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Supplemental Note #1: Initial Consideration for Library Profiling

Our overarching goals were to understand how modulators of different classes of proteins affect proteome remodeling, to
draw conclusions about the activities of distinct chemical scaffolds, and to appreciate the effects of understudied
compounds. Achieving these goals necessitated the use of a large screening library that covered a broad chemical space
and included redundancies in the annotated targets.

The screening library ultimately selected for this work is comprised of 875 small molecules that, when all known targets
are included, target 914 proteins that constitute approximately half of the targetable proteome[1] (Fig. 1 and S1B). The
library includes compounds across all stages of clinical development, ranging from highly cited FDA approved drugs,
such as indomethacin with more than 43,000 citations over 70 years, to largely undescribed tool compounds like
UNC2881 with only one citation in PubMed. (Fig. 1B and S1A). Nearly 700 compounds share primary or secondary
targets with other library members, allowing for interpretation of both target-induced proteome fingerprints and off-target
polypharmacology (Fig. S1C).

This large library is comprised of compounds that are used at a broad range of effective concentrations, though many do
not have annotated EC50 values for their target protein(s). Additionally, the “true” target of many drugs and tool
compounds is often unknown[2], which complicates efforts in picking treatment concentrations. Moreover, the
concentration required to engage enough protein in cells to elicit a functional response is not revealed by the in vitro
IC50[3, 4]. For the fraction of library members that are cytotoxic, it is possible to treat cells at empirically measured
concentrations that mirror proliferation IC50 values. However, this approach results in proteome fingerprints that are
dominated by cell death pathways[5], limiting the interpretation of nuanced differences between proteome-measured
MOA:s.

Thus, we chose a single treatment concentration for the majority of the library, settling on the common screening
concentration of 10 uM [6], that is still considered useful for MOA determination[7]. This concentration provided a
middle ground for high potency compounds and low affinity ligands, while making a large library screen more tractable,
in part, due to available automation. Moreover, by treating cells with concentrations that are sometimes higher than might
be typical, we had the opportunity to discover new, biologically relevant targets that can be used for i) “off-label” tool
compound usage, ii) drug repurposing efforts, and iii) leveraged polypharmacology for treating disease.

We balanced library size against screening across multiple cell lines, ultimately deciding to use HCT116 cells as a
standalone model. This microsatellite instable colorectal cancer (CRC) cell line[8] expresses mutant KRAS (G13D), the
third most common driver mutation across cancers[9, 10]. Moreover, CRC is the second leading cause of cancer related
death,[11] highlighting the need to understand drug action in this cell model. Additionally, the protein-protein interaction
landscape of HCT116 cells has been thoroughly defined through the BioPlex Network[12], providing a useful companion
resource for interpreting protein-complex coregulation, while making the HCT116 proteome one of the most well studied.
Although using a single genetic background limits the scope of protein targets, and thus signaling pathways, that can be
perturbed by compounds in the library, our decision gives the ability to screen a library 10 times larger than ever reported,
allowing us to incorporate many poorly characterized tool compounds. Moreover, we can now make more comparisons
between compound-induced proteome fingerprints, which is essential for future MOA deconvolution efforts.



Supplemental Note #2: Characterization of Batch Effects and Normalization Methods

This supplementary note outlines how we analyzed and reduced batch effects across nearly 200 plexes. Cells were grown
and treated in 22, 96-well plates (Figure SN2-1). Replicates were performed at the plate level. Cells grown in the first
column in each plate were treated with DMSO. Cells in the rest of the columns were treated with compounds. Cells
treated with toxic compounds were replaced with those treated with the control compound when needed. Samples in each
row were analyzed in the same TMT plex. Samples in each column were labeled with the same TMT-11plex tag (Figure
SN1). We first adjusted the TMT reporter ion intensities by making the total summed value of all the reporter ion
intensities for all proteins in each sample the same across each plex. This is to account for protein loading variance,
pipetting errors, etc. during the sample preparation. The rationale for this adjustment is that we intent to load equal
amounts of proteins in each TMT channel. After this adjustment, log. fold changes (compound vs DMSO) were obtained.
We then analyzed the batch effects at plex, plate, channel, and replicate level using hierarchical clustering analysis (HCA)
(Figure SN2-2), principal component analysis (PCA) (Figure SN2-3), and linear regression (Figure SN2-4).

