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Supplemental Note #1: Initial Consideration for Library Profiling 

Our overarching goals were to understand how modulators of different classes of proteins affect proteome remodeling, to 

draw conclusions about the activities of distinct chemical scaffolds, and to appreciate the effects of understudied 

compounds. Achieving these goals necessitated the use of a large screening library that covered a broad chemical space 

and included redundancies in the annotated targets. 

 

The screening library ultimately selected for this work is comprised of 875 small molecules that, when all known targets 

are included, target 914 proteins that constitute approximately half of the targetable proteome[1] (Fig. 1 and S1B). The 

library includes compounds across all stages of clinical development, ranging from highly cited FDA approved drugs, 

such as indomethacin with more than 43,000 citations over 70 years, to largely undescribed tool compounds like 

UNC2881 with only one citation in PubMed. (Fig. 1B and S1A). Nearly 700 compounds share primary or secondary 

targets with other library members, allowing for interpretation of both target-induced proteome fingerprints and off-target 

polypharmacology (Fig. S1C). 

 

This large library is comprised of compounds that are used at a broad range of effective concentrations, though many do 

not have annotated EC50 values for their target protein(s). Additionally, the “true” target of many drugs and tool 

compounds is often unknown[2], which complicates efforts in picking treatment concentrations. Moreover, the 

concentration required to engage enough protein in cells to elicit a functional response is not revealed by the in vitro 

IC50[3, 4]. For the fraction of library members that are cytotoxic, it is possible to treat cells at empirically measured 

concentrations that mirror proliferation IC50 values. However, this approach results in proteome fingerprints that are 

dominated by cell death pathways[5], limiting the interpretation of nuanced differences between proteome-measured 

MOAs.  

 

Thus, we chose a single treatment concentration for the majority of the library, settling on the common screening 

concentration of 10 µM [6], that is still considered useful for MOA determination[7]. This concentration provided a 

middle ground for high potency compounds and low affinity ligands, while making a large library screen more tractable, 

in part, due to available automation. Moreover, by treating cells with concentrations that are sometimes higher than might 

be typical, we had the opportunity to discover new, biologically relevant targets that can be used for i) “off-label” tool 

compound usage, ii) drug repurposing efforts, and iii) leveraged polypharmacology for treating disease.  

 

We balanced library size against screening across multiple cell lines, ultimately deciding to use HCT116 cells as a 

standalone model. This microsatellite instable colorectal cancer (CRC) cell line[8] expresses mutant KRAS (G13D), the 

third most common driver mutation across cancers[9, 10]. Moreover, CRC is the second leading cause of cancer related 

death,[11] highlighting the need to understand drug action in this cell model. Additionally, the protein-protein interaction 

landscape of HCT116 cells has been thoroughly defined through the BioPlex Network[12], providing a useful companion 

resource for interpreting protein-complex coregulation, while making the HCT116 proteome one of the most well studied. 

Although using a single genetic background limits the scope of protein targets, and thus signaling pathways, that can be 

perturbed by compounds in the library, our decision gives the ability to screen a library 10 times larger than ever reported, 

allowing us to incorporate many poorly characterized tool compounds. Moreover, we can now make more comparisons 

between compound-induced proteome fingerprints, which is essential for future MOA deconvolution efforts. 

 

  



Supplemental Note #2: Characterization of Batch Effects and Normalization Methods 

This supplementary note outlines how we analyzed and reduced batch effects across nearly 200 plexes. Cells were grown 

and treated in 22, 96-well plates (Figure SN2-1). Replicates were performed at the plate level. Cells grown in the first 

column in each plate were treated with DMSO. Cells in the rest of the columns were treated with compounds. Cells 

treated with toxic compounds were replaced with those treated with the control compound when needed. Samples in each 

row were analyzed in the same TMT plex. Samples in each column were labeled with the same TMT-11plex tag (Figure 

SN1). We first adjusted the TMT reporter ion intensities by making the total summed value of all the reporter ion 

intensities for all proteins in each sample the same across each plex. This is to account for protein loading variance, 

pipetting errors, etc. during the sample preparation. The rationale for this adjustment is that we intent to load equal 

amounts of proteins in each TMT channel. After this adjustment, log2 fold changes (compound vs DMSO) were obtained. 

