93	2.7	3.112	0.412
12	10.49	79.53	9.98	2.835	3.037	0.202
13	10.49	69.55	19.96	3.001	2.796	0.205
14	10.48	59.6	29.92	2.845	2.839	0.006
15	10.48	49.64	39.88	2.85	2.861	0.011
16	51.32	38.91	9.77	3.053	3.111	0.058
17	61.26	29.03	9.71	3.053	2.863	0.19
18	71.09	19.25	9.66	2.973	2.466	0.507
19	80.82	9.57	9.61	3.091	2.713	0.378
20	71.06	9.62	19.32	3.166	2.739	0.427
21	61.21	9.67	29.12	3.062	2.078	0.984
22	51.26	9.72	39.02	2.85	1.601	1.249
23	71.08	14.43	14.49	3.322	2.626	0.696
24	61.24	19.34	19.42	3.182	2.694	0.488
25	51.3	24.3	24.4	2.942	2.947	0.005
26	41.25	29.32	29.43	2.554	2.957	0.403
27	31.1	34.38	34.52	2.457	2.388	0.069
28	20.84	39.5	39.66	2.564	2.408	0.156
29	41.27	39.1	19.63	2.922	3.122	0.2

Table S7. Prediction, absolute error, and MAE of $log_{10}H_c$ by ETR model for 40 experimental compositions

30	36.19	34.29	29.52	2.573	2.896	0.323	
31	31.1	29.46	39.44	2.625	1.577	1.048	
32	25.97	24.61	49.42	2.608	0.904	1.704	
33	20.82	19.73	59.45	2.672	2.245	0.427	
34	15.65	14.83	69.52	2.83	2.063	0.767	
35	41.23	19.54	39.23	2.686	1.605	1.081	
36	36.18	29.39	34.43	2.625	2.409	0.216	
37	31.1	39.3	29.6	2.686	2.946	0.26	
38	25.99	49.27	24.74	2.657	2.889	0.232	
39	20.86	59.29	19.85	2.617	2.618	0.001	
40	15.69	69.38	14.93	2.733	2.992	0.259	
Mean Absolute Error (MAE)							

The ETR model was able to predict the $log_{10}H_c$ of 16 compositions within ±10% deviation range compared to experimental values.

S.	Fe	Со	Ni	Experimental log ₁₀ T _c	Predicted $log_{10}T_c$	Absolute
No.	(at.%)	(at.%)	(at.%)	$(log_{1\theta}(\mathbf{K}))$	$(log_{1\theta}(\mathbf{K}))$	error
1	10.47	39.7	49.83	3.032	3.042	0.01
2	10.47	29.76	59.77	3.005	3.01	0.005
3	10.47	19.83	69.7	2.971	2.962	0.009
4	10.46	9.91	79.63	2.948	2.899	0.049
5	20.82	9.86	69.32	2.954	2.87	0.084
6	31.07	9.81	59.12	2.945	2.926	0.019
7	41.22	9.76	49.02	2.951	2.93	0.021
8	34.49	32.69	32.82	3.009	2.991	0.018
9	41.28	48.9	9.82	3.063	3.067	0.004
10	31.13	59	9.87	3.066	3.092	0.026
11	20.87	69.2	9.93	3.103	3.137	0.034
12	10.49	79.53	9.98	3.11	3.111	0.001
13	10.49	69.55	19.96	3.09	3.105	0.015

Table S8. Prediction, absolute error, and MAE of $log_{10}T_c$ by ETR model for 40 experimental compositions

14	10.48	59.6	29.92	3.077	3.081	0.004		
15	10.48	49.64	39.88	3.06	3.057	0.003		
16	51.32	38.91	9.77	3.069	3.072	0.003		
17	61.26	29.03	9.71	3.064	3.056	0.008		
18	71.09	19.25	9.66	3.068	3.032	0.036		
19	80.82	9.57	9.61	3.018	3.006	0.012		
20	71.06	9.62	19.32	2.998	2.967	0.031		
21	61.21	9.67	29.12	2.943	2.848	0.095		
22	51.26	9.72	39.02	2.94	2.884	0.056		
23	71.08	14.43	14.49	3.007	2.999	0.008		
24	61.24	19.34	19.42	3	2.992	0.008		
25	51.3	24.3	24.4	3.015	2.987	0.028		
26	41.25	29.32	29.43	3.006	2.986	0.02		
27	31.1	34.38	34.52	3.037	2.996	0.041		
28	20.84	39.5	39.66	3.037	3.02	0.017		
29	41.27	39.1	19.63	3.024	3.012	0.012		
30	36.19	34.29	29.52	3.003	3.001	0.002		
31	31.1	29.46	39.44	3.01	2.98	0.03		
32	25.97	24.61	49.42	3.001	2.966	0.035		
33	20.82	19.73	59.45	2.988	2.951	0.037		
34	15.65	14.83	69.52	2.96	2.874	0.086		
35	41.23	19.54	39.23	2.975	2.939	0.036		
36	36.18	29.39	34.43	3.024	2.978	0.046		
37	31.1	39.3	29.6	3.028	3.015	0.013		
38	25.99	49.27	24.74	3.064	3.043	0.021		
39	20.86	59.29	19.85	3.064	3.091	0.027		
40	15.69	69.38	14.93	3.088	3.114	0.026		
Mean Absolute Error (MAE)								

The ETR model was able to predict the $log_{10}T_c$ of all 40 compositions within ±10% deviation range compared to experimental values.

