Supplementary Material

STROBE Statement—Checklist of items that should be included in reports of *cohort studies*

	Item No		
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1,3
		(b) Provide in the abstract an informative and balanced summary of	
		what was done and what was found	
T (
Introduction Background/rationale	2	Explain the scientific background and rationale for the investigation	4
Dackground/rationale	2	being reported	-
Objectives	3	State specific objectives, including any prespecified hypotheses	4,5
Methods			.,-
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods	6
ootang	Ũ	of recruitment, exposure, follow-up, and data collection	Ŭ
Participants	6	(a) Give the eligibility criteria, and the sources and methods of	6
	-	selection of participants. Describe methods of follow-up	_
		(b) For matched studies, give matching criteria and number of	
		exposed and unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential	7,8,9
		confounders, and effect modifiers. Give diagnostic criteria, if	
		applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of	7,8,9
measurement		methods of assessment (measurement). Describe comparability of	
		assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	7,8,9,11
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	9,10
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control	
		for confounding	
		(b) Describe any methods used to examine subgroups and	
		interactions	
		(c) Explain how missing data were addressed	9,10
		(d) If applicable, explain how loss to follow-up was addressed	
		(<u>e</u>) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg	12
		numbers potentially eligible, examined for eligibility, confirmed	
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic,	
		clinical, social) and information on exposures and potential	
		confounders	
		(b) Indicate number of participants with missing data for each	12
		variable of interest	

		(c) Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Report numbers of outcome events or summary measures over time	12

Main results	16	 (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included (b) Report category boundaries when continuous variables were categorized (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period 	13
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	13,14
Discussion			
Key results	18	Summarise key results with reference to study objectives	15,16,17
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	18,19
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	16,17,19
Generalisability	21	Discuss the generalisability (external validity) of the study results	18,19
Other informatio	n		
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	20

7 *Give information separately for exposed and unexposed groups.

8

6

9 Note: An Explanation and Elaboration article discusses each checklist item and gives methodological

10 background and published examples of transparent reporting. The STROBE checklist is best used in conjunction

11 with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of

12 Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the

13 STROBE Initiative is available at http://www.strobe-statement.org.

14 15

16 Supplementary Information

- 17 **Supplementary Table S1**. Cox proportional hazards regression analyses for associations
- 18 between plasma calprotectin levels and the risk of incident CKD, based on its individual
- 19 determinants (eGFR and UAE).

A. CKD (eGFR<60 mL/min/1.73m²) (<i>n</i> =151)						
Model 1	1.44 [1.17-1.77],	1.00 (reference)	1.37 [0.90-2.10],	1.82 [1.22-2.72],		
	<i>P</i> <0.001		<i>P</i> =0.143	<i>P</i> =0.003		
Model 2	1.36 [1.09-1.69],	1.00 (reference)	1.23 [0.80-1.88],	1.52 [1.02-2.26],		
Wodel 2	<i>P</i> =0.007		<i>P</i> =0.345	<i>P</i> =0.042		
Model 3	1.27 [1.02-1.59],	1.00 (reference)	1.22 [0.80-1.87],	1.43 [0.96-2.15],		
Model 3	<i>P</i> =0.032		<i>P</i> =0.364	<i>P</i> =0.080		
Model 4	1.15 [0.92-1.43],	1.00 (reference)	1.44 [0.94-2.22],	1.28 [0.85-1.92],		
Model 4	<i>P</i> =0.218		<i>P</i> =0.093	<i>P</i> =0.238		
Model 5	1.07 [0.83-1.37],	1.00 (reference)	1.34 [0.86-2.11],	1.19 [0.77-1.84],		
Model 3	<i>P</i> =0.618		<i>P</i> =0.199	<i>P</i> =0.444		
B. CKD (UAE >30 m	B. CKD (UAE >30 mg/24-h) (<i>n</i> =349)					
Model 1	1.26 [1.10-1.43],	1.00 (reference)	1.20 [0.92-1.57],	1.55 [1.20-2.00],		
	<i>P</i> <0.001		<i>P</i> =0.190	<i>P</i> <0.001		
Model 2	1.19 [1.04-1.36],	1.00 (reference)	1.08 [0.83-1.42],	1.36 [1.05-1.76],		
	<i>P</i> =0.014		<i>P</i> =0.558	<i>P</i> =0.019		
Model 3	1.16 [1.01-1.33],	1.00 (reference)	1.06 [0.81-1.40],	1.31 [1.01-1.70],		
Woder 3	<i>P</i> =0.033		<i>P</i> =0.655	<i>P</i> =0.038		