Log. fold changes of proteins that were quantified in all TMT channels were used in the HCA and PCA (4,087 proteins,
1,628 TMT channels). As shown in the HCA results before median normalization (Figure SN2-2), samples were clustered
by replicate batch, plex, and plate to some extent (highlighted by the red arrows), suggesting batch effects at these levels.
The PCA results before median normalization also showed the batch effect at plex level (Figure SN2-3) as indicted by the
red arrow. Previous studies in our lab have shown that per-protein batch effects exist in large-scale multiplexed datasets,
where one protein is consistently up-or down-regulated in all samples ina TMT [13, 14]. In a large-scale multiplexed
experiment where samples are randomly distributed across TMT channels, a protein being up- or down-regulated in all
samples in a plex is unlikely and a per-protein mean or median centering normalization can be performed to remove such
effect. In this work, the source of the per-protein batch effect can be random error in the measurement of the DMSO-
treated samples, edge effect of the 96-well plate, etc. As compounds were randomly assigned in this work to evenly
distribute the targets across all TMT plexes/channels, we expect that the median log, fold change of a protein within each
plex should be zero. We thus further normalize the data and investigated how this per-protein median normalization
affected the batch effects. As shown in the HCA results after median normalization (Figure SN2), TMT channels were no
longer grouped by replicate, plex, or plate and the per-protein median normalization reduced the small batch effects. The
PCA results also showed that the plex level batch effect was also effectively removed by the per-protein median
normalization (Figure SN2-3). In the linear regression analysis, the per-protein median normalization removed the plex
and channel level batch effects, while it retained the primary target effect (Figure SN2-4). So before moving forward to
perform further quantitative analysis, we did the per-protein median normalization and reported the normalized ratios in
the viewer and the supplementary tables.

Thus, our final approach to normalization included 1) column normalization to equalize protein loading, 2) ratioing
against the DMSO channel to all cross-plex analyses, and 3) median normalization of the log2-transformed ratios across
each plex to correct for small differences in DMSO measurements.
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Figure SN2A. The plate layout. Cells in the first column in each 96-well plate were treated with DMSO. Cells in the last
column in each plate were treated with the control compound. Cells in the rest of the columns were treated with
compounds. Cells treated with toxic compounds were replaced with those treated with the control compound when



needed. Samples in each row were analyzed in the same TMT plex. Samples in each column were labeled with the same
TMT-11plex tag. This figure explains the “Plate”, “Plex”, and “Channel” in the following Figure SN2, Figure SN3 and
Figure SN4.
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Figure SN2B. Hierarchical clustering analysis of the data before and after per-protein median normalization. As
highlighted by the red arrows in the heatmap before median normalization, there are batch effects at replicate, plex and
plate level. As shown in the heatmap map after median normalization, per-protein normalization reduced the batch effects.
“#Hits” indicates the number of significantly regulation proteins in each TMT channel. “Replicate” indicates the replicate
batch. “Channel”, “Plex”, and “Plate” are explained in Figure SN1. Numbers in the parentheses in the figure legend
indicate the number of TMT channels per color. Log. fold changes (compound vs DMSO) were used to perform the
hierarchical clustering analysis.