S.	Fe	Со	Ni	Experimental <i>log10</i> Predicted <i>la</i>		Absolute
No.	(at.%)	(at.%)	(at.%)	$(log_{1\theta}(\mu\Omega\cdot \mathbf{cm}))$	$(log_{1 heta}(\mu\Omega\cdot cm))$	error
1	10.47	39.7	49.83	1.422	1.042	0.38
2	10.47	29.76	59.77	1.31	1.056	0.254
3	10.47	19.83	69.7	1.292	1.055	0.237
4	10.46	9.91	79.63	1.281	1.134	0.147
5	20.82	9.86	69.32	1.352	1.164	0.188
6	31.07	9.81	59.12	1.423	1.227	0.196
7	41.22	9.76	49.02	1.589	1.372	0.217
8	34.49	32.69	32.82	1.423	1.261	0.162
9	41.28	48.9	9.82	1.246	1.069	0.177
10	31.13	59	9.87	1.193	1.122	0.071
11	20.87	69.2	9.93	1.188	1.153	0.035
12	10.49	79.53	9.98	1.196	1.239	0.043
13	10.49	69.55	19.96	1.228	1.38	0.152
14	10.48	59.6	29.92	1.369	1.147	0.222
15	10.48	49.64	39.88	1.34	1.375	0.035
16	51.32	38.91	9.77	1.217	1.148	0.069
17	61.26	29.03	9.71	1.21	1.23	0.02
18	71.09	19.25	9.66	1.279	1.342	0.063
19	80.82	9.57	9.61	1.369	1.396	0.027
20	71.06	9.62	19.32	1.479	1.438	0.041
21	61.21	9.67	29.12	1.663	1.437	0.226
22	51.26	9.72	39.02	1.667	1.437	0.23
23	71.08	14.43	14.49	1.501	1.396	0.105
24	61.24	19.34	19.42	1.435	1.267	0.168
25	51.3	24.3	24.4	1.415	1.252	0.163
26	41.25	29.32	29.43	1.412	1.262	0.15
27	31.1	34.38	34.52	1.425	1.268	0.157
28	20.84	39.5	39.66	1.528	1.253	0.275
29	41.27	39.1	19.63	1.516	1.171	0.345

Table S9. Prediction, absolute error, and MAE of $log_{10} \rho$ by ETR model for 40 experimental compositions

30	36.19	34.29	29.52	1.41	1.272	0.138	
31	31.1	29.46	39.44	1.367	1.247	0.12	
32	25.97	24.61	49.42	1.346	1.299	0.047	
33	20.82	19.73	59.45	1.336	1.098	0.238	
34	15.65	14.83	69.52	1.375	1.111	0.264	
35	41.23	19.54	39.23	1.54	1.33	0.21	
36	36.18	29.39	34.43	1.391	1.254	0.137	
37	31.1	39.3	29.6	1.344	1.293	0.051	
38	25.99	49.27	24.74	1.358	1.27	0.088	
39	20.86	59.29	19.85	1.265	1.263	0.002	
40	15.69	69.38	14.93	1.258	1.239	0.019	
Mean Absolute Error (MAE)							

The ETR model was able to predict the $log_{10}\rho$ of 16 compositions within ±10% deviation range compared to experimental values.

-						
S.	Fe	Со	Ni	Experimental	Predicted <i>log₁₀H_V</i>	Absolute
No.	(at.%)	(at.%)	(at.%)	$log_{10}H_V$ (log_{10} (HV))	$(log_{1\theta}(\mathrm{HV}))$	error
1	10.47	39.7	49.83	2.134	2.168	0.034
2	10.47	29.76	59.77	2.187	2.205	0.018
3	10.47	19.83	69.7	2.193	2.21	0.017
4	10.46	9.91	79.63	2.198	2.294	0.096
5	20.82	9.86	69.32	2.25	2.347	0.097
6	31.07	9.81	59.12	2.27	2.269	0.001
7	41.22	9.76	49.02	2.318	2.325	0.007
8	34.49	32.69	32.82	2.345	2.519	0.174
9	41.28	48.9	9.82	2.432	2.572	0.14
10	31.13	59	9.87	2.424	2.466	0.042
11	20.87	69.2	9.93	2.239	2.42	0.181
12	10.49	79.53	9.98	2.202	2.324	0.122
13	10.49	69.55	19.96	2.189	2.411	0.222

Table S10. Prediction, absolute error, and MAE of $log_{10}H_V$ by ETR model for 40 experimental compositions

14	10.48	59.6	29.92	2.192	2.213	0.021		
15	10.48	49.64	39.88	2.238	2.411	0.173		
16	51.32	38.91	9.77	2.496	2.64	0.144		
17	61.26	29.03	9.71	2.444	2.556	0.112		
18	71.09	19.25	9.66	2.373	2.434	0.061		
19	80.82	9.57	9.61	2.335	2.496	0.161		
20	71.06	9.62	19.32	2.381	2.489	0.108		
21	61.21	9.67	29.12	2.439	2.469	0.03		
22	51.26	9.72	39.02	2.293	2.451	0.158		
23	71.08	14.43	14.49	2.548	2.461	0.087		
24	61.24	19.34	19.42	2.609	2.558	0.051		
25	51.3	24.3	24.4	2.417	2.592	0.175		
26	41.25	29.32	29.43	2.328	2.562	0.234		
27	31.1	34.38	34.52	2.344	2.485	0.141		
28	20.84	39.5	39.66	2.263	2.301	0.038		
29	41.27	39.1	19.63	2.364	2.597	0.233		
30	36.19	34.29	29.52	2.327	2.534	0.207		
31	31.1	29.46	39.44	2.358	2.461	0.103		
32	25.97	24.61	49.42	2.286	2.272	0.014		
33	20.82	19.73	59.45	2.321	2.161	0.16		
34	15.65	14.83	69.52	2.204	2.349	0.145		
35	41.23	19.54	39.23	2.316	2.476	0.16		
36	36.18	29.39	34.43	2.312	2.524	0.212		
37	31.1	39.3	29.6	2.303	2.491	0.188		
38	25.99	49.27	24.74	2.302	2.476	0.174		
39	20.86	59.29	19.85	2.242	2.431	0.189		
40	15.69	69.38	14.93	2.252	2.375	0.123		
Mean Absolute Error (MAE)								

The ETR model was able to predict the $log_{10}H_V$ of all 40 compositions within ±10% deviation range compared to experimental values.

