

- 690

691 Figure 2 – Supplementary Figure 1. Design of pan-Salmoniformes targeted capture array. (A)

- 692 Conserved bait sequences were derived from Atlantic salmon (Salmo salar) and rainbow trout
- 693 (Oncorhynchus mykiss) reference genomes. (B) Relative contributions of S. salar and O. mykiss
- 694 derived bait sequences to the capture array. (C) Classifications and relative abundances of
- 695 conserved elements targeted for capture.
- 696

697 Figure 2 – Supplementary Figure 2

698

699

700 Figure 2 – Supplementary Figure 2. Sliding window plots of D showing a *large* interval of

701 **excess allele sharing.** Sliding window plots for trios consisting of Smallmouth (S), Bigmouth (B), 702 and Nosed 1 (N1), of S, B, and Nosed 3 (N3), and of N3, N1, and B. Positive D values indicate an

excess of the ABBA pattern (red arrows), while negative values indicate an excess of the BABA

pattern. The three plots show a common pattern of excess of allele sharing overlapping with

between B and N1 and B and N3, while there is no excess of allele sharing between B and N1

over B and N3. Horizontal lines signify 3SDs from the mean.

708 Figure 2 – Supplementary Table 1

	No. Individuals	No. Reads	No. Reads	Median		"Conservome" Coverage	
					Mean		
Morphotype	Pooled	(million)	Mapped	Depth	Depth	2x	10x
Bigmouth	8	72.3	35.3	66 reads	88 reads	91.6%	88.5%
Dolly Varden	3	64.1	32.4	61 reads	82 reads	91.6%	88.3%
Longhead	10	46.1	22.8	41 reads	56 reads	91.1%	85.7%
Nosed 1	5	68.8	34.9	65 reads	87 reads	91.7%	88.5%
Nosed 2	7	49.5	17.5	16 reads	20 reads	88.7%	65.5%
Nosed 3	5	68.4	34.1	63 reads	84 reads	91.6%	88.5%
Smallmouth	6	43.1	21.1	38 reads	52 reads	90.8%	84.9%
S. leucomaenis	1	55.9	25.5	50 reads	67 reads	90.5%	85.9%
White	6	36.9	18.5	34 reads	46 reads	90.6%	83.8%

Figure 2 – Supplementary Table 1. Summary of reads aligned and targeted element coverage.

713 Figure 2 – Supplementary Table 2

GO name	GO accession	bin size
activation of MAPK activity	GO:0000187	15
anaphase-promoting complex	GO:0005680	51
anaphase-promoting complex-dependent catabolic process	GO:0031145	41
ATP-dependent chromatin remodeling	GO:0043044	133
ATPase activity	GO:0016887	262
calcium ion binding	GO:0005509	1185
calcium, potassium:sodium antiporter activity	GO:0008273	52
carbohydrate binding	GO:0030246	111
carbohydrate metabolic process	GO:0005975	204
cell adhesion	GO:0007155	541
chemokine activity	GO:0008009	72
cullin-RING ubiquitin ligase complex	GO:0031461	23
DNA binding	GO:0003677	2972
DNA integration	GO:0015074	1571
DNA-templated transcription, initiation	GO:0006352	36
ferric iron binding	GO:0008199	24
fructose-bisphosphate aldolase activity	GO:0004332	27
hexose metabolic process	GO:0019318	34
homophilic cell adhesion via plasma membrane adhesion molecules	GO:0007156	362
iron ion transport	GO:0006826	23
isomerase activity	GO:0016853	45
MAP kinase activity	GO:0004707	52
nucleic acid binding	GO:0003676	2731
oligopeptide transport	GO:0006857	20
phosphatidylinositol metabolic process	GO:0046488	49
phosphatidylinositol phosphate kinase activity	GO:0016307	47
receptor tyrosine kinase binding	GO:0030971	28
regulation of mitotic metaphase/anaphase transition	GO:0030071	44
sensory perception of sound	GO:0007605	69
skeletal muscle fiber development	GO:0048741	44
SWI/SNF complex	GO:0016514	147
transcription coactivator activity	GO:0003713	164
transcription factor TFIID complex	GO:0005669	38
transmembrane transport	GO:0055085	1148
transmembrane transporter activity	GO:0022857	306
transporter activity	GO:0005215	218
transposition, DNA-mediated	GO:0006313	1551
ubiquitin protein ligase binding	GO:0031625	28
vesicle-mediated transport	GO:0016192	250

714

715 Figure 2 – Supplementary Table 2. Table of significantly underrepresented GO terms. This

table contains the set of significantly underrepresented GO terms among all sample libraries

717 (Benjamini-Hochberg FDR < 0.05).

719 Figure 2 – Supplementary Table 3

Pop 1	Pop 2	Pop 3	D _{tree} (%)	f₄-ratio (%)	p-value	Z-score
S	N3	W	3.9	8.6	0	13.0*
S	N1	W	3.7	8.2	0	11.4*
S	N3	L	2.8	6.3	0	11.4*
S	N1	L	2.2	4.9	1.18E-16	8.3*
S	В	N1	4.2	9.0	1.56E-15	8.0*
S	В	W	2.2	4.7	1.26E-14	7.7*
В	N3	W	1.8	4.1	2.44E-14	7.6*
L	W	N1	2.2	4.5	2.73E-13	7.3*
L	W	В	1.7	3.9	2.76E-13	7.3*
В	N1	W	1.7	3.7	2.11E-12	7.0*
S	В	N3	3.6	8.3	2.31E-11	6.7*
L	W	N3	1.8	3.8	4.65E-09	5.9*
В	N3	L	1.8	4.0	6.52E-07	5.0*
S	В	L	1.1	2.4	1.01E-04	3.9*
В	N1	L	1.2	2.6	3.59E-04	3.6*
N1	N3	L	0.7	1.5	1.13E-03	3.3*
L	W	S	0.5	1.4	2.86E-03	3.0
N1	N3	S	0.4	0.9	5.72E-02	1.9
N1	N3	W	0.2	0.5	2.79E-01	1.1
N3	N1	В	0.3	0.7	2.86E-01	1.1

720 721

Figure 2 – Supplementary Table 3. Table of D_{tree} scores, f₄-admixture ratios, and Z-scores for

each of the 20 trios contained within the Lake Kronotskoe species flock. 16 trios were found to

have a significant, though minimal, contribution of introgressed alleles (asterisks)(Holm-

Bonferoni, FWER < 0.01). B, Bigmouth; L, Longhead; N1, Nosed 1; N3, Nosed 3; S, Smallmouth;

726 W, White.

- 804 Figure 7 Supplementary Figure 1. Landmarks used to geomorphic morphometric analyses.
- 805 Landmarks were assigned to each of four bones. The dentary (red), the parasphenoid (blue),
- 806 the hyomandibula (green), and the anguloarticulare (yellow).
- 807

802 803

801

- 813 among Lake Kronotskoe morphs. Procrustes analyses identified highly significant differences in
- shape (Procrustes ANOVA $F_{80;1760}$ =18.88 p<0.0001). Scale bar = 10mm.
- 815
- 816

Figure 7 – Supplementary Figure 3

- distinct shape.

among Lake Kronotskoe morphs. Procrustes analyses identified significant differences in shape (Procrustes ANOVA F_{60;1212}=6.55 p<0.001) with Smallmouth morphs possessing the most

- 829 Figure 7 Supplementary Figure 4. Geometric morphometric analyses of parasphenoid
- among Lake Kronotskoe morphs. Procrustes analyses identified no significant differences in
 shape. Scale bar = 10mm.
- 832