Model 4	1.17 [1.02-1.34], <i>P</i>=0.027	1.00 (reference)	1.07 [0.81-1.40], <i>P</i> =0.647	1.33 [1.02-1.72], <i>P</i>=0.033
Model 5	1.06 [0.90-1.25], <i>P</i> =0.500	1.00 (reference)	0.94 [0.69-1.28], <i>P</i> =0.670	1.16 [0.85-1.56], <i>P</i> =0.350

20 Model 1, crude model. Model 2, model 1 with adjustment for age and sex. Model 3, model 2 with adjustment for

21 history of cardiovascular disease, history of diabetes, and the presence of hypertension. Model 4, model 3 with

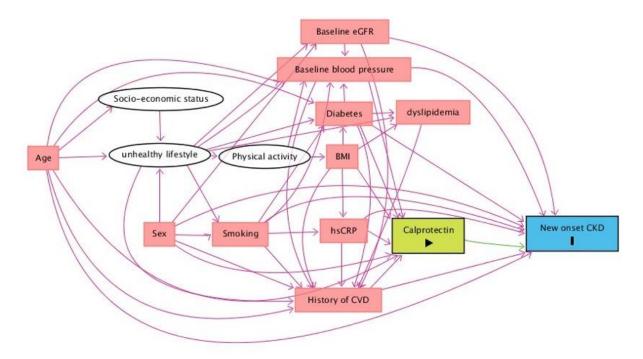
22 adjustment for baseline eGFR. Model 5, model 4 with additional adjustment for hs-CRP. Bold P-values indicate

23 statistical significance. Abbreviations: HR, hazard ratio; CKD, chronic kidney disease; eGFR, estimated

24 glomerular filtration rate; UAE, urinary albumin excretion.

25

26 Supplementary Table S2. Stratified analyses for the association between plasma


27 calprotectin levels and the risk of incident CKD across various subgroups.

Variable	Total (<i>n</i>)	New-onset CKD (<i>n</i>)	HR [95% CI]	<i>P</i> -value for interaction	
Overall	4662	467	1.14 [1.01-1.29]		
Sex					
Male	2148	266	1.27 [1.07-1.49]	0.113	
Female	2514	201	1.02 [0.86-1.22]	0.110	
BMI					
< 25 kg/m ²	1976	163	1.17 [0.96-1.42]	0.440	
≥ 25 kg/m²	2686	304	1.14 [0.97-1.33]	0.416	
Hypertension					

3492	263	1.07 [0.92-1.25]	0.104
1168	203	1.25 [1.04-1.51]	
4539	445	1.16 [1.02-1.31]	0.384
123	22	0.83 [0.47-1.48]	
3849	233	1.07 [0.90-1.27]	<0.001
813	234	1.03 [0.86-1.23]	<0.001
1615	264	1.14 [0.96-1.34]	0.221
2999	203	1.17 [0.98-1.39]	
3320	329	1.21 [1.04-1.40]	<0.001
1283	130	0.93 [0.76-1.13]	
2494	233	1.20 [1.01-1.43]	0.787
2146	233	1.10 [0.93-1.30]	
	1168 4539 123 3849 813 1615 2999 3320 1283 1283	1168 203 4539 445 123 22 3849 233 813 234 1615 264 2999 203 3320 329 1283 130 2494 233	1168 203 1.25 [1.04-1.51] 1168 203 1.25 [1.04-1.51] 4539 445 1.16 [1.02-1.31] 123 22 0.83 [0.47-1.48] 123 22 0.83 [0.47-1.48] 3849 233 1.07 [0.90-1.27] 813 234 1.03 [0.86-1.23] 1615 264 1.14 [0.96-1.34] 2999 203 1.17 [0.98-1.39] 3320 329 1.21 [1.04-1.40] 1283 130 0.93 [0.76-1.13] 2494 233 1.20 [1.01-1.43]

28 Abbreviations: CKD, chronic kidney disease; CI, confidence interval; HR, hazard ratio; eGFR, estimated

29 glomerular filtration rate; UAE, urinary albumin excretion; BMI, body-mass index; CHF, chronic heart failure.

30

31 Supplementary Figure S1. Direct acyclic graph (DAG) representing the hypothesized

32 causal relationships that underlie the studied association between plasma calprotectin levels

- 33 and the risk of new-onset CKD in the general population. A distinct set of confounding
- 34 variables was identified and subsequently conditioned for in statistical analysis.
- 35 Abbreviations: BMI, body mass index; CKD, chronic kidney disease; DM, diabetes mellitus;
- 36 hs-CRP; high-sensitive C-reactive protein.