C	F-	C	NI:	Experimental	Predicted	A I - - 1 - 4 -
D.	re		$\mathbf{N} \mathbf{I}$	log ₁₀ Cost	log ₁₀ Cost	Absolute
190.	(al.%)	(al.%)	(al.%)	(<i>log</i> 10(\$/kg))	(<i>log</i> 10(\$/kg))	error
1	10.47	39.7	49.83	1.303	1.307	0.004
2	10.47	29.76	59.77	1.261	1.265	0.004
3	10.47	19.83	69.7	1.213	1.205	0.008
4	10.46	9.91	79.63	1.16	1.146	0.014
5	20.82	9.86	69.32	1.117	1.107	0.01
6	31.07	9.81	59.12	1.07	1.048	0.022
7	41.22	9.76	49.02	1.017	1.001	0.016
8	34.49	32.69	32.82	1.196	1.194	0.002
9	41.28	48.9	9.82	1.254	1.254	0
10	31.13	59	9.87	1.326	1.325	0.001
11	20.87	69.2	9.93	1.388	1.388	0
12	10.49	79.53	9.98	1.442	1.43	0.012
13	10.49	69.55	19.96	1.411	1.413	0.002
14	10.48	59.6	29.92	1.378	1.374	0.004
15	10.48	49.64	39.88	1.342	1.342	0
16	51.32	38.91	9.77	1.168	1.17	0.002
17	61.26	29.03	9.71	1.06	1.073	0.013
18	71.09	19.25	9.66	0.916	0.878	0.038
19	80.82	9.57	9.61	0.7	0.6	0.1
20	71.06	9.62	19.32	0.803	0.759	0.044
21	61.21	9.67	29.12	0.887	0.825	0.062
22	51.26	9.72	39.02	0.957	0.947	0.01
23	71.08	14.43	14.49	0.863	0.798	0.065
24	61.24	19.34	19.42	0.982	0.984	0.002
25	51.3	24.3	24.4	1.075	1.077	0.002
26	41.25	29.32	29.43	1.152	1.159	0.007
27	31.1	34.38	34.52	1.217	1.207	0.01
28	20.84	39.5	39.66	1.273	1.277	0.004

Table S11. Prediction, absolute error, and MAE of *log₁₀Cost* by ETR model for 40 experimental compositions

29	41.27	39.1	19.63	1.206	1.204	0.002
30	36.19	34.29	29.52	1.199	1.202	0.003
31	31.1	29.46	39.44	1.191	1.181	0.01
32	25.97	24.61	49.42	1.184	1.173	0.011
33	20.82	19.73	59.45	1.176	1.174	0.002
34	15.65	14.83	69.52	1.168	1.152	0.016
35	41.23	19.54	39.23	1.09	1.113	0.023
36	36.18	29.39	34.43	1.172	1.172	0
37	31.1	39.3	29.6	1.241	1.242	0.001
38	25.99	49.27	24.74	1.301	1.301	0
39	20.86	59.29	19.85	1.353	1.355	0.002
40	15.69	69.38	14.93	1.4	1.397	0.003
Mean Absolute Error (MAE)						

The ETR model was able to predict the $log_{10}Cost$ of 39 compositions within ±10% deviation range compared to experimental values.

Table S12. Prediction, absolute error, and MAE of M_s by NNR_4layers_Wen model for 40 experimental compositions

S No	\mathbf{F}_{0} (at 0)	$C_{\alpha}(\alpha \neq 0/)$	Ni (at %)	Experimental	Predicted	Absolute
5. INO.	re (al. 70)	C0 (al. %)	MI (al. 70)	<i>M</i> _s (T)	$M_{s}\left(\mathrm{T} ight)$	error
1	10.47	39.7	49.83	1.37	1.276	0.094
2	10.47	29.76	59.77	1.18	1.168	0.012
3	10.47	19.83	69.7	1.08	1.054	0.026
4	10.46	9.91	79.63	0.95	0.923	0.027
5	20.82	9.86	69.32	1.31	1.148	0.162
6	31.07	9.81	59.12	1.29	1.415	0.125
7	41.22	9.76	49.02	1.41	1.65	0.24
8	34.49	32.69	32.82	1.6	1.801	0.201
9	41.28	48.9	9.82	1.97	2.142	0.172
10	31.13	59	9.87	1.91	2.101	0.191
11	20.87	69.2	9.93	1.88	2.012	0.132
12	10.49	79.53	9.98	1.87	1.885	0.015

13	10.49	69.55	19.96	1.69	1.703	0.013
14	10.48	59.6	29.92	1.6	1.528	0.072
15	10.48	49.64	39.88	1.5	1.39	0.11
16	51.32	38.91	9.77	2.12	2.219	0.099
17	61.26	29.03	9.71	2.09	2.228	0.138
18	71.09	19.25	9.66	2.03	2.229	0.199
19	80.82	9.57	9.61	1.92	2.278	0.358
20	71.06	9.62	19.32	1.69	2.225	0.535
21	61.21	9.67	29.12	1.43	2.102	0.672
22	51.26	9.72	39.02	1.47	1.892	0.422
23	71.08	14.43	14.49	2	2.228	0.228
24	61.24	19.34	19.42	1.94	2.177	0.237
25	51.3	24.3	24.4	1.83	2.101	0.271
26	41.25	29.32	29.43	1.77	1.942	0.172
27	31.1	34.38	34.52	1.65	1.731	0.081
28	20.84	39.5	39.66	1.51	1.474	0.036
29	41.27	39.1	19.63	1.8	2.007	0.207
30	36.19	34.29	29.52	1.75	1.864	0.114
31	31.1	29.46	39.44	1.58	1.663	0.083
32	25.97	24.61	49.42	1.44	1.457	0.017
33	20.82	19.73	59.45	1.35	1.238	0.112
34	15.65	14.83	69.52	1.17	1.081	0.089
35	41.23	19.54	39.23	1.64	1.791	0.151
36	36.18	29.39	34.43	1.71	1.8	0.09
37	31.1	39.3	29.6	1.71	1.782	0.072
38	25.99	49.27	24.74	1.73	1.748	0.018
39	20.86	59.29	19.85	1.73	1.793	0.063
40	15.69	69.38	14.93	1.76	1.85	0.09
		Mean Abso	lute Error (M.	AE)		0.154

The NNR_4layers_Wen model was able to predict the M_s of 29 compositions within ±10% deviation range compared to experimental values.