We then analyzed the batch effects at plex, plate, channel, and replicate level using hierarchical clustering analysis (HCA) 

(Figure SN2-2), principal component analysis (PCA) (Figure SN2-3), and linear regression (Figure SN2-4). 

Log2 fold changes of proteins that were quantified in all TMT channels were used in the HCA and PCA (4,087 proteins, 

1,628 TMT channels). As shown in the HCA results before median normalization (Figure SN2-2), samples were clustered 

by replicate batch, plex, and plate to some extent (highlighted by the red arrows), suggesting batch effects at these levels. 

The PCA results before median normalization also showed the batch effect at plex level (Figure SN2-3) as indicted by the 

red arrow. Previous studies in our lab have shown that per-protein batch effects exist in large-scale multiplexed datasets, 

where one protein is consistently up-or down-regulated in all samples in a TMT [13, 14]. In a large-scale multiplexed 

experiment where samples are randomly distributed across TMT channels, a protein being up- or down-regulated in all 

samples in a plex is unlikely and a per-protein mean or median centering normalization can be performed to remove such 

effect. In this work, the source of the per-protein batch effect can be random error in the measurement of the DMSO-

treated samples, edge effect of the 96-well plate, etc. As compounds were randomly assigned in this work to evenly 

distribute the targets across all TMT plexes/channels, we expect that the median log2 fold change of a protein within each 

plex should be zero. We thus further normalize the data and investigated how this per-protein median normalization 

affected the batch effects. As shown in the HCA results after median normalization (Figure SN2), TMT channels were no 

longer grouped by replicate, plex, or plate and the per-protein median normalization reduced the small batch effects. The 

PCA results also showed that the plex level batch effect was also effectively removed by the per-protein median 

normalization (Figure SN2-3). In the linear regression analysis, the per-protein median normalization removed the plex 

and channel level batch effects, while it retained the primary target effect (Figure SN2-4). So before moving forward to 

perform further quantitative analysis, we did the per-protein median normalization and reported the normalized ratios in 

the viewer and the supplementary tables. 

Thus, our final approach to normalization included 1) column normalization to equalize protein loading, 2) ratioing 

against the DMSO channel to all cross-plex analyses, and 3) median normalization of the log2-transformed ratios across 

each plex to correct for small differences in DMSO measurements.   

 

 

Figure SN2A. The plate layout. Cells in the first column in each 96-well plate were treated with DMSO. Cells in the last 

column in each plate were treated with the control compound. Cells in the rest of the columns were treated with 

compounds. Cells treated with toxic compounds were replaced with those treated with the control compound when 



needed. Samples in each row were analyzed in the same TMT plex. Samples in each column were labeled with the same 

TMT-11plex tag. This figure explains the “Plate”, “Plex”, and “Channel” in the following Figure SN2, Figure SN3 and 

Figure SN4. 

 

 

Figure SN2B. Hierarchical clustering analysis of the data before and after per-protein median normalization. As 

highlighted by the red arrows in the heatmap before median normalization, there are batch effects at replicate, plex and 

plate level. As shown in the heatmap map after median normalization, per-protein normalization reduced the batch effects. 

“#Hits” indicates the number of significantly regulation proteins in each TMT channel. “Replicate” indicates the replicate 

batch. “Channel”, “Plex”, and “Plate” are explained in Figure SN1. Numbers in the parentheses in the figure legend 

indicate the number of TMT channels per color. Log2 fold changes (compound vs DMSO) were used to perform the 

hierarchical clustering analysis. 



 

Figure SN2C. Principal component analysis of the data before and after per-protein median normalization. As highlighted 

by the red arrows, there is batch effect at plex level. The per-protein normalization reduced the batch effect. “Replicate” 



indicates the replicate batch. “Channel”, “Plex”, and “Plate” are explained in Figure SN1. Numbers in the parentheses in 

the figure legend indicate the number of TMT channels per color. Log2 fold changes (compound vs DMSO) were used to 

perform the principal component analysis. 