Figure SN2C. Principal component analysis of the data before and after per-protein median normalization. As highlighted
by the red arrows, there is batch effect at plex level. The per-protein normalization reduced the batch effect. “Replicate”
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indicates the replicate batch. “Channel”, “Plex”, and “Plate” are explained in Figure SN1. Numbers in the parentheses in
the figure legend indicate the number of TMT channels per color. Log: fold changes (compound vs DMSQO) were used to
perform the principal component analysis.
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Figure SN2D. Linear model coefficients plots along with associated R? values for the models. Models were fit on the
entire protein quantitative data (log. fold changes, compound vs DMSQO, n = ~10 million) using dummy variables for plex,
channel, and primary target. The per-protein median normalization reduced batch effects at both plex (A) and channel
level (B), especially the plex level. The primary target-based effect remained after the per-protein median normalization as
highlighted by the blue arrows (C). “Channel”, “Plex”, and “Plate” are explained in Figure SN1. In all plots, data points
represent the 95% confidence interval.



Supplemental Note #3: Proteome fingerprints are reproducible across concentrations

We next investigated the changes in proteome remodeling for eight highly cited compounds at different concentrations
(Fig. S9). We analyzed global protein expression changes at a repeat concentration of 10 uM as well as a lower
concentration of 500 nM or 1 uM. Despite 10-20-fold lower treatment concentrations, proteome changes were well
conserved for this subset of compounds (Fig. S9A-D). We then calculated compound similarity for the rescreened
compounds against the entire 875 compound MOA dataset using a Pearson correlation matrix (Fig. S9B). We found that
the most highly related proteome fingerprint for rescreened compounds at each concentration was the same compound or
another which targets the same protein, as was the case for Pictilisib and JQ-1 (Fig. S9C). Of the eight compounds
investigated, only simvastatin proteome fingerprints were poorly correlated across the 20-fold treatment range. However,
the target of this compound, HMGCR, was strongly upregulated at both 500 nM and 10 uM; a feature which is helpful in
defining the MOA of simvastatin and possibly other HMGCR inhibitors (Fig. SOE).

We were encouraged by the results from the 1 uM treatment of the MDMZ2 inhibitor Nutlin-3a, which is used in cells at
concentrations of 5-20 uM [15-17]. Despite 1 uM being much lower than the effective concentration for eliciting a change
in the cell growth phenotype, this concentration was still highly correlated to Nutlin-3a from the MOA set. The proteome
fingerprint was also highly similar to the more potent idasanutlin [18], which required a lower treatment concentration of
1 uM in the main screen due to toxicity at 10 uM. These findings suggest that treating cells with compounds at
concentrations outside their “preferred” usage range may not strongly affect the interpretation of the correlated proteome
fingerprints. The basis for this robustness seems to be that while the magnitudes of the proteome changes induced scale
according to drug concentration, the proteins altered in response to drug treatment are largely the same, regardless of the
dose. While the slope of the resulting regression may change (Fig. S9D), the associated correlation remains high.



Supplemental Note #4: Querying user data on the MOA Website

To further characterize the robustness of correlation-based similarity assignments, we used an external dataset of
compound induced proteome changes [19]. Though these compounds were screened at different concentrations, in a cell
line representing a different cancer type and a different genetic background, and acquired using a different MS method,
the proteome fingerprints were consistent with our dataset (SN4A). Thus, our correlation-based analysis of proteome
fingerprints remains able to correctly identify the most highly related compounds, despite substantial changes in
compound concentration and screening conditions, preserving the utility of this resource for MOA deconvolution. We
have included a feature on the website for users to query their own proteome expression data against our MOA dataset.
(https://wren.hms.harvard.edu/DeepCoverMOA/) A tutorial for using this feature with user data is available below.
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SNA4A. Protein fingerprints from this study are compatible with those from external datasets. Using the MOA
viewer “Find Similar Proteins” tool (Supplementary Note 1), protein fingerprints corresponding to four compounds from
the ProTargetMiner [19] dataset were compared against the 875 compound MOA library. (A) Bortezomib — Targets the
proteasome, (B) Dasatinib — inhibits many tyrosine kinases, (C) Nutlin-3a — inhibits MDM2, (D) Raltitrexed — Inhibits
TYMS.



SN4B: Walkthrough of uploading a user-collected dataset for MOA comparison with the MOA library.
Step 1:

DeepCoverMOA Protein Centric View  Bioplex

Welcome to the DeepCoverMOA!