C N-	Fe	Со	Ni	Experimental	Predicted log ₁₀ H _c	Absolute
5. NO.	(at.%)	(at.%)	(at.%)	$log_{1\theta}H_c$ ($log_{1\theta}(A/m)$)	$(log_{1\theta}(A/m))$	error
1	10.47	39.7	49.83	3.144	2.656	0.488
2	10.47	29.76	59.77	2.98	2.426	0.554
3	10.47	19.83	69.7	2.961	2.17	0.791
4	10.46	9.91	79.63	2.874	1.826	1.048
5	20.82	9.86	69.32	2.591	1.74	0.851
6	31.07	9.81	59.12	2.679	1.466	1.213
7	41.22	9.76	49.02	2.223	1.459	0.764
8	34.49	32.69	32.82	2.793	2.521	0.272
9	41.28	48.9	9.82	3.062	3.285	0.223
10	31.13	59	9.87	2.758	3.237	0.479
11	20.87	69.2	9.93	2.7	3.125	0.425
12	10.49	79.53	9.98	2.835	2.962	0.127
13	10.49	69.55	19.96	3.001	2.959	0.042
14	10.48	59.6	29.92	2.845	2.927	0.082
15	10.48	49.64	39.88	2.85	2.88	0.03
16	51.32	38.91	9.77	3.053	3.189	0.136
17	61.26	29.03	9.71	3.053	3.029	0.024
18	71.09	19.25	9.66	2.973	2.919	0.054
19	80.82	9.57	9.61	3.091	2.829	0.262
20	71.06	9.62	19.32	3.166	2.597	0.569
21	61.21	9.67	29.12	3.062	2.084	0.978
22	51.26	9.72	39.02	2.85	1.684	1.166
23	71.08	14.43	14.49	3.322	2.796	0.526
24	61.24	19.34	19.42	3.182	2.724	0.458
25	51.3	24.3	24.4	2.942	2.73	0.212
26	41.25	29.32	29.43	2.554	2.631	0.077
27	31.1	34.38	34.52	2.457	2.487	0.03
28	20.84	39.5	39.66	2.564	2.64	0.076
29	41.27	39.1	19.63	2.922	3.243	0.321

Table S13. Prediction, absolute error, and MAE of $log_{10}H_c$ by NNR_4layers_Wen model for 40 experimental compositions

30	36.19	34.29	29.52	2.573	2.708	0.135
31	31.1	29.46	39.44	2.625	2.233	0.392
32	25.97	24.61	49.42	2.608	2.014	0.594
33	20.82	19.73	59.45	2.672	2	0.672
34	15.65	14.83	69.52	2.83	1.993	0.837
35	41.23	19.54	39.23	2.686	1.963	0.723
36	36.18	29.39	34.43	2.625	2.382	0.243
37	31.1	39.3	29.6	2.686	2.739	0.053
38	25.99	49.27	24.74	2.657	2.984	0.327
39	20.86	59.29	19.85	2.617	3.086	0.469
40	15.69	69.38	14.93	2.733	3.063	0.33
Mean Absolute Error (MAE)						

The NNR_4layers_Wen model was able to predict the $log_{10}H_c$ of 16 compositions within $\pm 10\%$ deviation range compared to experimental values.

_

C No	Fe	Со	Ni	Experimental <i>log₁₀T_c</i>	Predicted $log_{10}T_c$	Absolute
5. INO.	(at.%)	(at.%)	(at.%)	(<i>log</i> ₁₀ (K))	(<i>log</i> 10(K))	error
1	10.47	39.7	49.83	3.032	3.045	0.013
2	10.47	29.76	59.77	3.005	3.018	0.013
3	10.47	19.83	69.7	2.971	2.984	0.013
4	10.46	9.91	79.63	2.948	2.94	0.008
5	20.82	9.86	69.32	2.954	2.957	0.003
6	31.07	9.81	59.12	2.945	2.941	0.004
7	41.22	9.76	49.02	2.951	2.922	0.029
8	34.49	32.69	32.82	3.009	2.992	0.017
9	41.28	48.9	9.82	3.063	3.049	0.014
10	31.13	59	9.87	3.066	3.066	0
11	20.87	69.2	9.93	3.103	3.11	0.007
12	10.49	79.53	9.98	3.11	3.124	0.014
13	10.49	69.55	19.96	3.09	3.105	0.015

Table S14. Prediction, absolute error, and MAE of $log_{10}T_c$ by NNR_4layers_Wen model for 40 experimental compositions

14	10.48	59.6	29.92	3.077	3.087	0.01	
15	10.48	49.64	39.88	3.06	3.069	0.009	
16	51.32	38.91	9.77	3.069	3.046	0.023	
17	61.26	29.03	9.71	3.064	3.035	0.029	
18	71.09	19.25	9.66	3.068	3.013	0.055	
19	80.82	9.57	9.61	3.018	3.015	0.003	
20	71.06	9.62	19.32	2.998	2.958	0.04	
21	61.21	9.67	29.12	2.943	2.903	0.04	
22	51.26	9.72	39.02	2.94	2.91	0.03	
23	71.08	14.43	14.49	3.007	2.987	0.02	
24	61.24	19.34	19.42	3	2.977	0.023	
25	51.3	24.3	24.4	3.015	2.984	0.031	
26	41.25	29.32	29.43	3.006	2.984	0.022	
27	31.1	34.38	34.52	3.037	2.998	0.039	
28	20.84	39.5	39.66	3.037	3.026	0.011	
29	41.27	39.1	19.63	3.024	3.011	0.013	
30	36.19	34.29	29.52	3.003	2.995	0.008	
31	31.1	29.46	39.44	3.01	2.984	0.026	
32	25.97	24.61	49.42	3.001	2.974	0.027	
33	20.82	19.73	59.45	2.988	2.98	0.008	
34	15.65	14.83	69.52	2.96	2.969	0.009	
35	41.23	19.54	39.23	2.975	2.946	0.029	
36	36.18	29.39	34.43	3.024	2.982	0.042	
37	31.1	39.3	29.6	3.028	3.006	0.022	
38	25.99	49.27	24.74	3.064	3.042	0.022	
39	20.86	59.29	19.85	3.064	3.085	0.021	
40	15.69	69.38	14.93	3.088	3.107	0.019	
Mean Absolute Error (MAE)							

The NNR_4layers_Wen model was able to predict the $log_{10}T_c$ of all 40 compositions within $\pm 10\%$ deviation range compared to experimental values.