 



Figure SN2D. Linear model coefficients plots along with associated R2 values for the models. Models were fit on the 

entire protein quantitative data (log2 fold changes, compound vs DMSO, n = ~10 million) using dummy variables for plex, 

channel, and primary target. The per-protein median normalization reduced batch effects at both plex (A) and channel 

level (B), especially the plex level. The primary target-based effect remained after the per-protein median normalization as 

highlighted by the blue arrows (C). “Channel”, “Plex”, and “Plate” are explained in Figure SN1. In all plots, data points 

represent the 95% confidence interval. 

 

 

  



Supplemental Note #3: Proteome fingerprints are reproducible across concentrations  

We next investigated the changes in proteome remodeling for eight highly cited compounds at different concentrations 

(Fig. S9). We analyzed global protein expression changes at a repeat concentration of 10 µM as well as a lower 

concentration of 500 nM or 1 µM. Despite 10-20-fold lower treatment concentrations, proteome changes were well 

conserved for this subset of compounds (Fig. S9A-D). We then calculated compound similarity for the rescreened 

compounds against the entire 875 compound MOA dataset using a Pearson correlation matrix (Fig. S9B). We found that 

the most highly related proteome fingerprint for rescreened compounds at each concentration was the same compound or 

another which targets the same protein, as was the case for Pictilisib and JQ-1 (Fig. S9C). Of the eight compounds 

investigated, only simvastatin proteome fingerprints were poorly correlated across the 20-fold treatment range. However, 

the target of this compound, HMGCR, was strongly upregulated at both 500 nM and 10 µM; a feature which is helpful in 

defining the MOA of simvastatin and possibly other HMGCR inhibitors (Fig. S9E). 

 

We were encouraged by the results from the 1 µM treatment of the MDM2 inhibitor Nutlin-3a, which is used in cells at 

concentrations of 5-20 µM [15-17]. Despite 1 µM being much lower than the effective concentration for eliciting a change 

in the cell growth phenotype, this concentration was still highly correlated to Nutlin-3a from the MOA set. The proteome 

fingerprint was also highly similar to the more potent idasanutlin [18], which required a lower treatment concentration of 

1 µM in the main screen due to toxicity at 10 µM. These findings suggest that treating cells with compounds at 

concentrations outside their “preferred” usage range may not strongly affect the interpretation of the correlated proteome 

fingerprints. The basis for this robustness seems to be that while the magnitudes of the proteome changes induced scale 

according to drug concentration, the proteins altered in response to drug treatment are largely the same, regardless of the 

dose. While the slope of the resulting regression may change (Fig. S9D), the associated correlation remains high.  

 

  



Supplemental Note #4: Querying user data on the MOA Website 

To further characterize the robustness of correlation-based similarity assignments, we used an external dataset of 

compound induced proteome changes [19]. Though these compounds were screened at different concentrations, in a cell 

line representing a different cancer type and a different genetic background, and acquired using a different MS method, 

the proteome fingerprints were consistent with our dataset (SN4A). Thus, our correlation-based analysis of proteome 

fingerprints remains able to correctly identify the most highly related compounds, despite substantial changes in 

compound concentration and screening conditions, preserving the utility of this resource for MOA deconvolution. We 

have included a feature on the website for users to query their own proteome expression data against our MOA dataset. 

(https://wren.hms.harvard.edu/DeepCoverMOA/) A tutorial for using this feature with user data is available below. 

(SN4B) 

 

SN4A. Protein fingerprints from this study are compatible with those from external datasets. Using the MOA 

viewer “Find Similar Proteins” tool (Supplementary Note 1), protein fingerprints corresponding to four compounds from 

the ProTargetMiner [19] dataset were compared against the 875 compound MOA library. (A) Bortezomib – Targets the 

proteasome, (B) Dasatinib – inhibits many tyrosine kinases, (C) Nutlin-3a – inhibits MDM2, (D) Raltitrexed – Inhibits 

TYMS. 



 

SN4B: Walkthrough of uploading a user-collected dataset for MOA comparison with the MOA library.   

Step 1: 

 

Step 2: 

 

  



Step 3: 
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