Defining the full cellular response to pharmacological agents is critical for understanding the mechanism of action (MOA) of small molecule perturbagens. Here we developed a
96-well plate-based high-throughput screening infrastructure for quantitative proteomics and applied it to screen in duplicate 875 drugs and tool compounds in a human cancer
cell line with near-comprehensive proteome coverage. By examining the 24-hr proteome changes, we gained insights into ligand-induced changes in protein expression and
generated rules by which compounds regulate their protein targets, finding putative DHFR and TNKS inhibitors. We leveraged protein-protein and compound-compound
correlation networks to uncover previously unknown MOAs for several compounds, including the adrenergic receptor antagonist JP-1302, which we show disrupts the FACT
complex and degrades histone H1. By defining the proteome-wide fingerprints of small molecule ligands with known protein targets, we provide a protein-level companion to RNA-
expression-based MOA deconvolution pipelines. These findings highlight the power of this resource as a tool for both drug discovery and drug repurposing. By screening many
compounds with overlapping targets covering a broad chemical space, we linked compound structure to MOA while highlighting clear off target polypharmacology for molecules
within the library.

Compound Centric View Find Similar Compounds Peptide View

Select this tab for comparing against your own protein expression datasets

A
g o Cel Viabilty ity
=} ‘.'; Compounds "&.\'.\'\\-\ \
£ Tt \:\“mﬁ;\m‘l& 1. Remove "zym!oxlc
3 HCT116 cells o e 2. Repia:.ewnh ”
96 well plat control compou
:‘Omcko'::m“’:g‘\ X 11 plates i %‘

s

Real-Time Search

SPS-MS3

Basic pH Reverse Phase 1. 96-well Plate-Based
Fractionation —‘ Sample Cleanup
2. LysC/Trypsin Dngesl‘
WJN ﬂ‘k 3. On-bead TMT Labeling
vﬂ""’l N{" !

Quantified Peptides

11,106,070

Step 2:

DeepCoverMOA  Welcome  Protein Centric View  Bioplex ~ Compound Centric View [EIEESTIERS T Peptide View

Pearson r Cutoff:

0.38 < Adjustable cutoff for finding “similar” compounds.
Default value isthe 0.1% FDR threshold calculated in this work (r=0.38)

Upload a .txt File:
Browse . | No file selected € Upload .txt file containing your protein expression values

Submit € Click "Submit” to view which compounds are most closely related to you compound of interest

An example of the uploaded data
(Two columns: Gene Symbol and
log2FC. Mo duplicates are allowed
in Gene Symbol)

< Ensure it file is formatted approprately:

1=t column: Gene Symbaol

2M column: Log? transformed fold change values
Gene Symbol  Log2FC -Make sure there are no duplicate gene names

CYP1A1 1.40

< Example of required formatting
PARPBP 1.01

Submit Example Data (Data are
taken from ProTargetiiner .
Averaged Log2FC from triplicate
treatments in A543 cells are used.)

Bortezomib Dasatinib . .
< Select these to show example comparisons with data from ProTargetMiner
Nutlin Raltitrexed



Step 3:

Table of all compounds with

Pearson (r) over user set point Compounds with Similar MOA
Pearrson cmpdID Name Plex Channel M.W. Target(primary) Target(secondary)
0.61 cpd16 ONX 0914 3740 2 T 580.29 PSMBE
0.59 cpd853 Epoxomicin CP_1 6 554 37 PSMBS
0.57 cpd291 MG-132 3743_6 10 475.3 PSMBS CTSK:PSMB1...
Gene Sybol
Showing 1to 3 of 3 entries Previaus Next X L2FC from user input data
Y: L2FC from MOA library dataset
ONX 0914 Protein Log2 Fold Change (vs Vehicle)

H

e o *&Hover over point to
. **.* show moreinformation

cpdl6

Chemical Structure of selected
compound from above table

v]
User data

0
User data
Data from user input fxt file
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