S. No	Fe	Со	Ni	Experimental <i>log10</i> ρ	Predicted <i>log₁₀ρ</i>	Absolute
5. INU.	(at.%)	(at.%)	(at.%)	$(log_{10}(\mu\Omega\cdot \mathbf{cm}))$	$(log_{1\theta}(\mu\Omega\cdot \mathbf{cm}))$	error
1	10.47	39.7	49.83	1.422	1.256	0.166
2	10.47	29.76	59.77	1.31	1.213	0.097
3	10.47	19.83	69.7	1.292	1.292 1.188	
4	10.46	9.91	79.63	1.281	1.174	0.107
5	20.82	9.86	69.32	1.352	1.186	0.166
6	31.07	9.81	59.12	1.423	1.248	0.175
7	41.22	9.76	49.02	1.589	1.346	0.243
8	34.49	32.69	32.82	1.423	1.226	0.197
9	41.28	48.9	9.82	1.246	1.035	0.211
10	31.13	59	9.87	1.193	1.077	0.116
11	20.87	69.2	9.93	1.188	1.176	0.012
12	10.49	79.53	9.98	1.196	1.215	0.019
13	10.49	69.55	19.96	1.228	1.291	0.063
14	10.48	59.6	29.92	1.369	1.319	0.05
15	10.48	49.64	39.88	1.34	1.306	0.034
16	51.32	38.91	9.77	1.217	1.049	0.168
17	61.26	29.03	9.71	1.21	1.151	0.059
18	71.09	19.25	9.66	1.279	1.29	0.011
19	80.82	9.57	9.61	1.369	1.427	0.058
20	71.06	9.62	19.32	1.479	1.412	0.067
21	61.21	9.67	29.12	1.663	1.402	0.261
22	51.26	9.72	39.02	1.667	1.386	0.281
23	71.08	14.43	14.49	1.501	1.362	0.139
24	61.24	19.34	19.42	1.435	1.269	0.166
25	51.3	24.3	24.4	1.415	1.244	0.171
26	41.25	29.32	29.43	1.412	1.246	0.166
27	31.1	34.38	34.52	1.425	1.229	0.196
28	20.84	39.5	39.66	1.528	1.26	0.268
29	41.27	39.1	19.63	1.516	1.165	0.351

Table S15. Prediction, absolute error, and MAE of $log_{10} \rho$ by NNR_4layers_Wen model for 40 experimental compositions

30	36.19	34.29	29.52	1.41	1.222	0.188	
31	31.1	29.46	39.44	1.367	1.235	0.132	
32	25.97	24.61	49.42	1.346	1.231	0.115	
33	20.82	19.73	59.45	1.336	1.194	0.142	
34	15.65	14.83	69.52	1.375	1.192	0.183	
35	41.23	19.54	39.23	1.54	1.312	0.228	
36	36.18	29.39	34.43	1.391	1.241	0.15	
37	31.1	39.3	29.6	1.344	1.225	0.119	
38	25.99	49.27	24.74	1.358	1.223	0.135	
39	20.86	59.29	19.85	1.265	1.242	0.023	
40	15.69	69.38	14.93	1.258	1.251	0.007	
Mean Absolute Error (MAE)							

The NNR_4layers_Wen model was able to predict the $log_{10}\rho$ of 16 compositions within ±10% deviation range compared to experimental values.

S. No.	Fe	Со	Ni	Experimental	Predicted <i>log</i> ₁₀ <i>H</i> _V	Absolute
5. INU.	(at.%)	(at.%)	(at.%)	$log_{10}H_V$ (log_{10} (HV))	$(log_{1\theta}(\mathrm{HV}))$	error
1	10.47	39.7	49.83	2.134	2.377	0.243
2	10.47	29.76	59.77	2.187	2.359	0.172
3	10.47	19.83	69.7	2.193	2.337	0.144
4	10.46	9.91	79.63	2.198	2.318	0.12
5	20.82	9.86	69.32	2.25	2.311	0.061
6	31.07	9.81	59.12	2.27	2.315	0.045
7	41.22	9.76	49.02	2.318	2.363	0.045
8	34.49	32.69	32.82	2.345	2.503	0.158
9	41.28	48.9	9.82	2.432	2.58	0.148
10	31.13	59	9.87	2.424	2.477	0.053
11	20.87	69.2	9.93	2.239	2.395	0.156
12	10.49	79.53	9.98	2.202	2.369	0.167
13	10.49	69.55	19.96	2.189	2.381	0.192

Table S16. Prediction, absolute error, and MAE of $log_{10}H_V$ by NNR_4layers_Wen model for 40 experimental compositions

14	10.48	59.6	29.92	2.192	2.372	0.18		
15	10.48	49.64	39.88	2.238	2.386	0.148		
16	51.32	38.91	9.77	2.496	2.632	0.136		
17	61.26	29.03	9.71	2.444	2.64	0.196		
18	71.09	19.25	9.66	2.373	2.61	0.237		
19	80.82	9.57	9.61	2.335	2.505	0.17		
20	71.06	9.62	19.32	2.381	2.558	0.177		
21	61.21	9.67	29.12	2.439	2.544	0.105		
22	51.26	9.72	39.02	2.293	2.447	0.154		
23	71.08	14.43	14.49	2.548	2.59	0.042		
24	61.24	19.34	19.42	2.609	2.622	0.013		
25	51.3	24.3	24.4	2.417	2.594	0.177		
26	41.25	29.32	29.43	2.328	2.543	0.215		
27	31.1	34.38	34.52	2.344	2.479	0.135		
28	20.84	39.5	39.66	2.263	2.413	0.15		
29	41.27	39.1	19.63	2.364	2.614	0.25		
30	36.19	34.29	29.52	2.327	2.534	0.207		
31	31.1	29.46	39.44	2.358	2.44	0.082		
32	25.97	24.61	49.42	2.286	2.375	0.089		
33	20.82	19.73	59.45	2.321	2.339	0.018		
34	15.65	14.83	69.52	2.204	2.325	0.121		
35	41.23	19.54	39.23	2.316	2.447	0.131		
36	36.18	29.39	34.43	2.312	2.491	0.179		
37	31.1	39.3	29.6	2.303	2.514	0.211		
38	25.99	49.27	24.74	2.302	2.476	0.174		
39	20.86	59.29	19.85	2.242	2.409	0.167		
40	15.69	69.38	14.93	2.252	2.382	0.13		
Mean Absolute Error (MAE)								

The NNR_4layers_Wen model was able to predict the $log_{10}H_V$ of 39 compositions within ±10% deviation range compared to experimental values.

					Predicted	
S. No.	Fe	Со	Ni	Experimental	log10Cost	Absolute
	(at.%)	(at.%)	(at.%)	<i>log</i> ₁₀ <i>Cost</i> (<i>log</i> ₁₀ (\$/kg))	(<i>log</i> ₁₀ (\$/kg))	error
1	10.47	39.7	49.83	1.303	1.286	0.017
2	10.47	29.76	59.77	1.261	1.24	0.021
3	10.47	19.83	69.7	1.213	1.195	0.018
4	10.46	9.91	79.63	1.16	1.159	0.001
5	20.82	9.86	69.32	1.117	1.125	0.008
6	31.07	9.81	59.12	1.07	1.06	0.01
7	41.22	9.76	49.02	1.017	1.017	0
8	34.49	32.69	32.82	1.196	1.186	0.01
9	41.28	48.9	9.82	1.254	1.242	0.012
10	31.13	59	9.87	1.326	1.337	0.011
11	20.87	69.2	9.93	1.388	1.386	0.002
12	10.49	79.53	9.98	1.442	1.432	0.01
13	10.49	69.55	19.96	1.411	1.417	0.006
14	10.48	59.6	29.92	1.378	1.386	0.008
15	10.48	49.64	39.88	1.342	1.347	0.005
16	51.32	38.91	9.77	1.168	1.161	0.007
17	61.26	29.03	9.71	1.06	1.053	0.007
18	71.09	19.25	9.66	0.916	0.909	0.007
19	80.82	9.57	9.61	0.7	0.793	0.093
20	71.06	9.62	19.32	0.803	0.834	0.031
21	61.21	9.67	29.12	0.887	0.896	0.009
22	51.26	9.72	39.02	0.957	0.966	0.009
23	71.08	14.43	14.49	0.863	0.883	0.02
24	61.24	19.34	19.42	0.982	0.996	0.014
25	51.3	24.3	24.4	1.075	1.066	0.009
26	41.25	29.32	29.43	1.152	1.144	0.008
27	31.1	34.38	34.52	1.217	1.206	0.011
28	20.84	39.5	39.66	1.273	1.29	0.017

Table S17. Prediction, absolute error, and MAE of *log₁₀Cost* by NNR_4layers_Wen model for 40 experimental compositions

29	41.27	39.1	19.63	1.206	1.208	0.002	
30	36.19	34.29	29.52	1.199	1.194	0.005	
31	31.1	29.46	39.44	1.191	1.178	0.013	
32	25.97	24.61	49.42	1.184	1.176	0.008	
33	20.82	19.73	59.45	1.176	1.178	0.002	
34	15.65	14.83	69.52	1.168	1.177	0.009	
35	41.23	19.54	39.23	1.09	1.093	0.003	
36	36.18	29.39	34.43	1.172	1.167	0.005	
37	31.1	39.3	29.6	1.241	1.241	0	
38	25.99	49.27	24.74	1.301	1.308	0.007	
39	20.86	59.29	19.85	1.353	1.352	0.001	
40	15.69	69.38	14.93	1.4	1.407	0.007	
Mean Absolute Error (MAE)							

The NNR_4layers_Wen model was able to predict the $log_{10}Cost$ of 39 compositions within $\pm 10\%$ deviation range compared to experimental values.

S5. Inverse Design Strategy

S5.1. Acquisition Function

As mentioned in Section 2.4, negative expected improvement was used as acquisition function in $gp_minimize$. Expected Improvement (*EI*) is defined as ^{4,5}:

$$EI(x) = \mathbb{E}\max\left(f(x) - f(x^{+}), 0\right) \tag{1}$$

where $f(x^+)$ is the best function value till that point and x^+ is the location of that function value which is described as:

$$x^{+} = \underset{x_{i} \in x_{1:n}}{\operatorname{argmax}} f(x_{i})$$

$$\tag{2}$$

The EI can be evaluated analytically by using a GP model through the following equation ^{6,7}:

$$EI(x) = \begin{cases} \left(\mu(x) - f(x^{+})\right)\Phi(Z) + \sigma(x)\phi(Z) & \text{if } \sigma(x) > 0\\ 0 & \text{if } \sigma(x) = 0 \end{cases}$$

$$Z = \frac{\mu(x) - f(x^{+})}{\sigma(x)}$$
(3)

where $\mu(x)$ and $\sigma(x)$ are the mean and standard deviation of GP posterior distribution at x, respectively; Φ and ϕ denote the cumulative density function and probability density function, respectively. *EI* finds the global maximum of the objective function; thus, the negative expected improvement finds the global minimum.

S5.2. Evolution of Acquisition function value for ETR model

The evolution of acquisition function value for the ETR model for each target sets of BO is shown in the figure below.

Figure S6. Evolution of acquisition function value of BO using the ETR model in the objective function for (a) target set 1, (b) target set 2, (c) target set 3, (d) target set 4, (e) target set 5, and (f) target set 6 of properties value.

S5.3. Predictions and Experimental Validation

The set target values for BO and the respective predicted composition with lowest objective value of BO by using ETR and NNR_4layers_Wen models are tabulated in **Table S18** below.

BO Set No.	Target Ms (T)	Target T _c (K)	Target <i>Cost</i> (\$/kg)	MPR Model	Predicted Alloy Composition
1	15	070	15	ETR	Fe _{27.3} Co ₂₅ Ni _{47.7}
1 1.5	1.5	970	15	NNR_4layers_Wen	Fe _{26.9} Co _{26.3} Ni _{46.8}
2	1 75	1000	11.5	ETR	Fe _{44.7} Co _{15.4} Ni _{39.9}
2 1.75	1000	11.5	NNR_4layers_Wen	Fe _{41.7} Co _{15.9} Ni _{42.4}	
2	1 75	1142	19	ETR	Fe _{23.5} Co _{40.8} Ni _{35.7}
3 1.	1.75	1143		NNR_4layers_Wen	Fe _{26.9} Co _{47.8} Ni _{25.3}
Λ	2	1070	10.5	ETR	Fe ₅₀ Co _{20.8} Ni _{29.2}
4	2	1070	10.5	NNR_4layers_Wen	Fe _{46.4} Co _{25.2} Ni _{28.4}
5	• • •	1172	10	ETR	Fe _{61.9} Co _{22.8} Ni _{15.3}
5	2.2	11/3	10	NNR_4layers_Wen	Fe _{61.5} Co _{18.9} Ni _{19.6}
6	2.4	1172	10	ETR	Fe _{66.8} Co ₂₈ Ni _{5.2}
6	2.4	11/3	10	NNR_4layers_Wen	Fe _{65.1} Co _{32.4} Ni _{2.5}

Table S18. Set targets for BO and the respective predicted composition for the MPR model

These compositions were used in their respective models to predict the properties and then compared with the approximate experimental values determined from the interactive contour plots. Using the predicted and experimental values, deviation percentage was calculated as per the following formula:

$$Deviation \% = \frac{Predicted - Actual}{Predicted} \times 100$$

The predicted values, approximate experimental values, and deviation percentages for M_s , T_c , *Cost*, H_c , ρ , and H_V for BO sets 1 – 5 using ETR model are tabulated in **Table S25**, **Table** S26, Table S27, Table S28, Table S29, and Table S30, respectively. Similarly, the predicted values, approximate experimental values, and deviation percentages for M_s , T_c , Cost, H_c , ρ , and H_V for BO sets 1 – 5 using NNR_4layers_Wen model are tabulated in Table S25, Table S26, Table S27, Table S28, Table S29, and Table S30, respectively.

BO Set	Composition	Predicted M _s (T)	Approx. experimental <i>M_s</i> (T)	Deviation (%)
1	Fe _{27.3} Co ₂₅ Ni _{47.7}	1.5	1.47	2
2	Fe44.7Co15.4Ni39.9	1.74	1.58	9.2
3	Fe23.5C040.8Ni35.7	1.75	1.6	8.6
4	Fe ₅₀ Co _{20.8} Ni _{29.2}	2	1.77	11.5
5	Fe _{61.9} Co _{22.8} Ni _{15.3}	2.22	2.01	9.5
	8.16			

Table S19. Deviation of M_s for the predicted composition for the first 5 BO sets using ETR model

Table S20. Deviation of T_c for the predicted composition for the first 5 BO sets using ETR model

BO Set	Composition	Predicted <i>T_c</i> (K)	Approx. experimental <i>T_c</i> (K)	Deviation (%)
1	Fe _{27.3} Co ₂₅ Ni _{47.7}	935.8	1002	-7.1
2	Fe44.7Co15.4Ni39.9	846.3	890	-5.2
3	Fe23.5C040.8Ni35.7	1063.8	1103.7	-3.8
4	Fe50Co20.8Ni29.2	872.5	1002	-14.8
5	Fe _{61.9} Co _{22.8} Ni _{15.3}	1047.5	1056.8	-0.9
	Average	Deviation (%)		-6.36

Table S21. Deviation of Cost for the predicted composition for the first 5 BO sets using ETR model

BO Set	Composition	Predicted	Approx. calculated	Deviation (%) -1.9 4.3
	Composition	Cost (\$/kg)	Cost (\$/kg)	
1	Fe _{27.3} Co ₂₅ Ni _{47.7}	15	15.28	-1.9
2	Fe44.7Co15.4Ni39.9	11.6	11.1	4.3
3	Fe23.5Co40.8Ni35.7	19	18.75	1.3
4	Fe50Co20.8Ni29.2	10.7	11.48	-7.3

5	Fe _{61.9} Co _{22.8} Ni _{15.3}	10	10.2	-2
Average Deviation (%)				-1.12

BO Set	Composition	Predicted H _c	Approx. experimental	Deviation
~ ~ ~ ~	Composition	(A/m)	H_c (A/m)	(%)
1	Fe _{27.3} Co ₂₅ Ni _{47.7}	3.2	385	-11931.3
2	Fe44.7Co15.4Ni39.9	44.4	570	-1183.8
3	Fe23.5Co40.8Ni35.7	362.1	290	19.9
4	Fe50Co20.8Ni29.2	352.2	770	-118.6
5	Fe _{61.9} Co _{22.8} Ni _{15.3}	549.5	1350	-145.7
	Aver	rage Deviation (%)		-2671.9

Table S22. Deviation of H_c for the predicted composition for the first 5 BO sets using ETR model

Table S23. Deviation of ρ for the predicted composition for the first 5 BO sets using ETR model

BO Set	Composition	Predicted ρ	Approx. experimental	Deviation
	Composition	(μΩ·cm)	$ ho$ (μ Ω ·cm)	(%)
1	Fe _{27.3} Co ₂₅ Ni _{47.7}	20.7	22.8	-10.1
2	Fe44.7Co15.4Ni39.9	23.3	40.3	-73
3	Fe _{23.5} Co _{40.8} Ni _{35.7}	18.7	31.5	-68.4
4	Fe ₅₀ Co _{20.8} Ni _{29.2}	20.9	30	-43.5
5	Fe _{61.9} Co _{22.8} Ni _{15.3}	18.7	24.5	-31
	Aver	age Deviation (%)		-45.2

Table S24. Deviation of H_V for the predicted composition for the first 5 BO sets using ETR model

BO Set	Composition	Predicted H _V	licted <i>H_V</i> Approx. experimental	Deviation
	Composition	(HV)	H_V (HV)	(%)
1	Fe _{27.3} Co ₂₅ Ni _{47.7}	194.5	198	-1.8
2	Fe44.7Co15.4Ni39.9	294.4	210	28.7
3	Fe23.5Co40.8Ni35.7	236.7	188	20.6
4	Fe ₅₀ Co _{20.8} Ni _{29.2}	349	248	28.9
5	Fe _{61.9} Co _{22.8} Ni _{15.3}	347.1	365	-5.2
	Avera	ge Deviation (%)		14.24

BO Set	Composition	Predicted <i>M</i> s (T)	Approx. experimental <i>M_s</i> (T)	Deviation (%)
1	Fe _{26.9} Co _{26.3} Ni _{46.8}	1.5	1.47	2
2	Fe41.7Co15.9Ni42.4	1.75	1.56	10.9
3	Fe _{26.9} Co _{47.8} Ni _{25.3}	1.75	1.73	1.1
4	Fe46.4Co25.2Ni28.4	2.01	1.79	10.9
5	Fe61.5Co18.9Ni19.6	2.18	1.94	11
Average Deviation (%)				7.18

Table S25. Deviation of M_s for the predicted composition for the first 5 BO sets using NNR_4layers_Wen model

Table S26. Deviation of T_c for the predicted composition for the first 5 BO sets using NNR_4layers_Wen model

BO Set	Composition	Predicted	Approx.	Deviation (%)
		T_c (K)	experimental T_c (K)	
1	Fe _{26.9} Co _{26.3} Ni _{46.8}	943.4	1005	-6.5
2	Fe41.7Co15.9Ni42.4	857	900	-5
3	Fe _{26.9} Co _{47.8} Ni _{25.3}	1082.4	1155	-6.7
4	Fe46.4Co25.2Ni28.4	945.3	1029	-8.9
5	Fe61.5Co18.9Ni19.6	942.4	1000	-6.1
	Average	Deviation (%)		-6.64

 Table S27. Deviation of Cost for the predicted composition for the first 5 BO sets using NNR_4layers_Wen model

BO Set	Composition	Predicted	Approx. calculated	Deviation
	Composition	Cost (\$/kg)	Cost (\$/kg)	(%)
1	Fe _{26.9} Co _{26.3} Ni _{46.8}	15.2	15.5	-2
2	Fe41.7Co15.9Ni42.4	11.5	11.6	-0.9
3	Fe _{26.9} Co _{47.8} Ni _{25.3}	20	19.9	0.5
4	Fe _{46.4} Co _{25.2} Ni _{28.4}	12.5	12.7	-1.6
5	Fe _{61.5} Co _{18.9} Ni _{19.6}	9.8	9.59	2.1
Average Deviation (%)				-0.38

PO Sot	Composition	Predicted H _c	Approx. experimental	Deviation
b0 Set	Composition	(A/m)	H_c (A/m)	(%)
1	Fe _{26.9} Co _{26.3} Ni _{46.8}	117.9	385	-226.5
2	Fe _{41.7} Co _{15.9} Ni _{42.4}	58.2	485.29	-733.8
3	Fe _{26.9} Co _{47.8} Ni _{25.3}	903.3	454	49.7
4	Fe _{46.4} Co _{25.2} Ni _{28.4}	378.3	529	-39.8
5	Fe61.5Co18.9Ni19.6	506.1	1520.6	-200.5
	Aver	rage Deviation (%)		-230.18

Table S28. Deviation of H_c for the predicted composition for the first 5 BO sets using NNR_4layers_Wen model

Table S29. Deviation of ρ for the predicted composition for the first 5 BO sets using NNR_4layers_Wen model

PO Sot	Composition	Predicted <i>ρ</i> Approx. experimental	Approx. experimental	Deviation
b0 Set	Composition	(μΩ·cm)	$ ho$ (μ Ω ·cm)	(%)
1	Fe _{26.9} Co _{26.3} Ni _{46.8}	17.3	22.8	-31.8
2	Fe41.7Co15.9Ni42.4	21.5	37.8	-75.8
3	Fe _{26.9} Co _{47.8} Ni _{25.3}	16.8	23	-36.9
4	Fe _{46.4} Co _{25.2} Ni _{28.4}	18.5	26.5	-43.2
5	Fe61.5Co18.9Ni19.6	18.9	27.2	-43.9
	Aver	age Deviation (%)		-46.32

Table S30. Deviation of H_V for the predicted composition for the first 5 BO sets using NNR_4layers_Wen model

BO Set	Composition	Predicted H _V	Approx. experimental	Deviation	
	Composition	(HV)	H_V (HV)	(%)	
1	Fe _{26.9} Co _{26.3} Ni _{46.8}	244.1	200.9	17.7	
2	Fe41.7Co15.9Ni42.4	260.4	207	20.5	
3	Fe _{26.9} Co _{47.8} Ni _{25.3}	305.9	200	34.6	
4	Fe _{46.4} Co _{25.2} Ni _{28.4}	360.4	220	39	
5	Fe _{61.5} Co _{18.9} Ni _{19.6}	416.8	406.4	2.5	
	Average Deviation (%)				

References

- Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A. & Talwalkar, A. Hyperband: A novel bandit-based approach to hyperparameter optimization. *The Journal of Machine Learning Research* 18, 6765-6816 (2017).
- 2 O'Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H. & Invernizzi, L. KerasTuner. (2019).
- 3 Head, T., Kumar, M., Nahrstaedt, H., Louppe, G. & Shcherbatyi, I. scikit-optimize. Zenodo (2021). <u>https://doi.org/10.5281/zenodo.5565057</u>
- 4 Brochu, E., Cora, V. M. & De Freitas, N. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. *arXiv preprint arXiv:1012.2599* (2010).
- 5 Frazier, P. I. & Wang, J. in Information Science for Materials Discovery and Design Springer Series in Materials Science (eds Turab Lookman, Francis J. Alexander, & Krishna Rajan) Ch. Chapter 3, 45-75 (Springer International Publishing, 2016).
- Močkus, J. in *Optimization Techniques IFIP Technical Conference* (ed G. I. Marchuk)
 Ch. Chapter 55, 400-404 (Springer Berlin Heidelberg, 1975).
- Jones, D. R., Schonlau, M. & Welch, W. J. Efficient Global Optimization of Expensive Black-Box Functions. *Journal of Global Optimization* 13, 455-492 (1998). <u>https://doi.org/10.1023/a:1008306431147</u>